JPH0246704A - Manufacture of compound magnet - Google Patents

Manufacture of compound magnet

Info

Publication number
JPH0246704A
JPH0246704A JP63197082A JP19708288A JPH0246704A JP H0246704 A JPH0246704 A JP H0246704A JP 63197082 A JP63197082 A JP 63197082A JP 19708288 A JP19708288 A JP 19708288A JP H0246704 A JPH0246704 A JP H0246704A
Authority
JP
Japan
Prior art keywords
magnetic powder
rare earth
coupling agent
powder
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63197082A
Other languages
Japanese (ja)
Other versions
JP2719792B2 (en
Inventor
Toshihiko Yokoyama
横山 俊彦
Ryoji Muramatsu
村松 良二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63197082A priority Critical patent/JP2719792B2/en
Publication of JPH0246704A publication Critical patent/JPH0246704A/en
Application granted granted Critical
Publication of JP2719792B2 publication Critical patent/JP2719792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To enhance the magnetic properties and corrosion resistance by a method wherein, in the manufacturing process of a compound magnet to pressure-mold a mixture of rare earth magnetic powder and a binder, the rare earth magnetic powder is surface-processed with a fluorine coupling agent. CONSTITUTION:The rare earth magnetic power contains alloy powder represented by a general formula R2T14B (where R represents rare earth group element including yttrium, likewise T: transition metal and B: boron). The fluorine base coupling agent is oligomer structure as represented by the formula I where n=1-3, iPrO: isopropyl radical, Mi: -CF2-(OCF-CF2)x-(OCF2)y-OCF3, x=1-10, y=1-10. The pressure molding falls under injection molding or compression molding. The surface of magnetic powder may be modified by either one out of the following tow processes i.e., the coupling agent itself or the same melted into a small amount of solvent is dripped or sprayed while agitating the magnetic powder or the coupling agent melted into a large amount of the solvent is mixed with the magnetic powder to be agitated and then the solvent is dried up to be removed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁性粉末とバインダーの混合物から加圧成形に
よって得られる複合磁石の製造方法に関し、特に希土類
系磁性粉末を用いた場合の粉末充填量向上及び耐食性の
向上に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing a composite magnet obtained by pressure molding from a mixture of magnetic powder and a binder, and particularly relates to a method for manufacturing a composite magnet obtained by pressure molding a mixture of magnetic powder and a binder, and in particular, the powder filling amount when rare earth magnetic powder is used. This relates to improvements in corrosion resistance and corrosion resistance.

[従来の技術] 複合磁石は次に挙げるような焼結磁石では得られない特
徴を有するため近年需要の増加が著しい。
[Prior Art] Composite magnets have the following characteristics that cannot be obtained with sintered magnets, so demand for them has increased significantly in recent years.

(1)ラジアル異方性のものが容易に得られる。(1) Radial anisotropy can be easily obtained.

(2)焼結磁石に比較して脆弱さが小さい。(2) Less brittle than sintered magnets.

(3)後加工なしで寸法精度の高い製品が得られる。(3) Products with high dimensional accuracy can be obtained without post-processing.

(4)薄肉形状品のものが容易に得られる。(4) Thin-walled products can be easily obtained.

反面複合磁石は非磁性のバインダーを加える事によりそ
の量に応じて磁気特性が低下するのが欠点である。これ
を改善する方法としては磁性粉末を出来るだけ多量に混
入する事及び異方性粉末の場合配向度を100%に近づ
ける事が必要である。
On the other hand, a drawback of composite magnets is that when a non-magnetic binder is added, the magnetic properties deteriorate depending on the amount of the binder. To improve this, it is necessary to mix as much magnetic powder as possible and, in the case of anisotropic powder, to bring the degree of orientation close to 100%.

[発明が解決しようとする課題] 希土類磁性粉末とバインダーとの混合体を射出成形法に
て製造する場合、一般にこの磁性粉末を多く混入すると
混線物の溶融粘度が高くなり、射出成形時には非常に流
れが悪くなり、成形性が落ちるか又は製品が得られなく
なる。この欠点を改良する方法として可塑剤、滑剤の添
加及び各種カップリング剤による磁性粉末の表面処理な
どが提唱されているが未だ充分とは言えない。
[Problems to be Solved by the Invention] When producing a mixture of rare earth magnetic powder and a binder by injection molding, generally when a large amount of this magnetic powder is mixed in, the melt viscosity of the mixed material increases, and it becomes extremely difficult to process the mixture during injection molding. The flow becomes poor, and the moldability deteriorates or the product cannot be obtained. As methods for improving this drawback, addition of plasticizers and lubricants, and surface treatment of magnetic powder with various coupling agents have been proposed, but these methods are still not sufficient.

又希土類磁性粉末とバインダーとの混合体を圧縮成形法
にて製造する場合、成形圧力を高めること、粉末の粒度
調整を行うこと、滑剤を添加すること等の方法が提唱さ
れており、製造方法の改善が進んでいるがユーザー側の
要求はさらに高いところを望んでいる。さらに射出成形
法と圧縮成形法の共通した大きな欠点として、磁性粉末
が希土類系のために腐食され易い事が挙げられる。電子
、電気部品に用いられる複合磁石の場合その腐食テスト
は一般に高温高湿(例えば80℃、95%RH)で行わ
れる事が多く、腐食の発生は致命的である。これを解決
する目的で酸化防止剤の添加、磁性粉末の表面カップリ
ング法及び成形品の塗装などが行われているが、耐食能
及びコストの面から未だ充分とは言えない。
In addition, when manufacturing a mixture of rare earth magnetic powder and binder by compression molding, methods such as increasing the molding pressure, adjusting the particle size of the powder, and adding a lubricant have been proposed. Improvements are being made, but users are demanding even higher standards. Furthermore, a major drawback common to injection molding and compression molding is that the magnetic powder is easily corroded because it is rare earth-based. In the case of composite magnets used in electronic and electrical parts, corrosion tests are generally conducted at high temperature and high humidity (for example, 80° C., 95% RH), and the occurrence of corrosion is fatal. In order to solve this problem, the addition of antioxidants, the surface coupling method of magnetic powder, and the coating of molded products have been carried out, but these methods are still not sufficient in terms of corrosion resistance and cost.

そこで、本発明の技術的課題は磁気的特性及び耐食性を
向上せしめた希土類系複合磁石の製造方法を提供する事
にある。
Therefore, the technical problem of the present invention is to provide a method for manufacturing a rare earth composite magnet with improved magnetic properties and corrosion resistance.

[課題を解決するための手段] 本発明者らはこれらの問題点の解決が本質的には磁性粉
末の表面を改質するところにあるとの観点から特に高滑
性と高疎水性の双方の機能を持った表面改質剤について
鋭意研究を重ねた結果、希土類磁性粉末を予めフッ素系
オリゴマーを技として保有するチタンカップリング剤が
著しい効果を示す事を見出し、本発明を完成するに至っ
た。
[Means for Solving the Problems] The present inventors believe that the solution to these problems essentially lies in modifying the surface of the magnetic powder, so the present inventors have developed a method for improving both high lubricity and high hydrophobicity. As a result of extensive research into surface modifiers with this function, we discovered that a titanium coupling agent in which rare earth magnetic powder is preliminarily treated with a fluorine-based oligomer exhibits a remarkable effect, leading us to complete the present invention. Ta.

本発明によれば、希土類系磁性粉末とバインダーとの混
合体を加圧成形する複合磁石の製造方法において、該希
土類系磁性粉末をフッ素系のカップリング剤で表面処理
することを特徴とする複合磁石の製造方法が得られる。
According to the present invention, there is provided a method for producing a composite magnet in which a mixture of a rare earth magnetic powder and a binder is pressure-molded, which comprises surface-treating the rare earth magnetic powder with a fluorine-based coupling agent. A method for manufacturing a magnet is obtained.

本発明によれば、前記複合磁石の製造方法において、前
記フッ素系カップリング剤が次式[I]に示すようなオ
リゴマー構造を有することを特徴とする複合磁石の製造
方法が得られる。
According to the present invention, there is obtained the method for manufacturing a composite magnet, wherein the fluorine-based coupling agent has an oligomer structure as shown in the following formula [I].

[I] (iPrO)n  −Ti −(OCO−[M] )4
−n二二で、本発明の複合磁石の製造方法において、前
記希土類系磁性粉末がサマリウムコバルト粉末を含むこ
とが望ましい。
[I] (iPrO)n -Ti-(OCO-[M])4
-n22 In the method for manufacturing a composite magnet of the present invention, it is desirable that the rare earth magnetic powder contains samarium cobalt powder.

又、本発明の複合磁石の製造方法において、前記希土類
系磁性粉末が一般式R2Tl4B(但しRはイツトリウ
ムを含む希土類元素、Tは遷移金属、Bはホウ素)、で
表わされる合金粉末を含むことが望ましい。
Further, in the method for manufacturing a composite magnet of the present invention, the rare earth magnetic powder may include an alloy powder represented by the general formula R2Tl4B (where R is a rare earth element containing yttrium, T is a transition metal, and B is boron). desirable.

更に、本発明の複合磁石の製造方法において、前記加圧
成形は射出成形又は圧縮成形であることを特徴とする複
合磁石の製造方法が得られる。
Furthermore, in the method for manufacturing a composite magnet of the present invention, a method for manufacturing a composite magnet is obtained, wherein the pressure molding is injection molding or compression molding.

すなわち、本発明に用いる希土類系磁性粉末は一般式 
SmCo5及びSm2CO+7等で表わされるサマリウ
ムコバルト粉末、及び一般式R2T、4B (Rはイツ
トリウムを含む希土類元素、Tは遷移金属、Bはホウ素
)で表される合金粉末(最も良い例はネオジー鉄−ホウ
素である)が用いられる。各々の粒径は特に限定しない
が磁気特性の観点からSmCo、系で5μ程度、Sm2
COHy系で10〜40μ、R2T、4Bは焼結タイプ
で2〜50μ、急冷タイプで2〜200μ位で用いられ
る。
That is, the rare earth magnetic powder used in the present invention has the general formula
Samarium cobalt powder represented by SmCo5 and Sm2CO+7, etc., and alloy powder represented by the general formula R2T, 4B (R is a rare earth element including yttrium, T is a transition metal, and B is boron) (the best example is neodymium iron-boron). ) is used. The particle size of each particle is not particularly limited, but from the viewpoint of magnetic properties, it is about 5μ for SmCo, Sm2
The COHy type has a thickness of 10 to 40μ, the sintered type of R2T and 4B has a thickness of 2 to 50μ, and the quenched type has a thickness of 2 to 200μ.

本発明に用いられる磁性粉末の表面改質剤は下記の構造
式で表わされるフッ素系オリゴマーを枝として存するチ
タン系カップリング剤である。
The surface modifier for magnetic powder used in the present invention is a titanium-based coupling agent having fluorine-based oligomers as branches represented by the following structural formula.

(以下これをFTiと略す) (iPrO)n  −Ti−(OCO−[M])4−。(hereinafter abbreviated as FTi) (iPrO)n -Ti-(OCO-[M])4-.

n−1〜3 iPrO:イソブロビル基 M  :  −CF 2    (OCF −CF 2
  )(OCF 2  )     OCF 3x−1
〜10y−1〜10 本発明に用いられるFTiの量は任意であるが経済的な
面とその効果を充分に生かす目的から希土類系磁性粉末
に対して(0,1vt%以下だと効果がなく、1wL%
以上は添加しても余ってしまうので)0,1〜lvt%
が望ましい。磁性粉末の表面改質処理条件としては一般
に言われている乾式法即ちFTiを直接又は少量の溶媒
に溶解し、磁性粉末を撹拌しながら滴下又はスプレー処
理する方法及び湿式法即ち多量の溶媒にFTiを溶かし
磁性粉末と撹拌混合した後溶媒を乾燥除去する方法のい
ずれでも構わない。又FTiを磁性粉末に混合後の熱処
理は80〜150℃不活性ガス雰囲気中で5分〜30分
が適当である。この不活性ガス雰囲気はN2又はA「で
あることが望ましい。
n-1 to 3 iPrO: isobrobyl group M: -CF2(OCF-CF2
) (OCF 2 ) OCF 3x-1
~10y-1~10 The amount of FTi used in the present invention is arbitrary, but from an economical point of view and for the purpose of fully utilizing its effects, the amount of FTi used in the rare earth magnetic powder (below 0.1vt% is ineffective). , 1wL%
Even if you add more than that, there will be a surplus) 0.1~lvt%
is desirable. The surface modification treatment conditions for magnetic powder are generally known as a dry method, in which FTi is dissolved directly or in a small amount of solvent, and then dripped or sprayed while stirring the magnetic powder, and a wet method, in which FTi is dissolved in a large amount of solvent, Any method may be used in which the solvent is dissolved and stirred and mixed with the magnetic powder, and then the solvent is dried and removed. Further, heat treatment after mixing FTi with the magnetic powder is suitably carried out for 5 minutes to 30 minutes in an inert gas atmosphere at 80 to 150°C. This inert gas atmosphere is preferably N2 or A.

表面処理された粉末粒子はその表面にカップリング剤が
吸着形成した被膜を有する。
The surface-treated powder particles have a coating formed by adsorption of a coupling agent on their surfaces.

なお、本発明はこの表面改質処理条件に限定されるもの
ではない。
Note that the present invention is not limited to these surface modification treatment conditions.

本発明による表面改質処理を施した磁性粉末は次に射出
成形又は圧縮成形等の加圧成形に供される。まず、射出
成形に用いる場合、任意の熱可塑性樹脂と混練する。混
線は加熱ニーダ−−軸又は二軸の押出機で樹脂の融点又
は軟化点以上のところで行う。
The magnetic powder subjected to the surface modification treatment according to the present invention is then subjected to pressure molding such as injection molding or compression molding. First, when used for injection molding, it is kneaded with any thermoplastic resin. The cross-crossing is carried out using a heated kneader-screw or twin-screw extruder at a temperature above the melting point or softening point of the resin.

得られた混線物をベレット化した後射出成形に供する。The obtained mixed wire material is pelletized and then subjected to injection molding.

一方圧縮成形に用いる場合任意の熱硬化性樹脂と混合し
、圧縮成形機により所定の成形品を得、その後キユア処
理により硬化させる。
On the other hand, when used for compression molding, it is mixed with any thermosetting resin, a predetermined molded product is obtained using a compression molding machine, and then cured by curing treatment.

このようにして得られた成形品を従来法と比較して磁気
特性評価及び耐湿試験に供したが現状で得られている性
能を大幅に上回る製品を得る事が出来た。
The thus obtained molded product was subjected to magnetic property evaluation and moisture resistance testing in comparison with conventional methods, and we were able to obtain a product with performance that significantly exceeded the currently available products.

[実施例] 以下に実施例をもって更に具体的に説明する。[Example] A more specific explanation will be given below using examples.

実施例1 ネオジ鉄、ホウ素系磁性粉末(GM社製)97部をスー
パーミキサーに投入し、激しく掻き交ぜながら少量のイ
ソプロパツールに溶かしたFTto、5部を5分間で滴
下し、その後100℃で15分放置し、次いで真空にて
溶媒を除去した。
Example 1 97 parts of neodymium iron and boron magnetic powder (manufactured by GM) were put into a super mixer, and while vigorously stirring, 5 parts of FTto dissolved in a small amount of isopropanol was added dropwise over 5 minutes, and then heated to 100°C. for 15 minutes, then the solvent was removed in vacuo.

このものに1液性のエポキシ樹脂25部を投入しさらに
3分間混合した。
25 parts of a one-component epoxy resin was added to this mixture and mixed for an additional 3 minutes.

得られた処理物を圧縮成形機にて6t/c−にて加圧下
13φ■×10111Ilの成形品を得た。成形品のキ
ュアは120℃で2時間行った。このものの密度は6.
2g/c+n3であり、磁気特性は(BH)maxで1
0.2MGOeと高い値を示した。
The obtained treated product was pressurized with a compression molding machine at 6 tons/c to obtain a molded product of 13φ■×10111Il. The molded article was cured at 120°C for 2 hours. The density of this thing is 6.
2g/c+n3, and the magnetic properties are (BH)max 1
It showed a high value of 0.2 MGOe.

又耐食試験も行い、これらの結果をまとめて第1表に示
した。
A corrosion resistance test was also conducted, and the results are summarized in Table 1.

尚、耐食試験は、所定条件の恒温恒湿試験にて、肉眼で
サビ発生の有無を確認し、サビが認められた時間を記載
した。
In the corrosion resistance test, the presence or absence of rust was confirmed with the naked eye in a constant temperature and humidity test under predetermined conditions, and the time at which rust was observed was recorded.

比較例I FTiを用いずエポキシ樹脂3部を用いた他は全〈実施
例1と同様にして行った。結果を第1表に示した。
Comparative Example I The same procedure as in Example 1 was carried out except that 3 parts of epoxy resin was used instead of using FTi. The results are shown in Table 1.

比較例2 FTiの代りにイソプルピルトリイソステアロイルチタ
ネート(以下STiと略す)を用いた他は全〈実施例1
と同様にして行った。結果を第1表に示した。
Comparative Example 2 All examples were the same as Example 1 except that isopropyl triisostearoyl titanate (hereinafter abbreviated as STi) was used instead of FTi.
I did it in the same way. The results are shown in Table 1.

第1表より、ネオジ鉄ホウ素系磁性粉末をFTiのイソ
プロパツール溶液で処理した実施例1は処理なしの比較
例1及びSTtのイソプロパツール溶液で処理した比較
例2の試料に比較して、磁気特性、特にBrと(BH)
maxを向上し、さらに耐食性が著しく向上したことが
判明した。
From Table 1, it can be seen that Example 1, in which neodymium iron boron magnetic powder was treated with FTi isopropanol solution, was compared with Comparative Example 1, which was not treated, and Comparative Example 2, which was treated with STt isopropanol solution. , magnetic properties, especially Br and (BH)
It was found that max was improved and corrosion resistance was also significantly improved.

実施例2 2−17系サマリウムコバルト粉末(平均粒径15μ)
を用い実施例1と同様の条件で表面改質及びエポキシ樹
脂混合を行った。この混合体を圧縮成形機にて1500
00eの印加磁場の下で5t/c−の加圧下で13φl
n+X 10 mmの成形品を得た。成形品のキュアは
120℃×2時間行った。
Example 2 2-17 samarium cobalt powder (average particle size 15μ)
Surface modification and epoxy resin mixing were performed using the same conditions as in Example 1. This mixture was molded using a compression molding machine for 1,500 m
13φl under an applied magnetic field of 00e and a pressure of 5t/c-
A molded article of n+X 10 mm was obtained. The molded article was cured at 120°C for 2 hours.

その結果を第2表に示した。The results are shown in Table 2.

比較例3 FTiを用いずエポキシ樹脂3部を用いた他は全〈実施
例2と同様にして行った。結果を第2表に示した。
Comparative Example 3 The same procedure as in Example 2 was carried out except that 3 parts of epoxy resin was used instead of FTi. The results are shown in Table 2.

比較例4 FTiの代りにSTiを用いた他は全〈実施例2と同様
にして行った。結果を第2表に示した。
Comparative Example 4 The same procedure as in Example 2 was carried out except that STi was used instead of FTi. The results are shown in Table 2.

第2表より、2−17系サマリウムコバルト粉末をFT
iイソプロパツール溶液で処理した実施例2の試料は、
処理なしの比較例2及びSTtのイソプロパツール溶液
で処理した比較例3の試料に比べて、磁気特性、特にB
rと(BH)IIlaxとが向上し、耐食性、特に80
℃等の比較的高温において向上したことが判明した。
From Table 2, FT 2-17 samarium cobalt powder
The sample of Example 2 treated with i isopropanol solution was
The magnetic properties, especially B
r and (BH)IIlax are improved, corrosion resistance, especially 80
It was found that the improvement was achieved at relatively high temperatures such as °C.

実施例3 ネオジ鉄ホウ素系磁性粉末(GM社製)94部をスーパ
ーミキサーに投入し、激しく掻き交ぜながら少量のイソ
プロパツールに溶かしたFTio、5部を5分間で滴下
し、その後100℃で15分放置し、次いで真空にて溶
媒を除去した。
Example 3 94 parts of neodymium iron boron magnetic powder (manufactured by GM) was put into a super mixer, and while vigorously stirring, 5 parts of FTio dissolved in a small amount of isopropanol was added dropwise over 5 minutes, and then heated at 100°C. Let stand for 15 minutes then remove solvent in vacuo.

このものにナイロン−12粉末5,3部及びステアリン
酸亜鉛0.2部を混合し再び激しく掻き交ぜた。この混
合体を二輪の押出機にて連続的に混練しホットカットに
よりペレットとした。次いでこの材料を射出成形し10
φa+mX10+gfflの成形品を得た。又この時成
形性を見るためにMI値(メルトインデックス値)をも
調べた。これらの結果を第3表に示した。
5.3 parts of nylon-12 powder and 0.2 part of zinc stearate were mixed with this mixture and stirred vigorously again. This mixture was continuously kneaded using a two-wheeled extruder and pelletized by hot cutting. This material was then injection molded to 10
A molded article of φa+mX10+gffl was obtained. At this time, the MI value (melt index value) was also examined to check the moldability. These results are shown in Table 3.

比較例5〜8 第3表に示した条件で実施例3と同様にして行った。結
果を第3表に示した。
Comparative Examples 5 to 8 Comparative Examples 5 to 8 were carried out in the same manner as in Example 3 under the conditions shown in Table 3. The results are shown in Table 3.

第3表より2−17系サマリウムコバルト粉末ヲF T
 iイソプロパツール溶液で処理した実施例3の試料は
、処理なしの比較例5及び6及びSTiのイソプロパツ
ール溶液で処理した比較例7及び8の4種の試料に比べ
て磁気特性(BH)n+axが向上し、MI値が増加し
、耐食性が著しく向上することが判明した。
From Table 3, 2-17 series samarium cobalt powder FT
i The sample of Example 3 treated with isopropanol solution has better magnetic properties (BH ) It was found that n+ax was improved, MI value increased, and corrosion resistance was significantly improved.

実施例4 2−17系サマリウムコバルト粉末94部(平均粒径1
5μ)をスーパーミキサーに投入し、激しく掻き交ぜな
がら少量のイソプロパツールに溶かしたFTio、5部
を5分間で滴下した。その後真空にて溶媒を除去し、こ
れにナイロン12粉末5.2部とステアリン酸カルシウ
ム0.2部を投入し、再び激しく掻き交ぜた。このもの
を二軸の押出機にて連続的に混練し、ホットカットによ
りペレットとした。この材料を磁場中で射出成形し10
φ×10の成形品を得た。又この時の成形性を見るため
にMI値を調べた。これらの結果を第4表に示した。
Example 4 94 parts of 2-17 samarium cobalt powder (average particle size 1
5μ) was put into a super mixer, and while stirring vigorously, 5 parts of FTio dissolved in a small amount of isopropanol was added dropwise over 5 minutes. Thereafter, the solvent was removed in vacuo, and 5.2 parts of nylon 12 powder and 0.2 parts of calcium stearate were added thereto, and the mixture was vigorously stirred again. This material was continuously kneaded using a twin-screw extruder and pelletized by hot cutting. This material was injection molded in a magnetic field and
A molded article of φ×10 was obtained. Moreover, the MI value was examined to check the moldability at this time. These results are shown in Table 4.

比較例9〜12 第4表に示した条件で実施例3と同様にして行った。結
果を第4表に示した。
Comparative Examples 9 to 12 Comparative Examples 9 to 12 were carried out in the same manner as in Example 3 under the conditions shown in Table 4. The results are shown in Table 4.

第4表より、2−17系サマリウムコバルト粉末をFT
iイソプロパツール溶液で処理した実施例4の試料は表
面処理なしの比較例9及び10、STiのイソプロパツ
ール溶液で表面処理した比較例11及び12の試料に比
べて磁気特性(BH)maxが著しく向上し、MI値が
増加するとともに、耐食性は表面処理なしの比較例9及
び10よりも著しく増加していることが判明した。
From Table 4, FT 2-17 samarium cobalt powder
i The sample of Example 4 treated with an isopropanol solution has a higher magnetic property (BH) max than the samples of Comparative Examples 9 and 10 without surface treatment and the samples of Comparative Examples 11 and 12 whose surface was treated with an STi isopropanol solution. It was found that the corrosion resistance was significantly improved, the MI value increased, and the corrosion resistance was significantly increased compared to Comparative Examples 9 and 10 without surface treatment.

[発明の効果] 以上、説明した通り、本発明の複合磁石の製造方法によ
れば希土類系磁性粉末のFTiの処理効果が密度向上に
よる磁気特性の改善とともに耐食性も著しく向上する事
ができ、その工業的価値は極めて大きい。
[Effects of the Invention] As explained above, according to the method for manufacturing a composite magnet of the present invention, the treatment effect of FTi of rare earth magnetic powder can be improved not only in the magnetic properties by increasing the density but also in the corrosion resistance. The industrial value is extremely large.

Claims (2)

【特許請求の範囲】[Claims] 1.希土類系磁性粉末とバインダーとの混合体を加圧成
形する複合磁石の製造方法において、該希土類系磁性粉
末をフッ素系のカップリング剤で表面処理することを特
徴とする複合磁石の製造方法。
1. 1. A method for producing a composite magnet in which a mixture of rare earth magnetic powder and a binder is pressure-molded, the method comprising surface-treating the rare earth magnetic powder with a fluorine-based coupling agent.
2.前記フッ素系のカップリング剤が次式[ I ]に示
すようなオリゴマー構造を有することを特徴とする第1
の請求項記載の複合磁石の製造方法。 (iPrO)_n−Ti−(OCO−[M])_4_−
_n(但しn=1〜3 iPrO:イソプロピル基 M:−CF_2−(OCF−CF_2)_x−(OCF
_2)_y−OCF_3 x=1〜10 y=1〜10)
2. A first method characterized in that the fluorine-based coupling agent has an oligomer structure as shown in the following formula [I].
A method for manufacturing a composite magnet according to claim 1. (iPrO)_n-Ti-(OCO-[M])_4_-
_n (however, n = 1 to 3 iPrO: isopropyl group M: -CF_2-(OCF-CF_2)_x-(OCF
_2)_y-OCF_3 x=1~10 y=1~10)
JP63197082A 1988-08-09 1988-08-09 Manufacturing method of composite magnet Expired - Fee Related JP2719792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63197082A JP2719792B2 (en) 1988-08-09 1988-08-09 Manufacturing method of composite magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63197082A JP2719792B2 (en) 1988-08-09 1988-08-09 Manufacturing method of composite magnet

Publications (2)

Publication Number Publication Date
JPH0246704A true JPH0246704A (en) 1990-02-16
JP2719792B2 JP2719792B2 (en) 1998-02-25

Family

ID=16368421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63197082A Expired - Fee Related JP2719792B2 (en) 1988-08-09 1988-08-09 Manufacturing method of composite magnet

Country Status (1)

Country Link
JP (1) JP2719792B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463004A (en) * 2020-03-12 2020-07-28 江苏巨鑫磁业有限公司 Surface antioxidant treatment method of low-demagnetization-rate neodymium iron boron permanent magnet powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754304A (en) * 1980-09-19 1982-03-31 Seiko Epson Corp Manufacture of permanent magnet
JPS60223102A (en) * 1984-04-19 1985-11-07 Seiko Epson Corp Manufacture of magnetic powder
JPS6271201A (en) * 1985-09-25 1987-04-01 Hitachi Metals Ltd Bond magnet
JPS6377886A (en) * 1986-09-19 1988-04-08 Shin Etsu Chem Co Ltd Organosilicon compound
JPS63306603A (en) * 1987-06-08 1988-12-14 Kanegafuchi Chem Ind Co Ltd Material composition of permanent magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754304A (en) * 1980-09-19 1982-03-31 Seiko Epson Corp Manufacture of permanent magnet
JPS60223102A (en) * 1984-04-19 1985-11-07 Seiko Epson Corp Manufacture of magnetic powder
JPS6271201A (en) * 1985-09-25 1987-04-01 Hitachi Metals Ltd Bond magnet
JPS6377886A (en) * 1986-09-19 1988-04-08 Shin Etsu Chem Co Ltd Organosilicon compound
JPS63306603A (en) * 1987-06-08 1988-12-14 Kanegafuchi Chem Ind Co Ltd Material composition of permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463004A (en) * 2020-03-12 2020-07-28 江苏巨鑫磁业有限公司 Surface antioxidant treatment method of low-demagnetization-rate neodymium iron boron permanent magnet powder

Also Published As

Publication number Publication date
JP2719792B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
CN100483571C (en) Formulation of Composite Bonded Magnets
US4832891A (en) Method of making an epoxy bonded rare earth-iron magnet
JP2005260016A (en) Composition for fiber reinforced resin bond type magnet, and resin bond type magnet using the same
JPH0246704A (en) Manufacture of compound magnet
WO2023120184A1 (en) Resin composition for bonded magnets and bonded magnets using same
JP2020072245A (en) Method of producing bonded magnet and compound for bonded magnet
CN114437543A (en) Strong magnetic nylon 66 composition and preparation method thereof
JP2788856B2 (en) Polylactic acid plastic magnet molding material and method for producing magnet product
JPH0231401A (en) Rare-earth magnet alloy powder, manufacture thereof and macromolecular composite type rate-earth magnet using this alloy powder
JP2767244B2 (en) Method for producing composite magnet composition
KR102154588B1 (en) A magnet of Nd-Fe-B system comprising organic binder
JPH0230564B2 (en) PURASUCHITSUKUMAGUNETSUTOSOSEIBUTSU
JPH09194911A (en) Production of raw material powder for permanent magnet excellent in moldability
JPS60223859A (en) Magnetic plastic composition
JPH0464202A (en) Bonded magnet and manufacture thereof
JP3185457B2 (en) Composition for resin-bonded magnet, resin-bonded magnet and methods for producing them
JPH03288405A (en) Bonded-magnet raw material and manufacture thereof
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JP4433801B2 (en) Oxidation-resistant rare earth magnet powder and method for producing the same
JPH06267720A (en) Resin bonded rare earth element magnet and manufacture thereof
JPH06302418A (en) Bond-type permanent magnet and its manufacture
JP4433800B2 (en) Oxidation-resistant rare earth magnet powder and method for producing the same
JPH03222303A (en) Corrosion-preventing method for plastic bonded magnet
JPS63146414A (en) Manufacture of bonded magnet
JPS63160314A (en) Manufacture of permanent magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees