JPH0245673B2 - - Google Patents

Info

Publication number
JPH0245673B2
JPH0245673B2 JP57078430A JP7843082A JPH0245673B2 JP H0245673 B2 JPH0245673 B2 JP H0245673B2 JP 57078430 A JP57078430 A JP 57078430A JP 7843082 A JP7843082 A JP 7843082A JP H0245673 B2 JPH0245673 B2 JP H0245673B2
Authority
JP
Japan
Prior art keywords
optically anisotropic
weight
boiling point
pitch
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57078430A
Other languages
Japanese (ja)
Other versions
JPS58196293A (en
Inventor
Takayuki Izumi
Tsutomu Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP7843082A priority Critical patent/JPS58196293A/en
Publication of JPS58196293A publication Critical patent/JPS58196293A/en
Publication of JPH0245673B2 publication Critical patent/JPH0245673B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

≪産業上の利用分野≫ 本発明は、接触分解装置残渣油を利用した光学
的異方性ピツチ製造用原料に関する。更に詳しく
は、本発明は、炭素製品を製造するための低軟化
点を有する光学的異方性ピツチを効率よく製造す
るための製造用原料に関する。 ≪従来の技術≫ 芳香族系ナフテン系、並びにパラフイン系炭化
水素を含む軽油留分を、より軽質でより有用な生
成物へ転化させるために、石油及び石油化学工業
においては、従来から、接触分解反応を用いる方
法がとられている。これにより、種々の重要な軽
質留分が得られる一方、接触分解装置から副生す
る残渣油については、十分な利用がなされておら
ず、従つて、該残渣油の価値は限られたものであ
つた。このように、接触分解装置残渣油が安価で
あることに着目して、近年これを、有機物の熱分
解によつて製造される種々の高性能炭素製品、例
えば炭素繊維、炭素フイルム、炭素リボン、炭素
シート等のための原料として使用することが試み
られている。 特に、高強度弾性率を有する高性能炭素繊維
は、高性能複合材料の素材として極めて優れてお
り、その高い製造コストにもかかわらず、その需
要は増大の一途をたどつているところから、その
製造コスト低減のための安価な原料及び製造方法
の開発が重要である。このような観点から、近年
開発されている安価な炭素質ピツチからの炭素繊
維の製造が注目の的であり、本発明もこの分野に
属するものである。従来、多くの炭素質ピツチや
タールは、熱分解重縮合反応により、光学的異方
性相へ転化され、液晶物質となり、このように転
化した光学的異方性ピツチから製造される炭素繊
維は、高モジユラス、高強度であり、極めて高性
能の炭素繊維であることが知られている(米国特
許請求の範囲第4005183号明細書)。これに伴い従
来から、高性能炭素繊維製造のために必要な光学
的異方性ピツチの製造に関して多くの研究がなさ
れ、既にいくつかの方法が開示されている(例え
ば、特公昭49−8634号公報、特開昭50−118028号
公報、同54−55625号公報、同56−167788号公
報)。しかしながらこれらの従来法はいずれの場
合も、高性能炭素繊維製品、特に高性能炭素繊維
を製造するのに適した、均質で低軟化点を有する
光学的異方性ピツチを、低コストで大量に且つ安
定的に提供することができないという欠点を有し
ていた。 本発明者等は、従来のかかる欠点をなくすべく
光学的異方性ピツチの組成について種々の検討を
行つた結果、光学的異方性ピツチは、縮合多環芳
香族の積層構造の発達した分子配向性のよいピツ
チであるが、実際には種々のものが混在し、その
うち、軟化点が低く均質な炭素繊維の製造に適し
たものは、特定の化学構造と組成を有するという
ことを見出した。即ち、光学的異方性ピツチにお
いて、n−ヘプタン可溶成分(以下「O」成分と
いう)及びn−ヘプタン不溶且つベンゼン可溶成
分(以下「A」成分という)の構造や分子量のみ
ならず、これらの含有量が、光学的異方性ピツチ
の全体としての性状に極めて重要であること、更
に、該「O」成分及び「A」成分以外の部分につ
いてはベンゼン不溶であるがキノリン可溶成分
(以下「B」成分という)と、キノリン不溶成分
(以下「C」成分という)を特定することにより、
「O」「A」「B」「C」各成分をバランスさせ、高
性能炭素材料を製造するための光学的異方性ピツ
チとして、実質的に均質で極めて優れた性状を有
するものとすることができることを見出した(特
願昭55−162972号)。更に、光学的異方性ピツチ
の特性と原料の特性の関係について研究を進めた
結果、良い原料であるためには、芳香族油分及び
レジン分の存在が重要であることが判明した(特
願昭56−11124号)。これらの知見に基づき、低コ
ストの接触分解装置残渣油を原料として優れた性
状を有する光学的異方性ピツチを効率よく製造す
るためには、原料中に当該残渣油と共に、低分子
量の芳香族成分が適当な量で含有されていること
が好ましいということを見出し、本発明に到達し
たものである。 ≪発明が解決しようとする問題点≫ 従つて、本発明の第一の目的は、炭素繊維等の
高性能炭素製品を製造するに必要な優れた性状を
有する光学的異方性ピツチを低コストで効率よく
製造するための原料を提供することである。 本発明の第二の目的は、接触分解装置残渣油を
有効に利用して、高付加価値の炭素製品を高効率
で製造するための前駆物質である優れた性状を有
する、光学的異方性ピツチを製造するための製造
方法を提供することである。 ≪問題を解決するための手段≫ 本発明の上記の諸目的は、沸点が約400℃以上
の接触分解装置の残渣油約50重量%〜約87重量%
と、芳香族炭素分率faが0.4以上であつて、約200
℃〜約400℃の沸点を有する炭化水素留分約13重
量%〜約50重量%とからなり、約540℃以下の沸
点を有する成分が90重量%以上であることを特徴
とする光学的異方性ピツチを製造するための原料
によつて達成された。 本発明において、接触分解とは、灯油留分、軽
油留分その他の重質油留分、特に沸点が約300℃
〜約600℃の間にある直留軽油等を、触媒を用い
てより軽質で有用な生成物へ分解転化させること
をいい、接触分解装置残渣油とは、接触分解法に
より生成した、沸点が400℃以上の炭化水素成分
を主成分とする残渣油をいい、接触分解後の蒸留
により沸点400℃以下の成分を留去することによ
つて得られる。しかしながら、これを接触分解装
置から取り出すにあたり、接触分解装置での蒸留
のカツトポイントを200℃〜400℃の間で選択する
ことにより、上記接触分解装置残渣油と、沸点約
200℃〜約400℃の炭化水素留分を混在せしめたま
ま取り出すこともできる。従つて、この場合の沸
点約200℃〜約400℃の炭化水素留分のfaと含有量
について後述の条件が満たされれば、上記混合物
は本発明の原料となり得る。 一般に接触分解装置残渣油は、約1000以上の分
子量の成分をわずかしか含有しないが、このよう
な成分を50重量%以上含有する場合はこれを除去
することが好ましい。更に、接触分解装置残渣油
には、分解触媒の微粉末等の微量の固形物が含有
されるが、これ等の固形分は0.01重量%以下にな
るように除去することが好ましい。 特開昭56−167788号公報には、上記接触分解装
置残渣油から約400℃以下の沸点を有する留分を
除去した後熱処理することを特徴とする光学的異
方性ピツチの製造方法が開示されている。即ち、
この発明における光学的異方性ピツチの原料には
約400℃以下の留分は存在しない方が好ましいの
である。しかるに本発明における原料中には沸点
約400℃以上の接触分解装置残渣油のみならず、
沸点約200℃〜約400℃の留分を存在せしめること
が好ましいのである。 特開昭56−167733号公報に開示された発明と本
発明の場合で、このような顕著な相違を生じたの
は、正に本発明が、特願昭55−162972号及び特願
昭56−11124号に開示された発明において得られ
た知見に基づいてなされたものであるからに他な
らない。即ち、特開昭56−167788号公報により開
示された方法は、本願の着想とは異なり、光学的
異方性ピツチ中の「O」、「A」、「B」、「C」各成
分のバランスとは無関係に、溶剤抽出で低分子量
物を極力除去することにより得られる、比較的高
分子量の光学的異方性ピツチを多量に含む光学的
異方性ピツチの製造方法として適していると解さ
れるのに対し、本発明は光学的異方性ピツチ中の
「O」、「A」、「B」、「C」各成分のバランスを最
も重視する点で、両発明は根本的に異なる。従つ
て、特開昭56−167788号公報の方法の場合には、
生成した光学的異方性ピツチに高軟化点成分が含
まれ易いために、これを溶剤により除去する煩雑
な工程が必要となるのに対し、本発明の場合には
かかる煩雑な工程を全く必要とせず、全製造工程
は極めて簡略化される。 ≪作用≫ 本発明の原料に含有される沸点約200℃〜約400
℃の留分には、低分子の芳香族炭化水素が多量に
含まれており、これらの存在は、短時間の反応で
上記「O」、「A」、「B」、「C」各成分のバランス
を好ましいものにし、生成物である光学的異方性
ピツチの配向性、均質性を保ちながら、軟化点を
低減させる働きを有する。これは、光学的異方性
ピツチの配向性、均質性(あるいは相溶性)、及
び軟化点とピツチの分子構造との間に因果関係が
あることに基づくものである。 まず、光学的異方性ピツチの配向性は、分子の
平面構造及び、ある温度での液体流動性に関係が
ある。即ち、ピツチ分子の平面構造性が十分大き
く、且つ、溶触紡糸のとき繊維軸方向に分子の平
面が再配列するために必要な、十分に大きな液体
流動性を持つことが高配向性ピツチのための必要
条件である。ここで、分子の平面構造は、縮合多
環芳香族の大きさ、ナフテン環の数、側鎖の数と
長さ等により決まるため、分子中に含まれる芳香
族構造を形成する炭素原子の全炭素原子に対する
比率であるfaによつて評価することができる。本
発明におけるfaは、赤外線吸収スペクトルの測定
の結果から、加藤の方法(燃料協会55、244
(1976))によつて計算したが、一般に、縮合環芳
香族が大きいほど、ナフテン環の数が少ないほ
ど、パラフイン側鎖の数が少ないほど、又、側鎖
の長さが短い程faは大きくなり、一般的には、fa
が大きいほど分子の平面構造性が大きいことを意
味する。このことから、原料中に芳香族炭化水素
が多く含まれることが、製品である光学的異方性
ピツチ分子の平面構造性をあげるので好ましいこ
とが理解される。分子の平面構造性が良くなれば
光学的異方性ピツチの配向性が大きくなり、紡糸
時に分子が繊維軸方向に配列し易くなるため高性
能の炭素繊維を製造することが容易となる。従つ
て過度の反応により必要以上に光学的異方性ピツ
チ分子の分子量を大きくして、光学的異方性相の
含有率及びその配向性を上げる必要はない。即
ち、光学的異方性ピツチの分子量を下げても、炭
素繊維の性能は十分維持されるのみならず、紡糸
し易いことによるメリツトが大となる。このこと
は、原料中に比較的低分子量の芳香族炭化水素を
多く含ませることが、光学的異方性ピツチ分子の
平面構造を上げると同時に平均分子量を減少させ
るために、光学的異方性ピツチの軟化点を下げる
結果を導くことを意味し、従つて、反応を十分に
行つて光学的異方性ピツチの均質性を高めること
もできる。これが、本発明の原料に、faが0.4以
上で沸点が約200℃〜約400℃の炭化水素留分を積
極的に含有せしめる理由である。 沸点が約200℃〜約400℃の留分が多すぎても、
生成物である光学的異方性ピツチ中の「O」、
「A」、「B」、「C」各成分のバランスをとること
が困難となる。従つて、約200℃以上で約400℃以
下の留分は、約13重量%〜約50重量%、好ましく
は、約15重量%〜約40重量%含有されていること
が好ましい。かかる含有量の調整は前記接触分解
装置残渣油に上記留分を添加することにより容易
に行うことができることはもとより、接触分解装
置における蒸留のカツトポイントを200℃〜400℃
として、分解軽油留分を残存せしめることにより
容易に行うことができる。当該留分としては、接
触分解装置からの分解軽油留分のほか、熱分解装
置、例えば、ナフサの水蒸気分解装置、熱重縮合
反応装置等から得られる留出油及び、石炭の液化
装置からの分解軽油等を使用することができる。
又、分子量が小さい低沸点の炭化水素成分は、熱
重縮合反応が遅く、最終的なピツチの収率を低下
させる。このような現象を総合的に勘案し、本発
明の実施においては、使用する炭化水素留分の沸
点及びfaを特定したものである。このようにし
て、調整された原料の実施態様としては、沸点約
400℃以下の炭化水素留分のfaが0.4以上であり、
初留点が約200℃以上、約15重量%〜約40重量%
の留出点が約400℃であり、且つ、90重量%留出
点が約540℃以下のものである。90重量%留出点
が約540℃以上にも上昇するものは、著しく分子
量の高い成分を含み、生成ピツチの軟化点を異常
に高くするので好ましくない。 このようにして得られた所定の原料を用いて製
造した光学的異方性ピツチは、その光学的異方性
相の含有率が90体積%〜100体積%と高いにもか
かわらず軟化点は約230℃〜約320℃と低いので炭
素製品の製造に適している。特に、溶融紡糸によ
り炭素繊維を製造する場合、紡糸温度を低くする
ことができ、且つ、紡糸性が良好で高性能の炭素
繊維の製造に極めて好都合である。 本発明の原料を用いた場合には、いかなる製造
方法により製造した光学的異方性ピツチも、その
「O」、「A」、「B」、「C」成分のバランスは良好
で、低軟化点のものが得られる。即ち、例えば、
塩化アルミニウム等の触媒を用いる方法でもよ
く、又、触媒を用いない熱分解重縮合反応及び、
必要な場合にはそれに続く溶剤抽出法によつても
よく、更に、反応に際しては必要に応じ撹拌して
も不活性ガスをバブリングさせてもよく、あるい
は加圧下に、あるいは減圧下に反応を行わせるこ
ともできる。ここで、熱分解重縮合反応とは、原
料中の炭化水素の熱分解反応と重縮合反応が共に
主反応として並列的に進行し光学的異方性ピツチ
を生成する反応を意味し、大略は、パラフイン鎖
の切断、脱水素、閉環、重縮合による多環縮合芳
香族の平面型構造の発達にあると考えられるもの
である。 光学的異方性ピツチを製造するための熱分解重
縮合反応の温度は、反応を約1〜3時間程度の短
時間で終了させるために、約380℃〜約460℃、好
ましくは約400℃〜約440℃とする。温度が低すぎ
ては反応に長時間を要し、温度が高すぎては生成
した光学的異方性ピツチの軟化点が高くなり好ま
しくない。 本発明の原料を用いる場合には、約2Kg/cm2
約50Kg/cm2の加圧下で熱分解重縮合させた後、不
活性ガスの流通下で加熱して低分子量の物質を除
去することが好ましい。 これらの方法により光学的異方性ピツチを製造
する工程に、更に、生成した光学的異方性ピツチ
を分離する工程を接続することは、特願昭56−
11124号の場合と同様、本発明の場合にも極めて
有効である。これは即ち、熱分解重縮合反応の工
程の途中で、生成した光学的異方性ピツチを分離
する方法である。本発明の原料は比較的低分子量
の芳香族成分の含有量が多いため、反応により生
成した光学的異方性ピツチが必要以上に巨大化す
ることを防ぐことにも寄与する。更に、上記熱分
解重縮合反応の工程の途中で生成した光学的異方
性ピツチを分離する方法を用いることは、生成し
た光学的異方性ピツチが反応終了まで高温に保た
れるということをなくすため、光学的異方性ピツ
チの重縮合反応が必要以上に進むことにより分子
量が必要以上に巨大化するという弊害を防止する
ことができ、低軟化点の光学的異方性ピツチを得
るのに一段と好都合である。 熱分解重縮合反応の工程の途中で生成した光学
的異方性ピツチを分離するためには、生成した光
学的異方性ピツチが約20体積%〜約80体積%とな
つた時点で熱分解重縮合反応を中止して反応槽を
実質的に静置とする一方、熱分解重縮合反応が起
こりにくく、且つ、ピツチの流体としての流動性
が十分保たれる温度、即ち、約350℃〜約400℃、
好ましくは約360℃〜約390℃に保持することによ
り、下層に密度の大きい光学的異方性相部分を一
つの連続相として成長熟成しつつ沈積せしめ、こ
れを上層のより密度の小さな等方性ピツチを多く
含む相より分離すればよい。上記の温度範囲を採
用すればこの分離工程を1〜3時間で終了するこ
とができるが、更に長時間かけても良い場合に
は、より低い温度範囲を選択することができるこ
とは当然である。本発明においては更に、特開昭
57−052731号(特公昭62−38400号公報)に開示
した如く、一つの反応槽に反応域と静置域を設け
ることにより反応槽としての機能と同時に沈積分
離槽としての機能を持たせ、熱分解重縮合反応工
程と生成した光学的異方性ピツチの分離工程を共
に連続的に継続することもできる。即ち、反応槽
の上部を撹拌された反応域とし反応槽の下部を実
質的な静置域とすることにより、反応槽上方から
本発明の原料を連続的に注入すれば、反応槽下方
から低軟化点で優れた性状を有する光学的異方性
ピツチを連続的に取り出すことができる。又、前
記の、部分的に光学的異方性ピツチを含有するピ
ツチをその溶融状態で遠心分離操作にかけ、より
比重の大きい相である光学的異方性ピツチを効率
良く連続的に分離することもできる。遠心分離操
作条件としては、約260℃〜約390℃、好ましくは
約330℃〜約360℃の温度で、約10000G以下、好
ましくは、約50G〜約3000Gの遠心力加速度を採
用することができる。但し、ここでGは重力加速
度である。 ≪発明の効果≫ 本発明の原料を使用した場合には、特開昭56−
167788号公報に開示されているような厳しい条件
の蒸留操作を省くことができる上、低分子量の芳
香族炭化水素成分が多いため反応物の粘度が比較
的低く、原料のパイプ移送及び撹拌も十分行い易
いばかりでなく、固形物の除去も容易であり、必
要な光学的異方性ピツチ製造のための反応時間も
従来法に比して短縮することができる。更に、本
発明の原料を用いて製造した光学的異方性ピツチ
は、光学的異方性相を90体積%〜100体積%含有
し、実質的に均質、且つ、低軟化点を有するとい
う極めて優れた性状を有する。従つて、従来法で
必要とされた不融物の高温濾過や溶剤油出又は触
媒の除去等の複雑でコストの高い工程を必須工程
とすることはない。炭素繊維の溶融紡糸について
も、その紡糸温度(紡糸工程でピツチに与える必
要のある最高温度)を約290℃〜約360℃の範囲内
とすることができるため、分解ガスの発生等によ
るトラブルがないばかりでなく、容易に高性能の
糸を、糸切れが発生することなく紡糸することが
できるし、又、加温のためのエネルギー損失も少
ない等、本発明の工業的観点からの効果は絶大で
ある。 次に、本発明を実施例により、更に詳述するが
本発明は、これにより限定されるものではない。 実施例 1 接触分解後の接触分解装置における蒸留を204
℃でカツトして、初留点が204℃、25重量%留出
点が400℃、70重量%留出点が450℃、90重量%留
出点が510℃(これらの温度は、いずれも減圧蒸
留操作で測定した蒸留温度の常圧換算値である)
となるように接触分解装置における蒸留操作を制
御して、沸点が204℃〜400℃で芳香族炭素分率fa
が0.43の炭化水素留分25重量%と、沸点400℃以
上の接触分解装置残渣油75重量%とからなる混合
物を調製し、それを、それ以上蒸留せずに原料と
して用いた。 この原料400グラムを500mlのステンレス製反応
容器にとり、430℃で2時間熱分解重縮合反応を
行つた。反応に際しては、不活性ガスとして窒素
ガスを2/分で液相表面に流通し撹拌翼で十分
に撹拌した。反応後、容器に残留したピツチ(以
下βRPと呼ぶ)のうち、光学的異方性相含有率
(以下AP%と呼ぶ)が10体積%以上のもの50mlを
ガラスビーカーにとり、窒素ガス雰囲気のマツフ
ル炉中、約380℃で2時間静置して光学的異方性
相を沈積分離した後、室温に冷却固化せしめた。
次に、ガラスビーカーを破壊し、上層の光学的等
方性相の多い部分と、下層の光学的異方性相の部
分に選別した。下相の光学的異方性相のAP%は
100%であり、軟化点は268℃、「O」、「A」、
「B」、「C」の含有率は、それぞれ11.7重量%、
28.6重量%、25.2重量%、34.5重量%であつた。
このようにして得た光学的異方性ピツチ10グラム
を小型紡糸機に充填し、昇温しつつ窒素ガスで約
100mmHgに加圧し、直径0.3mmのノズルより押し
出し、下部に設けたボビンで毎分600mの線速度
で巻取つた。約330℃〜約370℃の紡糸温度範囲で
最小糸切れ頻度の温度を探し、その温度での糸切
れ頻度を評価した。比較のために、同様の実験
を、本原料を400℃迄蒸留した釜残タール、即ち
接触分解装置残渣油100%を原料とした場合、及
び450℃迄蒸留した釜残タールを原料とした場合
についても行い、三者を比較した。但し、比較実
験のうち前者については熱分解重縮合反応の時間
を2.5時間とした。 表1及び表2はこれらについての比較結果であ
る。これらの表から明らかなように、本発明の原
料を用いた場合には、キノリン不溶成分である。
「C」成分の含有量の少ない光学的異方性ピツチ
が得られるため、光学的異方性ピツチの軟化点が
低く、糸切れ頻度も少なくなり極めて良好であつ
た。
<<Industrial Application Field>> The present invention relates to a raw material for producing optically anisotropic pits using residual oil from a catalytic cracker. More specifically, the present invention relates to a raw material for efficiently producing optically anisotropic pitches having a low softening point for producing carbon products. <<Prior Art>> Catalytic cracking has traditionally been used in the petroleum and petrochemical industries to convert light oil fractions containing aromatic naphthenic and paraffinic hydrocarbons into lighter and more useful products. A method using a reaction is used. Although various important light fractions can be obtained through this process, the residual oil produced as a by-product from catalytic cracking equipment is not fully utilized, and therefore, the value of this residual oil is limited. It was hot. Focusing on the low cost of catalytic cracker residual oil, in recent years it has been used to produce various high-performance carbon products produced by thermal decomposition of organic matter, such as carbon fibers, carbon films, carbon ribbons, etc. Attempts are being made to use it as a raw material for carbon sheets and the like. In particular, high-performance carbon fiber with high strength and elastic modulus is extremely excellent as a material for high-performance composite materials, and despite its high manufacturing cost, its demand continues to increase. It is important to develop inexpensive raw materials and manufacturing methods to reduce manufacturing costs. From this point of view, the production of carbon fibers from inexpensive carbonaceous pitches, which has been developed in recent years, has been attracting attention, and the present invention also belongs to this field. Conventionally, many carbonaceous pitches and tars are converted into optically anisotropic phases through thermal decomposition polycondensation reactions and become liquid crystal substances, and carbon fibers produced from optically anisotropic pitches thus converted are , high modulus, high strength, and is known to be an extremely high performance carbon fiber (US Pat. No. 4,005,183). Along with this, much research has been conducted on the production of optically anisotropic pitches necessary for producing high-performance carbon fibers, and several methods have already been disclosed (for example, Japanese Patent Publication No. 49-8634 (Japanese Patent Application Laid-open No. 118028/1983, Japanese Patent Application Laid-open No. 54-55625, and Japanese Patent Application Laid-open No. 56-167788). However, in each case, these conventional methods produce homogeneous, low softening point, optically anisotropic pitches suitable for producing high-performance carbon fiber products, especially high-performance carbon fibers, at low cost and in large quantities. Moreover, it has the disadvantage that it cannot be stably provided. The present inventors conducted various studies on the composition of optically anisotropic pitches in order to eliminate such drawbacks of the conventional methods, and as a result, the optically anisotropic pits are composed of molecules with a developed layered structure of condensed polycyclic aromatics. Although there are many types of pitches with good orientation, we found that in reality, there are a variety of them, and among them, those with a low softening point and suitable for producing homogeneous carbon fibers have a specific chemical structure and composition. . That is, in the optically anisotropic pitch, not only the structure and molecular weight of the n-heptane soluble component (hereinafter referred to as "O" component) and the n-heptane insoluble and benzene soluble component (hereinafter referred to as "A" component), These contents are extremely important for the overall properties of the optically anisotropic pitch, and furthermore, parts other than the "O" component and "A" component are benzene-insoluble but quinoline-soluble components. (hereinafter referred to as "B" component) and the quinoline-insoluble component (hereinafter referred to as "C" component),
``O'', ``A'', ``B'', and ``C'' components should be balanced to have substantially homogeneous and extremely excellent properties as an optically anisotropic pitch for producing high-performance carbon materials. (Patent Application No. 55-162972). Furthermore, as a result of research into the relationship between the characteristics of optically anisotropic pitch and the characteristics of raw materials, it was found that the presence of aromatic oil and resin components are important for good raw materials (patent application). (Sho 56-11124). Based on these findings, in order to efficiently produce optically anisotropic pits with excellent properties using low-cost catalytic cracker residual oil as a raw material, it is necessary to incorporate low-molecular-weight aromatic compounds together with the residual oil in the raw material. The present invention was achieved based on the discovery that it is preferable for the components to be contained in appropriate amounts. <<Problems to be Solved by the Invention>> Therefore, the first object of the present invention is to produce optically anisotropic pitches having excellent properties necessary for manufacturing high-performance carbon products such as carbon fibers at a low cost. The goal is to provide raw materials for efficient production. The second object of the present invention is to provide an optically anisotropic material with excellent properties that is a precursor material for efficiently producing high value-added carbon products by effectively utilizing catalytic cracker residual oil. An object of the present invention is to provide a manufacturing method for manufacturing pitchi. ≪Means for Solving the Problems≫ The above-mentioned objects of the present invention are to reduce the residual oil of catalytic cracking equipment from about 50% by weight to about 87% by weight with a boiling point of about 400°C or higher.
and the aromatic carbon fraction fa is 0.4 or more and about 200
An optically different material comprising about 13% to about 50% by weight of a hydrocarbon fraction having a boiling point of from about 540°C to about 400°C, and 90% by weight or more of a component having a boiling point of about 540°C or less. This was achieved by using raw materials for producing directional pitches. In the present invention, catalytic cracking refers to kerosene fraction, gas oil fraction, and other heavy oil fractions, especially those with a boiling point of about 300°C.
This refers to the cracking and conversion of straight-run gas oil, etc., which is between about It refers to residual oil whose main component is hydrocarbon components with a temperature of 400°C or higher, and is obtained by distilling off components with a boiling point of 400°C or lower by distillation after catalytic cracking. However, when taking this out from the catalytic cracker, by selecting the cut point for distillation in the catalytic cracker between 200°C and 400°C, the catalytic cracker residue oil and the boiling point
It is also possible to take out the hydrocarbon fraction at 200°C to about 400°C mixed with it. Therefore, in this case, if the conditions described below regarding fa and content of the hydrocarbon fraction having a boiling point of about 200° C. to about 400° C. are satisfied, the above mixture can be used as a raw material for the present invention. Generally, catalytic cracker residual oil contains only a small amount of components with a molecular weight of about 1000 or more, but if it contains 50% by weight or more of such components, it is preferable to remove them. Further, the catalytic cracker residual oil contains trace amounts of solids such as fine powder of cracking catalyst, but it is preferable to remove these solids to 0.01% by weight or less. JP-A-56-167788 discloses a method for producing optically anisotropic pitch, which comprises removing a fraction having a boiling point of about 400°C or less from the catalytic cracker residual oil and then heat-treating it. has been done. That is,
It is preferable that the raw material for the optically anisotropic pitch in this invention does not contain any fraction below about 400°C. However, the raw materials used in the present invention include not only catalytic cracker residue oil with a boiling point of about 400°C or higher, but also
Preferably, a fraction having a boiling point of about 200°C to about 400°C is present. The reason for this remarkable difference between the invention disclosed in Japanese Patent Application Laid-open No. 56-167733 and the present invention is that the present invention is disclosed in Japanese Patent Application No. 55-162972 and Japanese Patent Application No. 56 This is because it was made based on the knowledge obtained in the invention disclosed in No.-11124. That is, the method disclosed in JP-A-56-167788 is different from the idea of the present application, and the method disclosed in JP-A-56-167788 is different from the idea of the present application. Regardless of the balance, this method is suitable as a method for producing optically anisotropic pitches containing a large amount of relatively high molecular weight optically anisotropic pitches obtained by removing as much low molecular weight substances as possible by solvent extraction. On the other hand, both inventions are fundamentally different in that the present invention emphasizes the balance of each component "O", "A", "B", and "C" in the optically anisotropic pitch. different. Therefore, in the case of the method disclosed in JP-A-56-167788,
Since the produced optically anisotropic pitch tends to contain components with high softening points, a complicated process of removing them with a solvent is required, whereas in the case of the present invention, such a complicated process is not necessary at all. The entire manufacturing process is greatly simplified. <<Function>> Boiling point contained in the raw material of the present invention: about 200°C to about 400°C
The fraction at ℃ contains a large amount of low-molecular aromatic hydrocarbons, and their presence is due to the formation of the above-mentioned "O", "A", "B", and "C" components in a short time reaction. It has the function of reducing the softening point while maintaining the orientation and homogeneity of the optically anisotropic pitch product. This is based on the fact that there is a causal relationship between the orientation, homogeneity (or compatibility), and softening point of the optically anisotropic pitch and the molecular structure of the pitch. First, the orientation of the optically anisotropic pitch is related to the planar structure of the molecules and the fluidity of the liquid at a certain temperature. In other words, for highly oriented pitch, the planar structure of the pitch molecules is sufficiently large, and the liquid fluidity necessary for rearranging the plane of the molecules in the fiber axis direction during melt spinning is required. is a necessary condition. Here, the planar structure of the molecule is determined by the size of the fused polycyclic aromatic, the number of naphthene rings, the number and length of side chains, etc., so all of the carbon atoms forming the aromatic structure contained in the molecule are It can be evaluated by fa, which is the ratio to carbon atoms. fa in the present invention is determined by Kato's method (Fuel Association 55 , 244) from the results of infrared absorption spectrum measurement.
(1976)), but in general, the larger the fused ring aromatic, the fewer the number of naphthenic rings, the fewer the number of paraffin side chains, and the shorter the length of the side chain, the greater the fa. Larger and generally fa
The larger the value, the greater the planar structure of the molecule. From this, it is understood that it is preferable for the raw material to contain a large amount of aromatic hydrocarbons, since this increases the planar structure of the optically anisotropic pitch molecule that is the product. If the planar structure of the molecules improves, the orientation of the optically anisotropic pitch will increase, making it easier for molecules to align in the fiber axis direction during spinning, making it easier to produce high-performance carbon fibers. Therefore, there is no need to increase the molecular weight of the optically anisotropic Pitch molecule more than necessary through excessive reaction to increase the content of the optically anisotropic phase and its orientation. That is, even if the molecular weight of the optically anisotropic pitch is lowered, the performance of the carbon fiber is not only maintained sufficiently, but also the advantages of ease of spinning become greater. This is because containing a large amount of relatively low-molecular-weight aromatic hydrocarbons in the raw material increases the planar structure of the optically anisotropic pitch molecules and simultaneously decreases the average molecular weight. This means that the softening point of the pitch is lowered, and therefore, the reaction can be carried out sufficiently to increase the homogeneity of the optically anisotropic pitch. This is the reason why the raw material of the present invention actively contains a hydrocarbon fraction having an fa of 0.4 or more and a boiling point of about 200°C to about 400°C. Even if there is too much distillate with a boiling point of about 200℃ to about 400℃,
"O" in the optically anisotropic pitch which is the product,
It becomes difficult to balance the components "A", "B", and "C". Therefore, it is preferable that the fraction between about 200°C and above and about 400°C is contained in an amount of about 13% to about 50% by weight, preferably about 15% to about 40% by weight. The content can be easily adjusted by adding the above-mentioned fraction to the catalytic cracker residual oil, and the cut point of distillation in the catalytic cracker can be adjusted to 200°C to 400°C.
This can be easily carried out by leaving the cracked gas oil fraction remaining. In addition to the cracked gas oil fraction from the catalytic cracker, the fractions include distillate obtained from thermal crackers, such as naphtha steam crackers, thermal polycondensation reactors, etc., and coal liquefaction equipment. Decomposed light oil etc. can be used.
In addition, a hydrocarbon component having a small molecular weight and a low boiling point undergoes a slow thermal polycondensation reaction, reducing the final pitch yield. Taking such phenomena into consideration comprehensively, in carrying out the present invention, the boiling point and fa of the hydrocarbon fraction to be used are specified. In this way, embodiments of the prepared feedstock have a boiling point of about
The fa of the hydrocarbon fraction below 400℃ is 0.4 or more,
Initial boiling point is about 200℃ or higher, about 15% to about 40% by weight
The distillation point is about 400°C, and the 90% distillation point is about 540°C or less. Those whose 90% by weight distillation point rises above about 540°C are undesirable because they contain components with extremely high molecular weights and make the softening point of the produced pitch abnormally high. The optically anisotropic pitch produced using the specified raw material obtained in this way has a softening point despite the content of the optically anisotropic phase being as high as 90% to 100% by volume. It has a low temperature of about 230℃ to 320℃, making it suitable for manufacturing carbon products. In particular, when carbon fibers are produced by melt spinning, the spinning temperature can be lowered, and the process has good spinnability, which is extremely convenient for producing high-performance carbon fibers. When the raw material of the present invention is used, the optically anisotropic pitch produced by any production method has a good balance of "O", "A", "B", and "C" components, and has low softening. You can get points. That is, for example,
A method using a catalyst such as aluminum chloride may be used, or a method using a thermal decomposition polycondensation reaction without using a catalyst,
If necessary, a subsequent solvent extraction method may be used, and the reaction may be carried out with stirring or bubbling inert gas as necessary, or the reaction may be carried out under pressure or reduced pressure. You can also Here, the pyrolysis polycondensation reaction refers to a reaction in which the pyrolysis reaction of hydrocarbons in the raw material and the polycondensation reaction proceed in parallel as main reactions to produce optically anisotropic pitches. This is thought to be due to the development of a planar structure of polycyclic fused aromatics due to paraffin chain scission, dehydrogenation, ring closure, and polycondensation. The temperature of the thermal decomposition polycondensation reaction for producing optically anisotropic pitches is about 380°C to about 460°C, preferably about 400°C, in order to complete the reaction in a short time of about 1 to 3 hours. ~about 440℃. If the temperature is too low, the reaction will take a long time, and if the temperature is too high, the softening point of the optically anisotropic pitch produced will become high, which is not preferable. When using the raw material of the present invention, approximately 2Kg/cm 2 ~
It is preferable to carry out thermal decomposition polycondensation under a pressure of about 50 kg/cm 2 and then heat under an inert gas flow to remove low molecular weight substances. The process of producing optically anisotropic pitches by these methods is further connected to the process of separating the produced optically anisotropic pitches, as disclosed in Japanese Patent Application No. 1983-
As in the case of No. 11124, the present invention is also extremely effective. In other words, this is a method for separating the optically anisotropic pitch produced during the process of pyrolysis polycondensation reaction. Since the raw material of the present invention has a large content of relatively low molecular weight aromatic components, it also contributes to preventing the optically anisotropic pitch produced by the reaction from becoming larger than necessary. Furthermore, using the method of separating the optically anisotropic pitches generated during the process of the pyrolysis polycondensation reaction means that the generated optically anisotropic pitches are kept at a high temperature until the end of the reaction. In order to avoid this, it is possible to prevent the adverse effect of the molecular weight becoming larger than necessary due to the polycondensation reaction of optically anisotropic pitches proceeding more than necessary, and to obtain optically anisotropic pitches with a low softening point. This is even more convenient. In order to separate the optically anisotropic pitches generated during the process of pyrolysis polycondensation reaction, thermal decomposition should be carried out when the optically anisotropic pitches generated reach approximately 20% to 80% by volume. While the polycondensation reaction is stopped and the reaction tank is left virtually stationary, the temperature is set at a temperature at which the thermal decomposition polycondensation reaction is difficult to occur and the fluidity of the pitch fluid is maintained sufficiently, that is, approximately 350°C to Approximately 400℃,
Preferably, by maintaining the temperature at about 360°C to about 390°C, the optically anisotropic phase portion with a higher density in the lower layer grows and matures as one continuous phase and is deposited, and this is deposited in the lower layer, which is an isotropic phase with a lower density. It is sufficient to separate it from the phase containing a large amount of sex pitch. If the above-mentioned temperature range is adopted, this separation step can be completed in 1 to 3 hours, but if a longer time is acceptable, it is of course possible to select a lower temperature range. In the present invention, furthermore,
As disclosed in No. 57-052731 (Japanese Patent Publication No. 62-38400), by providing a reaction zone and a standing zone in one reaction tank, it has the function of a reaction tank and a sedimentation separation tank at the same time. It is also possible to continue both the pyrolysis polycondensation reaction step and the separation step of the produced optically anisotropic pitch. That is, by making the upper part of the reaction tank a stirred reaction area and the lower part of the reaction tank a substantially static area, if the raw material of the present invention is continuously injected from the upper part of the reaction tank, the lower part of the reaction tank is lowered. Optically anisotropic pitches with excellent softening point properties can be continuously extracted. Further, the above-described pit partially containing optically anisotropic pitch is subjected to a centrifugation operation in its molten state to efficiently and continuously separate the optically anisotropic pitch which is a phase with a higher specific gravity. You can also do it. As the centrifugation operation conditions, a temperature of about 260° C. to about 390° C., preferably about 330° C. to about 360° C., and a centrifugal force acceleration of about 10,000 G or less, preferably about 50 G to about 3,000 G can be adopted. . However, G here is gravitational acceleration. ≪Effect of the invention≫ When the raw material of the present invention is used, JP-A-56-
Not only can the distillation operation under severe conditions as disclosed in Publication No. 167788 be omitted, but the viscosity of the reactant is relatively low due to the large amount of low molecular weight aromatic hydrocarbon components, and the pipe transfer and stirring of raw materials is sufficient. Not only is it easy to carry out, but also the removal of solid matter is easy, and the reaction time required to produce optically anisotropic pitches can be shortened compared to conventional methods. Furthermore, the optically anisotropic pitch produced using the raw material of the present invention contains an optically anisotropic phase of 90% to 100% by volume, is substantially homogeneous, and has an extremely low softening point. Has excellent properties. Therefore, complicated and costly steps such as high-temperature filtration of infusible substances, extraction of solvent, and removal of catalyst, which are required in the conventional method, are not required. Regarding melt-spinning of carbon fibers, the spinning temperature (the maximum temperature that must be applied to the pitch during the spinning process) can be within the range of approximately 290℃ to approximately 360℃, which eliminates problems such as the generation of decomposed gas. The advantages of the present invention from an industrial perspective are that not only is there no problem, but high-performance yarn can be easily spun without yarn breakage, and there is less energy loss due to heating. It is enormous. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 Distillation in a catalytic cracker after catalytic cracking
℃, the initial boiling point is 204℃, the 25% by weight distillation point is 400℃, the 70% by weight distillation point is 450℃, and the 90% by weight distillation point is 510℃ (all of these temperatures are (This is the normal pressure equivalent value of the distillation temperature measured during vacuum distillation operation)
The distillation operation in the catalytic cracker is controlled so that the boiling point is 204℃~400℃ and the aromatic carbon fraction fa
A mixture was prepared consisting of 25% by weight of a hydrocarbon fraction with a boiling point of 0.43 and 75% by weight of a catalytic cracker residual oil with a boiling point of 400° C. or higher, and was used as a feedstock without further distillation. 400 grams of this raw material was placed in a 500 ml stainless steel reaction vessel, and a thermal decomposition polycondensation reaction was carried out at 430°C for 2 hours. During the reaction, nitrogen gas was passed through the surface of the liquid phase at a rate of 2/min as an inert gas, and the mixture was thoroughly stirred with a stirring blade. After the reaction, take 50 ml of the pitsuchi (hereinafter referred to as βRP) that remained in the container and have an optically anisotropic phase content (hereinafter referred to as AP%) of 10% by volume or more into a glass beaker, and place it in a matzuru in a nitrogen gas atmosphere. After standing in a furnace at about 380°C for 2 hours to separate the optically anisotropic phase, it was cooled to room temperature and solidified.
Next, the glass beaker was broken and separated into an upper layer containing a large amount of optically isotropic phase and a lower layer containing a large amount of optically anisotropic phase. The AP% of the lower optically anisotropic phase is
100%, softening point is 268℃, "O", "A",
The content of "B" and "C" is 11.7% by weight, respectively.
They were 28.6% by weight, 25.2% by weight, and 34.5% by weight.
10 grams of the optically anisotropic pitch obtained in this way was filled into a small spinning machine, and while the temperature was raised, nitrogen gas was added to the spinning machine.
It was pressurized to 100 mmHg, extruded through a nozzle with a diameter of 0.3 mm, and wound at a linear speed of 600 m/min with a bobbin installed at the bottom. The temperature at which the frequency of yarn breakage is the minimum was found in the spinning temperature range of about 330°C to about 370°C, and the frequency of yarn breakage at that temperature was evaluated. For comparison, similar experiments were conducted when the raw material was distilled to 400°C, that is, 100% catalytic cracker residual oil, and when the raw material was distilled to 450°C. We also compared the three. However, in the former comparison experiment, the pyrolysis polycondensation reaction time was set to 2.5 hours. Tables 1 and 2 show the comparison results. As is clear from these tables, when the raw materials of the present invention are used, they are quinoline-insoluble components.
Since an optically anisotropic pitch with a low content of the "C" component was obtained, the softening point of the optically anisotropic pitch was low and the frequency of thread breakage was reduced, which was extremely good.

【表】【table】

【表】 実施例 2 本発明の原料として、初留点204℃、35重量%
留出点が400℃、90重量%留出点が534℃(これら
の温度は、実施例1の場合と同様、常圧換算値で
ある。)であつて、400℃での留出油の芳香族炭素
分率faが0.56である沸点204℃〜400℃の炭化水素
留分35重量%と沸点400℃以上の接触分解装置残
渣油65重量%の混合物を、それ以上蒸留せずに原
料として用いた他は、実施例1と同様にしてピツ
チを得た。得られたピツチは、表4に示す如く、
光学的異方性相が100%(表中のAP%が100)で
且つ低軟化点であり、当該炭素質ピツチの紡糸特
性も極めて優れたものであつた。
[Table] Example 2 As a raw material for the present invention, the initial boiling point was 204°C and 35% by weight.
The distillation point is 400°C, the 90% by weight distillation point is 534°C (these temperatures are normal pressure equivalent values, as in Example 1), and the distillate at 400°C is A mixture of 35% by weight of a hydrocarbon fraction with a boiling point of 204°C to 400°C with an aromatic carbon fraction fa of 0.56 and 65% by weight of catalytic cracker residual oil with a boiling point of 400°C or higher is used as a raw material without further distillation. Pitch was obtained in the same manner as in Example 1, except that it was used. The obtained pitches were as shown in Table 4.
The optically anisotropic phase was 100% (AP% in the table is 100) and the softening point was low, and the spinning properties of the carbonaceous pitch were also extremely excellent.

【表】【table】

【表】 実施例 3 本発明の原料として、初留点が204℃、18重量
%留出点が400℃、90重量%留出点が527℃(これ
らの温度は実施例1の場合と同様、常圧換算値で
ある)となるように、接触分解装置における蒸留
操作を制御して、沸点が204℃〜400℃であつて芳
香族炭素分率faが0.57である炭化水素留分18重量
%と、沸点400℃以上の接触分解装置残渣油82重
量%からなる混合物を調製し、それを、それ以上
蒸留せずに原料として用いた他は、実施例1と同
様にして、光学的異方性ピツチを得た。
[Table] Example 3 The raw material of the present invention has an initial boiling point of 204°C, a 18% by weight distillation point of 400°C, and a 90% by weight distillation point of 527°C (these temperatures are the same as in Example 1). The distillation operation in the catalytic cracker is controlled so that the distillation operation in the catalytic cracking apparatus is controlled so that 18 weight hydrocarbon fractions with a boiling point of 204°C to 400°C and an aromatic carbon fraction fa of 0.57 are obtained. % and 82% by weight of catalytic cracker residual oil with a boiling point of 400°C or higher was prepared in the same manner as in Example 1, except that it was used as a raw material without further distillation. A directional pitch was obtained.

【表】【table】

【表】 表6の結果から明らかな如く、400℃以下の炭
化水素留分を18重量%含有した本発明の原料は、
熱分解重縮合反応により光学的異方性相が100%
で且つ低軟化点の炭素質ピツチを提供することが
でき、400℃以下の炭化水素留分を除去した原料
を用いた場合に比較して、当該炭素質ピツチの紡
糸特性も著しく優れたものであることが実証され
た。
[Table] As is clear from the results in Table 6, the raw material of the present invention containing 18% by weight of hydrocarbon fraction below 400°C is
100% optically anisotropic phase due to thermal decomposition polycondensation reaction
It is possible to provide a carbonaceous pitch with a low softening point, and the spinning properties of the carbonaceous pitch are also significantly superior compared to when raw materials from which hydrocarbon fractions below 400°C are removed are used. Something has been proven.

Claims (1)

【特許請求の範囲】 1 沸点が約400℃以上の接触分解装置の残渣油
約50重量%〜約87重量%と、芳香族炭素分率faが
0.4以上であつて、約200℃〜約400℃の沸点を有
する炭化水素留分約13重量%〜約50重量%とから
なり、約540℃以下の沸点を有する成分が90重量
%以上であることを特徴とする光学的異方性ピツ
チを製造するための原料。 2 沸点が約400℃以上の接触分解装置の残渣油
が約60重量%〜約85重量%であり、約200℃〜約
400℃の沸点を有する炭化水素留分が約15重量%
〜約40重量%である特許請求の範囲第1項に記載
の光学的異方性ピツチを製造するための原料。 3 芳香族炭素分率faが0.5以上である特許請求
の範囲第1項又は第2項に記載の光学的異方性ピ
ツチを製造するための原料。
[Claims] 1. About 50% to about 87% by weight of residual oil from a catalytic cracker with a boiling point of about 400°C or higher and an aromatic carbon fraction fa.
0.4 or more and consists of about 13% to about 50% by weight of a hydrocarbon fraction having a boiling point of about 200°C to about 400°C, and 90% by weight or more of a component having a boiling point of about 540°C or less A raw material for producing an optically anisotropic pitch characterized by: 2 The residual oil from the catalytic cracker with a boiling point of about 400°C or higher is about 60% to about 85% by weight, and the boiling point is about 200°C to about 85% by weight.
Approximately 15% by weight of hydrocarbon fraction with a boiling point of 400°C
~40% by weight of a raw material for producing an optically anisotropic pitch according to claim 1. 3. A raw material for producing the optically anisotropic pitch according to claim 1 or 2, which has an aromatic carbon fraction fa of 0.5 or more.
JP7843082A 1982-05-12 1982-05-12 Preparation of optical anisotropic pitch and raw material for preparing it Granted JPS58196293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7843082A JPS58196293A (en) 1982-05-12 1982-05-12 Preparation of optical anisotropic pitch and raw material for preparing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7843082A JPS58196293A (en) 1982-05-12 1982-05-12 Preparation of optical anisotropic pitch and raw material for preparing it

Publications (2)

Publication Number Publication Date
JPS58196293A JPS58196293A (en) 1983-11-15
JPH0245673B2 true JPH0245673B2 (en) 1990-10-11

Family

ID=13661822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7843082A Granted JPS58196293A (en) 1982-05-12 1982-05-12 Preparation of optical anisotropic pitch and raw material for preparing it

Country Status (1)

Country Link
JP (1) JPS58196293A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630466B2 (en) * 1988-05-14 1997-07-16 株式会社ペトカ Manufacturing method of carbon material
CN116005298B (en) * 2022-12-07 2024-06-25 山东瑞城宇航碳材料有限公司 Preparation method of mesophase pitch for high-performance carbon fibers capable of being woven

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167788A (en) * 1980-04-23 1981-12-23 Exxon Research Engineering Co Manufacture of carbon processed article precursor
JPS5837084A (en) * 1981-08-28 1983-03-04 Toa Nenryo Kogyo Kk Optically anisotropic carbonaceous pitch having low softening point and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167788A (en) * 1980-04-23 1981-12-23 Exxon Research Engineering Co Manufacture of carbon processed article precursor
JPS5837084A (en) * 1981-08-28 1983-03-04 Toa Nenryo Kogyo Kk Optically anisotropic carbonaceous pitch having low softening point and production thereof

Also Published As

Publication number Publication date
JPS58196293A (en) 1983-11-15

Similar Documents

Publication Publication Date Title
EP0044714B1 (en) Process for producing mesophase pitch
EP0044761B1 (en) Process of preparation of a mesophase pitch for producing carbon fibers
EP0038669B1 (en) Process for preparing a pitch suitable for carbon fiber production
EP0057108B1 (en) Process of producing optically anisotropic carbonaceous pitch
EP0087301B1 (en) Optically anisotropic pitch and production thereof
US4601813A (en) Process for producing optically anisotropic carbonaceous pitch
EP0034410B1 (en) Process for the preparation of a feedstock for carbon artifact manufacture
WO2021155408A1 (en) Method and process for producing needle coke from aromatic polymer material and aromatic bottoms of an aromatic recovery complex
US4554148A (en) Process for the preparation of carbon fibers
EP0072243B1 (en) Deasphaltenating cat cracker bottoms and production of pitch carbon artifacts
RU2062285C1 (en) Method to produce petroleum fiber-forming pitch
US4460455A (en) Process for producing pitch for using as raw material for carbon fibers
JPH0245673B2 (en)
JPH0472876B2 (en)
US4655902A (en) Optically anisotropic carbonaceous pitch
GB2083492A (en) Production of pitch from petroleum fractions
EP0089840B1 (en) Process for producing an optically anisotropic carbonaceous pitch
JPH03223391A (en) Mesophase pitch for carbonaceous material
JPH0415274B2 (en)
JPH01254796A (en) Mesophase pitch for carbonaceous material
JPS6250514B2 (en)
JPS6250515B2 (en)
JPS6250516B2 (en)
JPH0254395B2 (en)
JPH0534393B2 (en)