JPH0245743A - Fluorescent x-ray analysis apparatus - Google Patents

Fluorescent x-ray analysis apparatus

Info

Publication number
JPH0245743A
JPH0245743A JP19539988A JP19539988A JPH0245743A JP H0245743 A JPH0245743 A JP H0245743A JP 19539988 A JP19539988 A JP 19539988A JP 19539988 A JP19539988 A JP 19539988A JP H0245743 A JPH0245743 A JP H0245743A
Authority
JP
Japan
Prior art keywords
aperture
ray
diameter
sample
aperture diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19539988A
Other languages
Japanese (ja)
Inventor
Masayuki Matsuo
正之 松尾
Yoshio Inoue
井上 良男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP19539988A priority Critical patent/JPH0245743A/en
Publication of JPH0245743A publication Critical patent/JPH0245743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To improve analysis sensitivity and accuracy by forming a calibration curve under plural kinds of aperture diameters by using standard samples and automatically determining the optimum aperture diameter by a computer. CONSTITUTION:Plural kinds of the standard samples which are the same material as the sample to be measured and have the known concn. of the element to be determined are prepd. and plural kinds of the diameter of the variable aperture 7 are set with the respective standard samples. The intensity data of the characteristic X-ray of the element to be determined is taken into the computer 9 for control via an X-ray detector 5. The computer 9 determines the diameter in accordance with a flow chart, sets the diameter of the aperture 9 by controlling the motor 8 and forms the calibration curve under plural kinds of the aperture diameters. The optimum aperture diameter is thus determined.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は蛍光X線分析装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a fluorescent X-ray analyzer.

(従来の技術) 蛍光X線分析法は試料をX線照射によって励起し、試料
から放射される蛍光X4!itをX線分光器により分光
検出することにより試料の元素分析を行うものであるが
、X線分光器のX線取出し面積は波長によって異るが自
由に変えることはできず、試料のX線照射面積も固定さ
れている。
(Prior art) In the X-ray fluorescence analysis method, a sample is excited by X-ray irradiation, and fluorescence X4! is emitted from the sample. Elemental analysis of the sample is performed by spectroscopically detecting it using an X-ray spectrometer, but the X-ray extraction area of the X-ray spectrometer varies depending on the wavelength and cannot be changed freely. The irradiation area is also fixed.

試料が均一で大きさも充分なものであれば、試料のX線
照射面積をX線分光器のX線取出し面積に合わせるか少
し太き目にしておけば、X線分光器の利用効率が100
%になって分析の感度も精度も最高になるが、試料が小
さくて試料全面をX線で照射しても、X線分光器のX線
取出し面積に及ばないときは試料周辺部の試料以外の物
質からの散乱X線がX線分光器に入って、分析のS/N
比の低下を来す。また試料を照射するX線の線束断面に
おけるX線強度分布は均一でな(、また試料の励起は主
として照射X線中の特定波長のX線源の特性X線に期待
しているのであるが、照射X線は連続X線も含んでおり
、この連続X線の散乱成分がノイズとなる。この種のノ
イズ成分は試料のX線照射面積の大小と共に、試料の組
成および構造(結晶質が非晶質かまた結晶質なら結晶粒
の大小等)と測定しようとする元素とによっても異なり
、試料と測定しようとする元素とにようてS/N比が最
高になるX線照射面精がある。
If the sample is uniform and of sufficient size, the usage efficiency of the X-ray spectrometer can be increased to 100% by matching the X-ray irradiation area of the sample to the X-ray extraction area of the X-ray spectrometer or making it a little thicker.
%, the sensitivity and accuracy of the analysis will be the highest. However, if the sample is small and even if the entire surface of the sample is irradiated with X-rays, it will not reach the X-ray extraction area of the X-ray spectrometer. The scattered X-rays from the substance enter the X-ray spectrometer, and the S/N of the analysis is
This results in a decrease in the ratio. In addition, the X-ray intensity distribution in the beam cross section of the X-rays that irradiate the sample is not uniform (and the excitation of the sample is expected mainly from the characteristic X-rays of the X-ray source with a specific wavelength in the irradiated X-rays). , the irradiated X-rays also include continuous X-rays, and the scattered components of these continuous X-rays become noise.This type of noise component depends on the composition and structure of the sample (crystalline It depends on the element to be measured (whether it is amorphous or crystalline, such as the size of the crystal grains) and the element to be measured. be.

しかるに上述したように従来の蛍光Xn分析装置では試
料のX線照射面積が固定されていたため、装置において
可能な最高のS/N比で分析を行うことができなかった
However, as described above, in the conventional fluorescence Xn analyzer, the X-ray irradiation area of the sample was fixed, and therefore analysis could not be performed with the highest possible S/N ratio in the apparatus.

(発明が解決しようとする課題) 蛍光X線分析装置で試料の有効X線照射面積を可変にし
、かつ試料と測定しようとする元素とによって上記X線
照射面積を最適に設定し得る手段を提供しようとるすも
のである。
(Problems to be Solved by the Invention) To provide a means for making the effective X-ray irradiation area of a sample variable in a fluorescent X-ray analyzer and setting the X-ray irradiation area optimally depending on the sample and the element to be measured. That's what I'm trying to do.

(課題を解決するための手段) X線源と試料との間或はX線分光器の入射側にX線束を
制限する可変絞りを設け、この可変絞りの口径を数段階
に変え、その各段階毎に標準試料で目的元素の測定を行
い、上記絞り口径の各段階毎に検量線を作成し、これら
の各検量線を目的元素の濃度マイナス側に延長してX線
強度Oの線を切る点の濃度Oの点からの距離と絞り口径
との関係曲線を作成し、上記距離が最小になる絞り口径
を索出し、可変絞りの口径を上記の索出された絞り口径
に設定して被測定試料の分析を行うようにした。
(Means for solving the problem) A variable diaphragm for limiting the X-ray flux is provided between the X-ray source and the sample or on the incident side of the X-ray spectrometer, and the aperture of this variable diaphragm is varied in several stages. Measure the target element using a standard sample at each stage, create a calibration curve for each stage of the aperture diameter, and extend each of these calibration curves to the negative side of the concentration of the target element to create a line of X-ray intensity O. Create a relationship curve between the distance from the point of concentration O of the cutting point and the aperture aperture, find the aperture aperture that minimizes the above distance, and set the aperture of the variable aperture to the aperture aperture found above. The sample to be measured was analyzed.

(作用) X線源と試料との間或はX線分光器の入射側つまり試料
とX線分光器との間に可変絞りを置くと、試料の有効X
$11照射面積が可変となる。単に試料の有効X!11
照射面積を可変にしただけでは最高のS/N比になるよ
うに絞り口径を設定することはできない。本発明ではま
ず標準試料を用い何MMかの絞り口径のもとて検量線を
作成する。第3図は検ffi腺を示し、A、B、Cの順
に絞り口径は小さ(なっている。検m線が元1g濃度O
における縦軸を切る点のX線強度はバックグラウンド強
度である。バックグラウンド強度は絞り径が小さ(なれ
ば低(なるが、元素の単位濃度当りのX線強度の変化も
小さくなる。S/N比の表現として、元素の特性X線強
度がバックグラウンド強度と等しくなるような元素濃度
(I3EC)を用いることができる。これはへの検M腺
について云えば縦軸上にab=oaなる点すをとり、そ
こから右に水平線を伸ばして検量線Aと交わる点の元素
濃度に相当する。これはまた検量線を縦軸より左方に延
長して横軸を切る点Cを求めるとOcの長さに等しい。
(Function) If a variable aperture is placed between the X-ray source and the sample or on the incident side of the X-ray spectrometer, that is, between the sample and the X-ray spectrometer, the effective
$11 The irradiation area is variable. Simply the effectiveness of the sample! 11
It is not possible to set the aperture diameter to obtain the highest S/N ratio simply by varying the irradiation area. In the present invention, first, a standard sample is used to create a calibration curve with several MM aperture diameters. Figure 3 shows the inspection ffi gland, and the aperture diameter becomes smaller in the order of A, B, and C.The inspection m line is the original 1g concentration O
The X-ray intensity at the point that cuts the vertical axis in is the background intensity. The background intensity will be lower if the aperture diameter is smaller, but the change in the X-ray intensity per unit concentration of the element will also be smaller.As an expression of the S/N ratio, the characteristic X-ray intensity of the element is the background intensity. You can use the element concentration (I3EC) that makes them equal.For the M gland, take the point ab=oa on the vertical axis, extend the horizontal line to the right from there, and draw the calibration curve A. This corresponds to the element concentration at the point of intersection.This is also equal to the length of Oc when the calibration curve is extended to the left from the vertical axis and the point C that cuts the horizontal axis is found.

このBECが小さい程S/N比が良好であることは云う
までもない。今検fi[A、B。
It goes without saying that the smaller the BEC, the better the S/N ratio. Imaken fi [A, B.

Cについて夫々l3ECを求め絞り口径との関係グラフ
を作成すると第4図のようになり、絞り口径がDのとき
S/N比最高となることが分かる。以上の動作は標準試
料を用意して幾つかの絞り口径で目的元素の特性X線強
度を測定してそのデータを取り込めば後はコンピュータ
により自動的に行われて最適絞り口径を決定することが
できる。
When l3EC is determined for each of C and a graph of the relationship with the aperture diameter is created, the result is as shown in FIG. 4, and it can be seen that when the aperture diameter is D, the S/N ratio is the highest. The above operations can be performed automatically by a computer by preparing a standard sample, measuring the characteristic X-ray intensity of the target element at several aperture diameters, and importing the data, to determine the optimal aperture diameter. can.

(実施例) 第1図は本発明の一実施例装置を示す。図で1は試料励
起用X線源、Sは試料でMはX線分光器である。このX
線分光器は平板結晶を分光素子として用いる型で、3は
入射側ソーラスリット、4は出射側ソーラスリットで、
5はX線検出器である。6はゴニオメータで、分光結晶
2の回転角に対して出射側ソーラスリット4が2倍角だ
け回転することにより検出しようとするX線波長を設定
できるようになっている。X線分光器のX線取出し面積
はソーラスリット3側から見た分光結晶2の見掛けの面
積であり、X線波長によって異るが分光結晶のサイズに
よって決まる構造上の値である。7は可変絞りで写真レ
ンズの可変絞りと同じ構造のものであり、絞り制御用パ
ルスモータ8によりギアを介して駆動される。9は制御
用コンピュータでX線検出器5の出力データを取込み、
モータ8をmす御して絞り7の口径を所定の値に設定す
る。
(Embodiment) FIG. 1 shows an apparatus according to an embodiment of the present invention. In the figure, 1 is an X-ray source for sample excitation, S is a sample, and M is an X-ray spectrometer. This X
The line spectrometer is a type that uses a flat crystal as a spectroscopic element, 3 is a solar slit on the entrance side, 4 is a solar slit on the output side,
5 is an X-ray detector. Reference numeral 6 denotes a goniometer, and the output side solar slit 4 rotates by an angle twice the rotation angle of the spectroscopic crystal 2, thereby making it possible to set the X-ray wavelength to be detected. The X-ray extraction area of the X-ray spectrometer is the apparent area of the spectroscopic crystal 2 viewed from the solar slit 3 side, and is a structural value that varies depending on the X-ray wavelength but is determined by the size of the spectroscopic crystal. A variable aperture 7 has the same structure as a variable aperture of a photographic lens, and is driven by an aperture control pulse motor 8 via a gear. 9 is a control computer that takes in the output data of the X-ray detector 5;
The motor 8 is controlled by m to set the diameter of the diaphragm 7 to a predetermined value.

以下可変絞り7の絞り口径設定動作について説明する。The aperture diameter setting operation of the variable aperture 7 will be explained below.

まず被測定試料と同種物質で、定量しようとする元素の
濃度既知の標r%1!試料を複数種用意し、夫々の標準
試料につき、可変絞り7の口径をA>B>Cの3種(3
種と限らずもっと多段階に選定してもよい)に設定して
定量しようとする元素の特性X線の強度のデータを$制
御用コンピュータ9に取込ませる。その後コンピュータ
9に絞り口径設定動作をスタートさせる。コンピュータ
9は第2図のフローチャーチに従って絞り口径を決定し
、モータ8を制御して絞り7の口径を設定する。まず取
り込んだデータにより絞り口径A。
First, a sample with a known concentration of the element to be quantified is r%1! of the same substance as the sample to be measured. Prepare multiple types of samples, and for each standard sample, adjust the diameter of the variable aperture 7 to three types (A>B>C) (3 types).
The data on the intensity of characteristic X-rays of the element to be quantified is input into the $ control computer 9. Thereafter, the computer 9 is caused to start the aperture aperture setting operation. The computer 9 determines the aperture diameter according to the flow chart shown in FIG. 2, and controls the motor 8 to set the aperture diameter of the aperture 7. First, the aperture aperture A is determined based on the captured data.

B、Cの各場合につき第3図の検量線の式を作成(イ)
する。この場合検量線は直線とし、試料が二種の場合−
つの絞り口径における各標準試料についてのX線強度を
結ぶ直線の式を作成すればよい。標準試料が3種以上の
ときは最小自乗法で直線を決定する。次に上式において
X線強度がOとなる元素濃度BECを算出する(口)。
Create the formula for the calibration curve in Figure 3 for each case of B and C (a)
do. In this case, the calibration curve is a straight line, and if there are two types of samples -
It is sufficient to create an equation for a straight line connecting the X-ray intensities for each standard sample at two aperture apertures. When there are three or more types of standard samples, determine the straight line using the least squares method. Next, calculate the element concentration BEC at which the X-ray intensity becomes O in the above equation (see below).

A、B。A, B.

C各校り口径とそれに対応する上記l3ECの値とから
第4図に示すグラフの式を2次式として決定(ハ)する
。(ハ)において決定された2次式からBECが最小に
なる絞り口径を算定(ニ)する。最後に(ニ)で算定さ
れた絞り口径になるようにモータ8を制御して可変絞り
7の設定(ホ)を行って動作を終わる。
C. From each calibrated aperture and the corresponding value of l3EC, the equation shown in the graph shown in FIG. 4 is determined as a quadratic equation (c). From the quadratic equation determined in (c), the aperture diameter that minimizes BEC is calculated (d). Finally, the motor 8 is controlled so that the aperture diameter calculated in (d) is achieved, and the variable aperture 7 is set (e) to end the operation.

場合によっては絞り口径とBECとの関係が第4図に示
すように明確にBEC最小となる絞り口径を示さない場
合がある。これは試料が絞り7の最大口径に比しかなり
小さな場合で、試料より大きな範囲で絞り口径を変えて
も検量線は第5図のように上下に平行移動するだけで、
それに伴ってBECも絞り口径の変化に対し直線的に変
化する。絞り口径が試料より小さくなって来ると試料の
有効照射面接が小さ(なり、従って目的元素の単位濃度
当りのX線強度の変化率即ち検f11腺の傾きが減少し
始め、BECは変化しなくなる。従ってこの場合第5図
の絞り口径とBECとの関係を示す象限において、点α
とβを結ぶ直線とγを通る垂直線との交点に対応するD
を絞り口径に設定すれば最もS/N比が良好となる。コ
ンピュータ9には第2図のプログラムで絞り決定ができ
ない場合、この方法で絞りを決定するプログラムも設定
されている。
In some cases, the relationship between the aperture diameter and BEC does not clearly indicate the aperture diameter that provides the minimum BEC, as shown in FIG. This happens when the sample is quite small compared to the maximum aperture of the aperture 7, and even if the aperture diameter is changed within a range larger than the sample, the calibration curve will simply shift vertically in parallel as shown in Figure 5.
Accordingly, the BEC also changes linearly with respect to changes in the aperture diameter. When the aperture diameter becomes smaller than the sample, the effective irradiation surface area of the sample becomes smaller (therefore, the rate of change in X-ray intensity per unit concentration of the target element, that is, the slope of the detection f11 gland begins to decrease, and the BEC stops changing. Therefore, in this case, in the quadrant showing the relationship between the aperture diameter and BEC in Fig. 5, the point α
D corresponding to the intersection of the straight line connecting β and the vertical line passing through γ
The best S/N ratio can be obtained by setting the aperture diameter to . The computer 9 is also set with a program for determining the aperture using this method when the aperture cannot be determined using the program shown in FIG.

」ユ述実施例では可変絞りはX線源と試料との間に配置
されているが、入射側ソーラスリット3の入射側即ち試
料Sとソーラスリット3との間に配置してもよい。また
上述実施例ではX線分光器として平板結晶型のものを用
いているが、湾曲結晶型の分光器を用いる場合でも本発
明が適用できることは云うまでもない。
In the embodiment described above, the variable diaphragm is placed between the X-ray source and the sample, but it may also be placed on the incident side of the incident side solar slit 3, that is, between the sample S and the solar slit 3. Furthermore, although a flat crystal type X-ray spectrometer is used as the X-ray spectrometer in the above embodiment, it goes without saying that the present invention is also applicable to a case where a curved crystal type spectrometer is used.

(発明の効果) 本発明によれば常にX線分光器を最もS/N比の良くな
る条件で使用することが可能となり、分析感度、精度の
向上が得られる。
(Effects of the Invention) According to the present invention, it is possible to always use an X-ray spectrometer under the conditions that provide the best S/N ratio, resulting in improved analytical sensitivity and accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の構成図、第2図は可変
絞り設定動作のフローヂャート、第3図は絞り口径によ
る検量線の変化を示すグラフ、第4図は絞り口径とBE
Cとの関係のグラフ、第5図は絞り口径とBECとの関
係の他の場合を説明するグラフである。 1・・・X線源、S・・・試料、M・・・X線分光器、
2・・・分光結晶、3・・・入射側ソーラスリット、4
・・・出射側ソーラスリット、5・・・X線検出器、6
・・・ゴニオメータ、7・・・可変絞り、8・・・絞り
制御用パルスモータ、9・・・制御用コンピュータ。
Fig. 1 is a configuration diagram of an apparatus according to an embodiment of the present invention, Fig. 2 is a flowchart of variable aperture setting operation, Fig. 3 is a graph showing changes in the calibration curve depending on aperture diameter, and Fig. 4 is a graph showing changes in aperture diameter and BE.
FIG. 5 is a graph illustrating another case of the relationship between the aperture diameter and BEC. 1... X-ray source, S... sample, M... X-ray spectrometer,
2... Spectroscopic crystal, 3... Solar slit on the incident side, 4
...Emission side solar slit, 5...X-ray detector, 6
... Goniometer, 7... Variable aperture, 8... Pulse motor for aperture control, 9... Control computer.

Claims (1)

【特許請求の範囲】[Claims] X線源と試料との間或はX線分光器の入射側にX線束を
制限する可変絞りを設け、この可変絞りの口径を数段階
に変え、その各段階毎に標準試料で目的元素の測定を行
い、上記絞り口径の各段階毎に各標準試料における目的
元素の特性X線強度のデータを取込み、絞り口径の各段
階毎に検量線を作成し、これらの各検量線を目的元素の
濃度マイナス側に延長してX線強度0の線を切る点の濃
度0の点からの距離に対応する値と絞り口径との関係曲
線を作成し、上記値が最少になる絞り口径を索出し、可
変絞りの絞り口径を上記索出された絞り口径に設定する
制御手段を設けたことを特徴とする蛍光X線分析装置。
A variable diaphragm that limits the X-ray flux is provided between the X-ray source and the sample or on the incident side of the X-ray spectrometer, and the aperture of this variable diaphragm is changed in several stages. Measurement is carried out, data on the characteristic X-ray intensity of the target element in each standard sample is acquired for each stage of the aperture diameter, and a calibration curve is created for each stage of the aperture diameter. Create a relationship curve between the aperture diameter and the value corresponding to the distance from the zero concentration point to the point that extends to the negative density side and cuts the line with zero X-ray intensity, and find the aperture diameter that minimizes the above value. . A fluorescent X-ray analysis apparatus, comprising: a control means for setting the aperture aperture of the variable aperture to the aperture aperture determined above.
JP19539988A 1988-08-05 1988-08-05 Fluorescent x-ray analysis apparatus Pending JPH0245743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19539988A JPH0245743A (en) 1988-08-05 1988-08-05 Fluorescent x-ray analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19539988A JPH0245743A (en) 1988-08-05 1988-08-05 Fluorescent x-ray analysis apparatus

Publications (1)

Publication Number Publication Date
JPH0245743A true JPH0245743A (en) 1990-02-15

Family

ID=16340482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19539988A Pending JPH0245743A (en) 1988-08-05 1988-08-05 Fluorescent x-ray analysis apparatus

Country Status (1)

Country Link
JP (1) JPH0245743A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123279A (en) * 1991-11-02 1993-05-21 Taihei Shoko Kk Method and device for washing wall surface and peeling paint film of structure or building such as spherical tank or the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123279A (en) * 1991-11-02 1993-05-21 Taihei Shoko Kk Method and device for washing wall surface and peeling paint film of structure or building such as spherical tank or the like

Similar Documents

Publication Publication Date Title
AU2009211833B2 (en) Apparatus and method for X-ray fluorescence analysis of a mineral sample
CN101939633A (en) Fluorescence detector and fluorescence detection method
JP3284198B2 (en) X-ray fluorescence analyzer
EP0081785A2 (en) Plasma monitor
JP2009168584A (en) Analytical curve generating method and apparatus, x-ray quantitative analysis method and apparatus, quantitative analysis method and apparatus, and asbestos quantitative analysis method and apparatus
JP2002189004A (en) X-ray analyzer
EP0911627A1 (en) Analysis of chemical elements
US7529337B2 (en) Energy dispersion type radiation detecting system and method of measuring content of object element
JPH0245743A (en) Fluorescent x-ray analysis apparatus
JP2001091481A (en) Background correction method for fluorescent x-ray analyzer
KR200418412Y1 (en) An apparatus for measuring the distance between bragg's planes of a crystal using X-ray
JPH0475458B2 (en)
JPH0915392A (en) X-ray analyzer
JP3266896B2 (en) X-ray fluorescence analyzer
WO2024176944A1 (en) Fluorescence x-ray analysis device
JP2009031176A (en) Spectrofluorophotometer
JP2522224B2 (en) X-ray fluorescence analysis method
JPH11502312A (en) X-ray analyzer including rotatable primary collimator
JP2005233670A (en) X-ray analyzer
JP3394936B2 (en) Wavelength dispersive X-ray fluorescence analysis method and apparatus
JPS6126846A (en) Method for analyzing sample by x-ray microanalyzer
JP2944283B2 (en) Calibration method of sludge concentration meter
JP2569500B2 (en) X-ray analyzer
RU2237885C2 (en) Method for stabilizing energy dispersion x-ray fluorescence analyzer parameters
JP2508604B2 (en) X-ray fluorescence analyzer