JPH0254395B2 - - Google Patents

Info

Publication number
JPH0254395B2
JPH0254395B2 JP6233183A JP6233183A JPH0254395B2 JP H0254395 B2 JPH0254395 B2 JP H0254395B2 JP 6233183 A JP6233183 A JP 6233183A JP 6233183 A JP6233183 A JP 6233183A JP H0254395 B2 JPH0254395 B2 JP H0254395B2
Authority
JP
Japan
Prior art keywords
pitch
reaction
raw material
oil
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6233183A
Other languages
Japanese (ja)
Other versions
JPS59189188A (en
Inventor
Michiro Matsubara
Osamu Hiroya
Kazuo Takahashi
Osamu Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Mitsubishi Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Oil Co Ltd filed Critical Mitsubishi Oil Co Ltd
Priority to JP6233183A priority Critical patent/JPS59189188A/en
Publication of JPS59189188A publication Critical patent/JPS59189188A/en
Publication of JPH0254395B2 publication Critical patent/JPH0254395B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高強度、高弾性率炭素繊維の製造用原
料としての、すぐれた性能を有するピツチの製造
方法に関する。さらに詳しくは、石油を原料油と
して流動接触分解装置より副生するデカント油の
沸点400℃以上の蒸留残油と、主として4環以上
の芳香族化合物およびこれらの部分水素化物から
なる芳香族系重質油の混合物を原料として熱改質
反応を行い、その後該反応生成物より不溶解性物
質を分離除去した後減圧蒸留によつてピツチを得
るにあたり、デカント油と4環以上の芳香族化合
物およびこれらの部分水素化物の共存下での熱改
質反応を巧みに利用することを特徴とする性能の
すぐれた炭素繊維原料用ピツチの製造方法に関す
る。 炭素繊維(黒鉛化処理した繊維も総称として炭
素繊維に含まれるものとする)は軽量、高強度、
高弾性率、耐熱性、耐薬品性および電気伝導性と
いう特徴を有し、将来性のある工業材料の一つで
あるといわれている。特に比強度(単位重量当た
りの強度)および比弾性率(単位重量当たりの弾
性率)が大きいことから、合成樹脂または金属あ
るいは炭素との複合材料の形態で利用されてお
り、航空宇宙用、自動車用および機械材料用とし
て今後大量に利用されることが期待されている。
炭素繊維の製造方法は各種のプロセスが存在する
が、すでに完全に炭素となつた物質から直接炭素
繊維を製造する工業的方法は、未だ開発されてい
ないので、現在のプロセスは前駆体である有機物
をまず紡糸して得た前駆体有機繊維に、繊維の形
状を保持させながら炭化処理を含む種々の処理を
加えて、最終的にほぼ炭素からなる繊維を得る方
法を用いている。 炭素繊維は、その原料である前駆体有機物質に
より、リグニン系、セルロース系、ポリアクリロ
ニトリル系、レーヨン系、ピツチ系等に分類され
ているが、その性状は前駆体有機物質により大き
く異なつている。炭素材料は一般に前駆体有機物
質の性状の相異により、最終製品の性状が大きく
支配されることが知られているが、炭素繊維の場
合もこの典型的な例である。 ピツチ系炭素繊維は原料である前駆体ピツチが
ポリアクリロニトリルより安価なことが特徴であ
るが、ピツチとは、有機化合物から主として熱的
な分解反応ならびに重縮合反応により生成する常
温で固体状または半固体状であつて加熱した場合
粘稠な油状となる物質の総称であり、特定の物質
をさすものではなく、種々の性状のものが存在す
る。従つてピツチの性状をうまく制御することに
よつて高強度、高弾性率の炭素繊維用の原料ピツ
チの製造方法を開発することができればその工業
的価値は極めて大きいということができる。現在
ピツチ類を原料として高強度、高弾性率の炭素繊
維を製造する方法としては、光学的等方性ピツチ
より得たピツチ繊維を緊張処理下で炭化および/
もしくは黒鉛化を行う方法とメソフエーズを多量
に含有する光学的異方性ピツチを原料とする方法
が提案されている。 例えば特公昭47−10254には炭化処理中550〜
850℃および/もしくは黒鉛化処理中1350〜2800
℃の温度域において応力を加える方法が開示され
ている。しかしこのように炭化あるいは黒鉛化処
理中での繊維への応力付加に複雑な装置を必要と
し、また効果もそれほど大きくないため、このよ
うな手法を工業的生産規模で行うことは困難であ
る。また、特公昭54−1810、同55−37611にはメ
ソフエーズを多量に含有するピツチを原料として
炭素繊維を製造する方法が開示されており原料物
質として石油ピツチ、コールタールピツチおよび
アセナフチレンピツチが望ましいとしている。し
かし、このような広範囲にわたる原料物質からの
熱処理のみで、炭素繊維製造に適した同一性状を
有するピツチを製造することは困難である上、当
該出願においてはそれぞれの原料物質の詳細な改
質操作については開示されていない。さらに、特
開昭57−88016には石油の接触分解で副生するタ
ール状物質あるいはナフサの熱分解で副生するタ
ール状物質を出発原料とする炭素繊維製造用原料
ピツチの製造方法が開示されている。この方法に
おいては出発原料を加熱処理した後、重力沈降の
方法によりメソフエーズを濃縮して分離回収する
ことによりメソフエーズ含有ピツチを得ており、
該メソフエーズ含有ピツチをさらに次の工程で熱
処理を行つて炭素繊維製造用原料ピツチを製造し
ている。このことは前記の二つのタール状物質の
単純な熱処理だけでは炭素繊維の製造に適したピ
ツチが生成しないことを示している。一般にメソ
フエーズとは重質油類を加熱処理したいわゆる炭
化初期過程において熱分解反応と重縮合反応によ
つて生成する縮合多環芳香族分子が主としてフア
ンデルワールス力によつて配列して、一定の方向
性を示す液晶状態をさし、液相の重質油が固相の
炭化物へ変化する過程である中間相(メソ・フエ
ーズ)をいう。かつてはメソフエーズはキノリン
不溶分と等価であると定義されていたが、最近の
研究によりメソフエーズとキノリン不溶分とは等
価でないことが明らかにされている。また偏光顕
微鏡下で光学的異方性を示す部分も、観察の温度
や試料の調製法により大きく変化するためこれも
メソフエーズとは等価でないと言えよう。従つて
現在のところメソフエーズの量を測定する完全な
方法はないといつても過言でない。 炭素繊維の製造、とりわけ高強度、高弾性率炭
素繊維の製造に適したピツチには極めて多くの特
性が要求される。第1に紡糸工程時に直径5〜
15μの繊維に高速度で紡糸でき、かつ糸切れが少
ないことが必要である。また紡糸後の繊維の融着
を防ぎ、また後続の不融化工程を良好に行うため
にも300〜400℃の温度範囲で紡糸が可能であるこ
とが必要である。さらに紡糸後のピツチ繊維の強
度が大きいことが必要である。また炭化および黒
鉛化工程においては炭素の六角網面の配列の発達
が良く黒鉛化性が良好なことが必要である。一般
に盾質油類は炭化水素、硫黄化合物、窒素化合
物、酸素化合物、および有機金属化合物等の多種
類の成分が存在する上、これらの成分は分子量が
広範囲に分布し、複雑な構造を持つものが多い。
従つてそれぞれの成分の熱反応性は大きく異なつ
ており、このような重質油類に熱処理を行つた場
合、生成物質もまた大きく性状の異つた成分の混
合物となる。従つて炭素繊維製造用の原料ピツチ
を重質油の熱処理によつて製造する場合において
も、重質油に単純な熱処理操作を加えただけで
は、一部の成分が原料ピツチに適した性状となつ
たとしても不適切な性状を有する成分も多量に生
成する。先述の特開昭57−88016では熱改質方法
に特別な工夫を行つていないため、原料ピツチと
して望しい性状を有する成分の収率は低い。その
ため熱改質生成物から重力沈降によつて下層のピ
ツチを分離してさらにこれに熱処理を行うという
複雑な工程が必要となる。熱反応性が高く、過度
に高分子化が進行する成分の反応を抑制する目的
で、水素加圧下の反応あるいは水素供与性を有す
る溶剤との共存下の反応を用いる方法が開示され
ている。例えば特開昭57−168989、同57−
168990、同58−18419においては石油類を流動接
触分解した際に得られる沸点200℃以上の重質油
および/もしくは石油類を水蒸気分解した際に得
られる沸点200℃以上の重質油を水素加圧下で熱
処理を行い、この後必要であれば蒸留時の操作に
より軽質分を除去した後に、反応温度340〜450℃
で常温あるいは減圧下で不活性ガスを通気して加
熱処理してメソ相化を行つて、炭素繊維製造用の
原料ピツチを製造する方法が開示されている。ま
た特開昭57−16897、同57−168988、同57−
170990、同57−179285、同57−179286、同57−
179287、同57−179288、同58−18420には、石油
類を流動接触分解した際に得られる沸点200℃以
上の重質油および/もしくは石油類を水蒸気分解
した際に得られる沸点200℃以上の重質油に対し、
2環もしくは3環の芳香族系炭化水素の核水素化
物、またはこれらの原料ピツチを加熱処理した際
に生成する留分、あるいは原料ピツチを加熱処理
により調製する段階で生成する留分のなかで沸点
範囲が160〜400℃の留分等を水素化して得られる
核水素化率10〜70%の水素化油を添加して、これ
を反応温度370〜480℃圧力2〜50Kg/cm2Gにて熱
処理を行い、この後必要であれば蒸留等の操作に
より軽質分を除去した後に、この原料ピツチを反
応温度340〜450℃で常圧あるいは減圧下で不活性
ガスを通気して加熱処理してメソ相化を行つて炭
素繊維製造用の原料ピツチを製造する方法が開示
されている。 これらの方法は加圧下の水素あるいは核水素化
物の供与性水素の作用により、加熱処理の段階で
高分子量成分の生成を抑制することを主目的とし
たものである。このような方法は従来の単純な熱
処理方法に比べて改良された方法といえるが、反
面熱改質反応の進行が遅れるという欠点を有す
る。またこの方法で使用される2環もしくは3環
の芳香族系炭化水素の核水素化物および前述の
種々の方法によつて得られた水素化油は、沸点範
囲および組成からみて水素供与性物質としての役
割を持つだけであり、これらの物質自体がピツチ
化することは極めて少ない。従つて、第1段階の
各種の水素化の方法によつて改質された原料は第
2段階として反応温度340〜450℃反応時間1〜50
時間の条件下で熱改質され、この工程によつてメ
ソフエーズが生成する。このように本方法は改質
工程が二段に渡るものである。 また特開昭58−41914、同58−41915には芳香族
指数0.6以上のピツチ類(具体的には石炭系の石
炭解重合物、コールタールピツチ、石油系のエチ
レンボトム油が好ましいと述べている。)を水素
供与性の高い炭化水素系溶剤中で水素化し、触媒
および不溶性固形物を除去し、かつ炭化水素系溶
剤を回収して得られる水素化ピツチを減圧下で熱
処理して炭素繊維製造用の原料ピツチを製造する
方法が開示されている。本方法においては減圧下
の熱処理条件が反応温度480℃以上、反応時間30
分以下、圧力40mmHgabs以下である点が異なつて
いるが、一段目の改質工程で原料油の水素化を行
い、その後二段目の改質工程で熱処理を行つてメ
ソフエーズを生成させるという点で前述の特開昭
57−16897等の方法と類似であり、共存させる部
分水素化物には水素供与性作用を有するものを使
用している。 以上のような状況に鑑み、本発明者等は熱改質
反応中に生ずる過度に反応が進みすぎた高分子量
物質の生成を抑制し、かつ全体として熱改質反応
を迅速に進行させ一段の熱改質工程だけで経済的
に望ましい性状の炭素繊維製造用の原料ピツチを
収率良く生成させるという二つの特徴を同時に兼
ね備えた改質方法について種々検討した結果、石
油の流動接触分解装置から副生するデカント油の
沸点400℃以上の蒸留残油に4環以上の芳香族化
合物およびこれらの部分水素化物を主体とする重
質油を添加して熱改質反応を行うと、そのすぐれ
た水素供与性と添加油自身の迅速なピツチ化性お
よび添加油がピツチ化する際に、共存するデカン
ト油の重質成分を改質し、良好な性状を有するメ
ソフエーズを発現せしめる初期炭化修飾性によ
り、熱改質工程とその後の不溶解性物質分離工程
および減圧蒸留工程のみで高品質の炭素繊維の製
造に適した原料ピツチが製造できることを見い出
し、本発明を完成するに至つた。 以下に本発明を詳しく説明する。本発明は(A)石
油を原料として、流動接触分解装置より副生する
デカント油から蒸留によつて軽質留分を除去して
得た沸点400℃以上の蒸留残油50〜90重量部と、
(B)4環以上の芳香族化合物およびこれらの部分水
素化物を60wt%以上含有する芳香族系重質油50
〜10重量部、からなる混合物を不活性雰囲気下反
応温度400〜470℃、反応時間1〜10時間の熱改質
反応を行い、その後該反応生成物より不溶解性物
質を分離除去して光学的等方性ピツチを得、つい
でこれより減圧蒸留によつて軽質留分を除去する
ことにより光学的異方性部分が70%以上のピツチ
を得ることを特徴とする高強度、高弾性率炭素繊
維用原料ピツチの製造方法に関するものである。 本発明でいうデカント油とは、石油精製工程に
おいてガソリン留分に富んだ生成物を得ることを
主目的とする流動接触分解装置から生成する芳香
族系炭化水素を多く含有する副生油である。当装
置の原料油としては通常減圧蒸留装置から生成す
る減圧軽油を用いるが、さらにこれに常圧蒸留装
置から生成する軽油留分、常圧蒸留残油、常圧蒸
留残油を水素化脱硫装置で水素化処理した油ある
いは潤滑油精製装置である溶剤脱ロウ装置から生
成するワツクス分を主成分とする油等が混合して
使用される。触媒としてアモルフアスのシリカ―
アルミナ、シリカ―マグネシアを主成分とする触
媒あるいはゼオライト系触媒の存在下で反応温度
470〜540℃、反応圧力0.5〜5Kg/cm2G、触媒/
油比5〜15の範囲で触媒分解反応を行ない、さら
にこの分解油を本流動接触分解装置に付属する蒸
留残油で主生成物であるガソリン留分等を除去し
て得た残油から残触媒を除去してデカント油を得
る。本発明においてはこのデカント油から蒸留に
よつて軽質留分を除去して沸点400℃以上の蒸留
残油を得る。この時の蒸留方法としては減圧蒸留
が好ましく用いられる。また4環以上の芳香族化
合物およびこれらの部分水素化物とは以下のもの
をいう。すなわち4環以上の芳香族化合物とはピ
レン、ナフタセン、クリセン、ベンツアントラセ
ン、ペリレン、ベンゾペレン、ベンゾナフタセ
ン、ピセン、チヨラントレンなどおよびこれらの
アルキル誘導体などの群から選ばれた1種または
2種以上の混合物を意味するものである。また4
環以上の芳香族化合物の部分水素化物とは上述の
物質の芳香族環の一部に水素が付加した化合物の
ことを意味する。核水素化率50%以下の部分水素
化物が該部分水素化物の主成分であることが好ま
しい。本発明に使用する芳香族系重質油には前述
の4環以上の芳香族化合物およびこれらの部分水
素化物の混合物が60wt%以上含まれていること
が必要である。該芳香族系重質油は前述の成分の
1種または2種以上より調製することの外に以下
の方法により製造することが可能である。 すなわち石炭の乾留によつて生成するコールタ
ールあるいはコールタールの蒸留留分もしくは蒸
留残油を水素化処理し、その後蒸留により軽質分
の除去を行うことにより製造するか、または石炭
を液化して得られる液化生成物を水素化処理し、
その後蒸留により軽質分の除去を行うことにより
製造する。さらに詳しく説明すると前者の場合コ
ールタール、クレオソート油、アントラセン油等
を原料とし、元素周期律表の族および/または
族の金属の硫化物を含有する水素化触媒を用い
て高温高圧水素雰囲気中にて水素化反応を行う。
特に硫化ニツケル―モリブデンあるいは硫化コバ
ルト―モリブデン系触媒を用いて反応温度280〜
360℃、反応圧力50〜200Kg/cm2G、水素/原料比
300〜3000容量/容量、液空間速度毎時0.5〜2容
量/容量の条件が好ましい。またこの水素化の際
に、フエノールおよび/または側鎖のアルキル基
の炭素数の総数が1ないし3であるアルキルフエ
ノールを0.2ないし10重量%添加を行う方法を好
ましく用いられる。ここでいうアルキルフエノー
ルとしてはクレゾール類、キシレノール類、メチ
ルエチルフエノール類およびプロピルフエノール
類が好ましく用いられる。また後者の場合、石炭
液化物として、石炭を高温に加熱して留出するタ
ール成分を回収する乾留液化法、石炭を溶剤にて
抽出する溶剤抽出液化法、水素供与性溶剤にて石
炭を抽出と同時に分解する抽出化学分解液化法、
高圧水素ガスの供給下で溶剤抽出を行う抽出水添
液化法、高圧水素ガスの供給下で触媒を使用して
石炭の水素化分解を行う直接水添液化法等により
生成するものを使用する。この石炭液化物を水素
化処理する際の条件は前者の場合と同様である。
これらの油を蒸留によつて軽質油分を除去して沸
点400℃以上の蒸留残油を得る。この時の蒸留に
は減圧蒸留、水蒸気蒸留が用いられるが減圧蒸留
が好ましく用いられる。これらの蒸留残油を
NMR、ガスクロー質量分析等の手段によりその
成分を分析し、4環以上の芳香族炭化水素および
その部分水素化化合物の混合物が60wt%以上で
あるものが本発明の(B)として用いられる。60wt
%未満の場合は後続の熱改質反応における初期炭
化修飾性が良好に発現しない。また(B)の成分であ
る4環以上の芳香族化合物およびこれらの部分水
素化物の混合物が、4環以上の芳香族化合物20〜
50wt%、および4環以上の芳香族化合物の部分
水素化物80〜50wt%から成るものであることが
好ましい。例えば部分水素化物の割合が50wt%
未満のものの場合は水素供与性が不足し、また
80wt%を越える場合はピツチ化が遅くなる。い
ずれにしても芳香族化合物と部分水素化物が前述
の特定の範囲の場合において、水素供与性と初期
炭化修飾性の両者が最も好ましく発現する。 熱改質反応には前述のデカント油より得た蒸留
残油(A)と芳香族系重質油(B)の混合物が原料油とし
て使用される。混合割合は(A)が50〜90重量部に対
して(B)が50〜10重量部である。(B)の混合割合が10
重量部未満の場合は、後続の熱改質反応において
(B)の効果である水素供与性および初期炭化修飾性
がほとんど発現しないので、この熱改質反応生成
物から高品質炭素繊維は製造できない。特に紡糸
において糸切れが多く、高速度で巻取ることでき
ない。また焼成後の繊維の強度、弾性率が低いと
いう欠点がある。(B)の混合割合が50重量部を越え
る場合はデカント油の成分の量に対して4環以上
の芳香族化合物およびこれらの部分水素化物の量
が多すぎることとなり、この場合は紡糸温度が
300℃以下となり巻取後の繊維の融着が起こり、
また不融化工程で欠陥の発生が多くなるため、焼
成後の繊維の強度、弾性率が低くなる。 熱改質反応は、連続式加熱装置またはバツチ式
加熱装置を用いて窒素ガス通気下あるいは原料油
または反応生成油の飽和蒸気中等の不活性雰囲気
中で反応温度を400〜470℃、反応時間10時間以下
の条件下で撹拌を行いながら加熱処理をすること
により行う。この際、熱改質反応時間を短縮する
ためにはゲージ圧0.5〜5Kg/cm2、好ましくは1
〜3Kg/cm2の低圧の加圧下で反応温度440〜460
℃、反応時間1〜2時間の条件下で、生成する軽
質分ならびにガス成分を抜き出しながら、窒素の
通気を行わずに加熱処理を行うことが好ましい。
反応温度が400℃未満の場合は熱改質反応の進行
が著しく遅くなり経済的でない。また反応温度が
470℃を越える場合には重縮合反応の進行が著し
くなり反応容器壁面にコーキング状物の堆積がお
き、さらに生成した原料ピツチの紡糸性は悪く、
特に糸切れが多くなる。また反応時間が10時間を
超えると部分水素化物の水素供与性が失われるた
め生成した原料ピツチの紡糸性は低下する。熱改
質反応生成物の性状はキノリン不溶分1〜5wt
%、トルエン不溶分10〜30wt%である。 この熱改質反応において(A)の構成成分と(B)の構
成成分は共炭化反応を起こし炭素繊維製造用原料
ピツチとして好ましい成分が生成する。この共炭
化反応の詳細は完全には明らかとはなつていない
が、熱改質反応中(A)の構成成分が熱分解および重
縮合反応を起こす際に(B)の構成成分中の部分水素
化物が水素を放出して過度の重縮合反応の進行を
抑制するとともに、(B)のもう一つの構成成分であ
る4環以上の芳香族化合物が重縮合反応をおこ
す。このため高分子物質の生成を抑制しつつ、全
体として熱改質反応は迅速に進行し平面が良く黒
鉛化性にすぐれたピツチ状物が生成する。特に4
環以上の芳香族化合物の部分水素化物は水素を放
出した後には対応する4環以上の芳香族化合物に
変化するため、水素供与性と初期炭化修飾性の両
方の作用を持つことは特筆すべきことであり、本
発明は熱改質反応中にこのような作用をもつ共存
物質をみつけることにより始めてなされたもので
ある。核水素化率50%以下の部分水素化物におい
て特にこの効果が大きく、核水素化率が50%を超
える部分水素化物においては水素供与性および初
期炭化修飾性の両方共その効果が小さい。また3
環以下の芳香族化合物の部分水素化物は水素供与
性のみを有するだけで、自身がピツチ化すること
はほとんどなく前述の初期炭化修飾性を持たな
い。またこれらは沸点が低いため熱改質反応を常
圧で行う場合は系外に逸散してしまい効果が少な
い。また加圧を行う場合高圧が必要となり装置の
経済性が失われる。 本発明において、(A)(B)共沸点が400℃未満の留
分を含有すると収率が低下する上、共炭化修飾性
が低下するため、400℃未満の留分を自質的にほ
とんど含有しないことが必要である。 (B)の共炭化修飾性はどのような重質油に対して
も良好に作用するものではない。例えばコールタ
ールピツチあるいは原油の高温水蒸気分解ピツチ
に対して(B)を混合して同様の熱改質反応を行つて
も良好な結果は得られなかつた。これはコールタ
ールピツチ等すでに芳香族性の著しく大きいピツ
チ類に対しては(B)の共炭化修飾性がほとんど発現
しないためと考えられる。本発明者らの実験的検
討によればデカント油の400℃以上の蒸留残油に
対して(B)の共炭化修飾性が最も良好に発現した。 本発明においては熱改質反応は一段で良く、後
続の工程としては不溶解性物質の分離除去工程お
よび減圧蒸留工程だけでよい。不溶解性物の分離
除去は、380℃以下の温度において重力あるいは
遠心力等を利用して行われる。温度を380℃以下
としたのはこの加熱によつて光学異方性物質の生
成をきたさないためである。またキノリン、アン
トラセン油等の芳香族原油による抽出による方法
も可能である。この不溶解性物質を分離除去する
ことによつて紡糸時に溶融しない物質を除去する
ことができる。ここで生成したピツチ状物は偏光
顕微鏡観察によつても光学異方性部分が存在せず
等方性である。メソフエーズを構成する成分は熱
改質反応においてすでに生成してるが、熱改質工
程において熱分解反応により同時に生成する軽質
油分により希釈されているため等方性に観察され
るものと思われる。これを減圧蒸留により軽質油
分を除去すると、熱改質反応においてすでに生成
していたメソフエーズを構成する分子は、互に近
接の距離に位置することが可能となりフアンデル
ワールス力によつて積層し偏光顕微鏡下で光学異
方性部が出現する。メソ相化を減圧蒸留工程によ
り行うのも本発明の特徴の一つである。 減圧蒸留後のピツチの性状はキノリン不溶分5
〜30wt%、トルエン不溶分70〜95wt%、偏光顕
微鏡観察による光学異方性部分70%以上であるこ
とが好ましい。すなわちキノリン不溶分が30wt
%を越え、あるいはトルエン不溶分が95wt%を
越える場合は紡糸温度が高温となる上、糸切れが
多い等紡糸性が悪い。またキノリン不溶分が5wt
%未満、トルエン不溶分が70wt%未満の場合は
紡糸の際の糸切れが多い上、紡糸後の繊維の融着
が起きる。また光学異方性部分が70%未満の場合
焼成後の繊維の強度、弾性率が低いという欠点が
ある。 また、本発明の方法により製造した炭素繊維製
造用原料ピツチは紡糸性、炭化および黒鉛化性が
良好である。すなわち300〜400℃の紡糸温度にお
いて500m/minの巻取速度で直径5〜15μの繊維
に紡糸することが可能であり、糸切れも少ない。
また紡糸したピツチ繊維の強度が大きいため後続
のハンドリングが容易である。このピツチ繊維は
150〜350℃の温度で空気酸化により不融化を行う
ことができ、この際繊維の融着は生じない。炭化
処理後および黒鉛化処理後は強度、弾性率および
伸度の特性が特に優れている。このように本発明
記載の方法は高品質炭素繊維製造用原料ピツチの
製造方法を示すものであり工業的意味において貢
献するところ極めて多大である。 次に本発明を実施例において詳しく説明するが
本発明の要旨を越えない限り以下の実施例に限定
されるものではない。 実施例 1 中東系原油の減圧軽油を主成分とする原料油を
流動接触分解装置にてゼオライト触媒を用いて反
応温度510℃、圧力2.5Kg/cm2G触媒/油比10の条
件で接触分解して得られる重質生成油より触媒を
除去して得られたデカント油を、減圧蒸留により
軽質分を除去して沸点400℃以上の蒸留残油(以
下1―Aと示す)を得た。1―Aの性状は比重
(15/4℃)1.12、残炭12.3wt%、硫黄分1.21wt
%であつた。 また、コールタールの減圧蒸留により得られた
重アントラセン油を硫化ニツケル―モリブデン触
媒を用いて、反応温度340℃、反応圧力150Kg/cm2
(G)、液空間速度毎時1.0容量/容量の条件下で小
型連続流通式装置により水素化処理を行い、生成
した水素化油から減圧蒸留により軽質分を除去し
て沸点400℃以上で4環以上の芳香族化合物およ
びこれらの部分水素化物を81wt%含有する蒸留
残油(以下1―Bと示す)を得た。その性状を第
1表に示す。 1―A60重量部と1―B40重量部の混合物をバ
ツチ式熱改質装置により窒素雰囲気下で撹拌を行
いながら1Kg/cm2Gの加圧下で反応温度460℃、
反応時間1.5時間の条件で熱改質反応を行つた。
熱改質生成物の性状を第2表に示す。これよりキ
ノリン抽出により不溶解性物質を分離除去した後
減圧蒸留により軽質分を除去して炭素繊維用原料
ピツチを得た。その性状を第3表に示す。 このピツチを孔径0.4mmφの紡糸ノズルを用い
て紡糸温度352℃で溶融紡糸したところ、巻取速
度600m/minで5分間に1回の糸切れも生じな
いで直径10μの繊維の紡糸が可能であつた。この
ピツチ繊維を空気雰囲気中300℃で不融化した後、
窒素ガス雰囲気中で温度1000℃まで炭化処理した
後、アルゴン雰囲気中で温度2500℃まで黒鉛化処
理を行つた。1000℃で焼成した炭素繊維は引張り
強度20t/cm2、弾性率1800t/cm2であり、2500℃で
焼成した黒鉛化繊維は引張り強度28t/cm2、弾性
率3000t/cm2であつた。 実施例 2 1―A80重量部と1―B20重量部の混合物をバ
ツチ式熱改質装置により常圧窒素雰囲気下で撹拌
を行いながら、反応温度420℃、反応時間7時間
の条件で熱改質反応を行つた。熱改質生成物の性
状を第2表に示す。これを360℃に加熱しつつ静
置し不溶解性物質を沈降せしめ不溶解性物質を分
離除去しその後減圧蒸留により軽質分を除去して
炭素繊維用原料ピツチを得た。その性状を第3表
に示す。このピツチを孔径0.5mmφの紡糸ノズル
を用いて紡糸温度365℃で溶融紡糸したところ、
巻取速度500m/minで5分間に1回の糸切れも
生じないで直径12μの繊維の紡糸が可能であつ
た。このピツチ繊維を空気雰囲気中300℃で不融
化した後窒素ガス雰囲気中で温度1000℃まで炭化
処理した後アルゴン雰囲気中で温度2500℃まで黒
鉛化処理を行つた。1000℃で焼成した炭素繊維は
引張り強度18t/cm2、弾性率1550t/cm2であり、
2500℃で焼成した黒鉛化繊維は引張り強度26t/
cm2、弾性率2650t/cm2であつた。 実施例 3 コールタールを減圧蒸留して得られた沸点360
℃以上の蒸留残渣97.5wt%にクレゾールを2.5wt
%添加したものを、硫化ニルケル―モリブデン系
触媒を用いて反応温度320℃、反応圧力150Kg/cm2
(G)、液空間速度毎時1.0容量/容量の条件下で小
型連続流通式装置により水素化処理を行い、生成
した水素化油から減圧蒸留により軽質分を除去し
て沸点400℃以上で4環以上の芳香族化合物およ
びこれらの部分水素化合物を77.5wt%含有する蒸
留残油(以下3―Bと示す)を得た。この性状を
第1表に示す。1―70重量部と3―B30重量部の
混合物をバツチ式熱改質装置により窒素雰囲気下
で撹拌を行いながら圧力0.5Kg/cm2G、反応温度
440℃、反応時間3時間の条件で、熱改質反応を
行つた。熱改質物の性状を第2表に示す。これよ
りキノリン抽出により不溶解性物質を分離除去し
た後減圧蒸留により軽質分を除去して炭素繊維用
原料ピツチを得た。その性状を第3表に示す。こ
のピツチを孔径0.5mmφの紡糸ノズルを用いて紡
糸温度338℃で溶融紡糸したところ、巻取速度800
m/minで5分間に1回の糸切れも生じないで直
径9μの繊維の紡糸が可能であつた。このピツチ
繊維を空気雰囲気中300℃で不融化した後、窒素
ガス雰囲気中で温度100℃まで炭化処理した後ア
ルゴン雰囲気で温度2500℃まで黒鉛化処理を行つ
た。1000℃で焼成した炭素繊維は引張り強度
21t/cm2、弾性率1650t/cm2であり、2500℃で焼成
した黒鉛化繊維は引張り強度31t/cm2、弾性率
3900t/cm2であつた。 実施例 4 豪州産亜瀝青炭の100メツシユ以下の粉砕物1
重量部にテトラリン3重量部を混合しスラリー状
としオートクレーブに充填し、水素初圧40Kg/cm2
に加圧して、撹拌をしながら反応温度415℃、反
応時間1時間の条件で液化反応を行つた。反応生
成物から過により未反応物および灰分等の固形
分を分離した後、蒸留により溶剤および軽質分を
除去して得られた沸点350℃以上の石炭液化物
97.5wt%にフエノール2.5wt%を添加したものを
硫化ニツケル―モリブデン系触媒を用いて反応温
度350℃、反応圧力150Kg/cm2(G)、液空間速度毎時
1.0容量/容量の条件下で小型連続流通式装置に
より水素化処理を行い、生成した水素化油より減
圧蒸留により軽質分を除去して沸点400℃以上で
4環以上の芳香族化合物およびこれらの部分水素
化物を73.2wt%含有する蒸留残油(以下4―Bと
示す)を得た。この性状を第1表に示す。1―
A75重量部と4―B25重量部の混合物をバツチ式
熱改質装置により常圧窒素雰囲気下で撹拌を行い
ながら反応温度430℃、反応時間6時間の条件で
熱改質反応を行つた。これを360℃に加熱しつつ
静置し不溶解性物質を沈降せしめ傾斜法によつて
不溶解性物質を分離除去しついで減圧蒸留によつ
て軽質分を除去して炭素繊維製造用の原料ピツチ
を得た。その性状を第3表に示す。このピツチ孔
径0.5mmφの紡糸ノズルを用いて紡糸温度372℃で
溶融紡糸したところ、巻取速度500m/minで5
分間に1回の糸切れも生じないで直径13μの繊維
の紡糸が可能であつた。このピツチ繊維を空気雰
囲気中300℃で不融化した後、窒素雰囲気中で温
度1000℃まで炭化処理した後アルゴン雰囲気中で
温度2500℃まで黒鉛化処理を行つた。1000℃で焼
成した炭素繊維は引張り強度18t/cm2、弾性率
1600t/cm2であり、2500℃で焼成した黒鉛化繊維
は引張り強度25t/cm2、弾性率2750t/cm2であつ
た。 比較例 1―Aを単独で実施例1に記載と同一条件で熱
改質反応、不溶解性物質の分離除去および減圧蒸
留を行いピツチを得た。熱改質生成物およびピツ
チの性状をそれぞれ第2表および第3表に示す。
このピツチを実施例1と同一条件で溶融紡糸を行
つたが糸切れが多く紡糸ができなかつた。また巻
取速度を200m/minに減らしたところ、直径23μ
の繊維の紡糸ができた。このピツチ繊維を実施例
1と同一条件で不融化、炭化および黒鉛化処理を
行つた。1000℃で焼成した炭素繊維は引張り強度
13t/cm2、弾性率1400t/cm2であり、2500℃で焼成
した黒鉛化繊維は引張り強度15t/cm2、弾性率
2250t/cm2であつた。 比較例 2、3および4 1―B、3―B、および4―Bをそれぞれ単独
で実施例1に記載と同一条件で熱改質反応、不溶
解性物質の分離除去および減圧蒸留を行いピツチ
を得た。熱改質生成物およびピツチの性状をそれ
ぞれ第2表および第3表に示す。このピツチを実
施例1と同一条件で溶融紡糸を行つたが、いずれ
も糸切れが多く紡糸ができなかつた。
The present invention relates to a method for producing pitch having excellent performance as a raw material for producing high strength, high modulus carbon fiber. More specifically, distillation residual oil with a boiling point of 400°C or higher, which is produced as a by-product from a fluid catalytic cracker using petroleum as feedstock, and aromatic heavy oil mainly consisting of aromatic compounds with four or more rings and their partially hydrogenated products. A thermal reforming reaction is carried out using a mixture of quality oils as raw materials, and after that, insoluble substances are separated and removed from the reaction product and then distilled under reduced pressure to obtain pitch. The present invention relates to a method for producing a pitch for carbon fiber raw material with excellent performance, which is characterized by skillfully utilizing a thermal reforming reaction in the coexistence of these partial hydrides. Carbon fiber (graphitized fibers are also collectively included in carbon fiber) is lightweight, has high strength,
It has the characteristics of high elastic modulus, heat resistance, chemical resistance, and electrical conductivity, and is said to be one of the promising industrial materials. Because of its particularly high specific strength (strength per unit weight) and specific modulus (modulus of elasticity per unit weight), it is used in the form of composite materials with synthetic resins, metals, or carbon, and is used in aerospace and automobile applications. It is expected that it will be used in large quantities in the future for industrial and mechanical materials.
There are various processes for producing carbon fiber, but an industrial method for producing carbon fiber directly from a substance that has already completely turned into carbon has not yet been developed, so the current process uses organic matter as a precursor. A method is used in which precursor organic fibers obtained by first spinning are subjected to various treatments, including carbonization, while maintaining the fiber shape, to finally obtain fibers made mostly of carbon. Carbon fibers are classified into lignin-based, cellulose-based, polyacrylonitrile-based, rayon-based, pitch-based, etc. depending on the precursor organic material from which they are made, but their properties vary greatly depending on the precursor organic material. It is generally known that the properties of the final product of carbon materials are largely controlled by differences in the properties of precursor organic substances, and carbon fibers are a typical example of this. Pitch-based carbon fibers are characterized by the fact that the precursor pitch, which is the raw material, is cheaper than polyacrylonitrile. It is a general term for substances that are solid and turn into a viscous oil when heated, and does not refer to a specific substance, but exists in a variety of properties. Therefore, if a method for producing raw material pitch for carbon fibers with high strength and high modulus of elasticity could be developed by skillfully controlling the properties of pitch, it would be of extremely great industrial value. Currently, the method for producing high-strength, high-modulus carbon fibers using pitches as raw materials is to carbonize and/or
Alternatively, a method using graphitization and a method using optically anisotropic pitch containing a large amount of mesophase as a raw material have been proposed. For example, in Tokuko Sho 47-10254, 550 ~
850℃ and/or 1350-2800 during graphitization treatment
A method of applying stress in the temperature range of 0.degree. C. is disclosed. However, it is difficult to carry out such a method on an industrial production scale because a complicated device is required to apply stress to the fiber during carbonization or graphitization treatment, and the effect is not so great. In addition, Japanese Patent Publications No. 54-1810 and No. 55-37611 disclose a method for manufacturing carbon fiber using pitch containing a large amount of mesophase as a raw material, and petroleum pitch, coal tar pitch, and acenaphthylene pitch are used as raw materials. It is considered desirable. However, it is difficult to produce pitches with the same properties suitable for carbon fiber production only by heat treatment of such a wide range of raw materials, and in this application, detailed modification operations of each raw material are required. has not been disclosed. Furthermore, JP-A-57-88016 discloses a method for producing pitch, a raw material for producing carbon fiber, using as a starting material a tar-like substance produced by the catalytic cracking of petroleum or a tar-like substance produced by the thermal decomposition of naphtha. ing. In this method, after heat-treating the starting material, mesophase is concentrated and separated and recovered by gravity sedimentation to obtain mesophase-containing pitch.
The mesophase-containing pitch is further heat-treated in the next step to produce raw material pitch for carbon fiber production. This indicates that a pitch suitable for producing carbon fibers cannot be produced by simple heat treatment of the two tar-like substances mentioned above. In general, mesophases are condensed polycyclic aromatic molecules produced by thermal decomposition reactions and polycondensation reactions in the so-called initial carbonization process of heat-treating heavy oils, which are arranged mainly by van der Waals forces and form a certain structure. Refers to a liquid crystal state that exhibits directionality, and refers to the meso phase, which is the process in which heavy oil in the liquid phase changes to carbide in the solid phase. Mesophase was once defined as being equivalent to quinoline insoluble matter, but recent research has revealed that mesophase and quinoline insoluble matter are not equivalent. Furthermore, the part that shows optical anisotropy under a polarizing microscope also varies greatly depending on the observation temperature and sample preparation method, so it can also be said that this is not equivalent to mesophase. Therefore, it is no exaggeration to say that there is currently no perfect method for measuring the amount of mesophase. A pitch suitable for manufacturing carbon fibers, particularly high strength, high modulus carbon fibers, requires a large number of properties. First, during the spinning process, diameter 5~
It is necessary to be able to spin fibers of 15μ at high speed and to have fewer yarn breakages. Furthermore, in order to prevent the fibers from fusing after spinning and to perform the subsequent infusibility process well, it is necessary to be able to spin the fibers in a temperature range of 300 to 400°C. Furthermore, it is necessary that the strength of the pitch fiber after spinning is high. In addition, in the carbonization and graphitization steps, it is necessary that the arrangement of the hexagonal network planes of carbon be well developed and the graphitization properties should be good. In general, shield oils contain many types of components such as hydrocarbons, sulfur compounds, nitrogen compounds, oxygen compounds, and organometallic compounds, and these components have a wide range of molecular weight distribution and complex structures. There are many.
Therefore, the thermal reactivity of each component differs greatly, and when such heavy oils are subjected to heat treatment, the product product also becomes a mixture of components with widely different properties. Therefore, even when producing raw material pitch for carbon fiber production by heat treating heavy oil, some components may not have properties suitable for the raw material pitch if the heavy oil is simply heat treated. A large amount of components with inappropriate properties are also produced even if they are used. In the above-mentioned Japanese Patent Application Laid-Open No. 57-88016, no special measures were taken for the thermal reforming method, so the yield of components having properties desirable as raw material pitch was low. Therefore, a complicated process is required in which the lower layer of pitch is separated from the thermally reformed product by gravity sedimentation and then subjected to heat treatment. For the purpose of suppressing the reaction of components that have high thermal reactivity and undergo excessive polymerization, a method is disclosed in which a reaction is performed under pressure with hydrogen or a reaction in the presence of a solvent having hydrogen donating properties. For example, JP-A No. 57-168989, No. 57-
168990 and 58-18419, heavy oil with a boiling point of 200℃ or higher obtained when petroleum is subjected to fluid catalytic cracking and/or heavy oil with a boiling point of 200℃ or higher obtained when petroleum is steam cracked is hydrogenated. Heat treatment is performed under pressure, and if necessary, after removing light components by distillation, the reaction temperature is 340-450℃.
A method is disclosed for producing a raw material pitch for producing carbon fibers by heat-treating the material by passing an inert gas through it at room temperature or under reduced pressure to form a mesophase. Also, JP-A No. 57-16897, No. 57-168988, No. 57-
170990, 57-179285, 57-179286, 57-
179287, 57-179288, and 58-18420 include heavy oil with a boiling point of 200℃ or higher obtained when petroleum is subjected to fluid catalytic cracking and/or heavy oil with a boiling point of 200℃ or higher obtained when petroleum is steam cracked. For heavy oil of
Among the nuclear hydrides of 2- or 3-ring aromatic hydrocarbons, or the fractions produced when heat-treating these raw material pitches, or the fractions produced during the step of preparing raw material pitches by heat treatment. Hydrogenated oil with a nuclear hydrogenation rate of 10 to 70% obtained by hydrogenating fractions with a boiling point range of 160 to 400°C is added, and this is heated at a reaction temperature of 370 to 480°C and a pressure of 2 to 50 Kg/cm 2 G. After that, if necessary, light components are removed by operations such as distillation, and then the raw material pitch is heated at a reaction temperature of 340 to 450°C by bubbling inert gas under normal pressure or reduced pressure. A method for producing a raw material pitch for carbon fiber production by converting the carbon into a mesophase is disclosed. The main purpose of these methods is to suppress the formation of high molecular weight components during the heat treatment stage by the action of hydrogen under pressure or donating hydrogen of nuclear hydrides. Although such a method can be said to be an improved method compared to the conventional simple heat treatment method, it has the disadvantage that the progress of the thermal reforming reaction is delayed. In addition, the nuclear hydrides of 2- or 3-ring aromatic hydrocarbons used in this method and the hydrogenated oils obtained by the various methods described above are not suitable as hydrogen-donating substances in terms of boiling point range and composition. These substances themselves are extremely unlikely to form a pitch. Therefore, the raw materials modified by various hydrogenation methods in the first stage are treated at a reaction temperature of 340 to 450°C and a reaction time of 1 to 50 °C in the second stage.
This process produces mesophases. In this way, the present method involves a two-stage reforming process. In addition, JP-A-58-41914 and JP-A-58-41915 state that pitches with an aromatic index of 0.6 or higher (specifically, coal-based coal depolymerized products, coal tar pitch, and petroleum-based ethylene bottom oils are preferable). ) is hydrogenated in a highly hydrogen-donating hydrocarbon solvent, the catalyst and insoluble solids are removed, and the hydrocarbon solvent is recovered. The resulting hydrogenated pitch is heat-treated under reduced pressure to produce carbon fibers. A method of producing a raw material pitch for manufacturing is disclosed. In this method, the heat treatment conditions under reduced pressure are a reaction temperature of 480℃ or higher and a reaction time of 30℃.
The difference is that the feedstock oil is hydrogenated in the first reforming step, and then heat-treated in the second reforming step to generate mesophase. The aforementioned Tokukai Sho
This method is similar to the method of No. 57-16897, etc., and a partially hydride coexisting therewith has a hydrogen-donating effect. In view of the above-mentioned circumstances, the inventors of the present invention have aimed to suppress the formation of high-molecular weight substances that are overly reacted during the thermal reforming reaction, and to speed up the thermal reforming reaction as a whole. As a result of various studies on reforming methods that simultaneously produce raw material pitch for producing carbon fiber with economically desirable properties in high yield through only a thermal reforming process, we found that a When a heavy oil mainly composed of aromatic compounds with 4 or more rings and their partially hydrogenated products is added to the distillation residual oil with a boiling point of 400℃ or higher and a thermal reforming reaction is carried out, the excellent hydrogen Due to the donating property, the rapid pitching property of the added oil itself, and the initial carbonization modification property that modifies the heavy components of the coexisting decant oil and develops mesophases with good properties when the added oil becomes pitchy, The present inventors have discovered that a raw material pitch suitable for producing high-quality carbon fiber can be produced only by a thermal modification process, a subsequent insoluble substance separation process, and a vacuum distillation process, and have completed the present invention. The present invention will be explained in detail below. The present invention uses (A) 50 to 90 parts by weight of a distillation residual oil with a boiling point of 400°C or higher obtained by removing light fractions by distillation from decant oil produced as a by-product from a fluid catalytic cracker using petroleum as a raw material;
(B) Aromatic heavy oil containing 60 wt% or more of aromatic compounds with 4 or more rings and their partially hydrogenated products 50
A mixture consisting of ~10 parts by weight is subjected to a thermal reforming reaction in an inert atmosphere at a reaction temperature of 400 to 470°C for a reaction time of 1 to 10 hours, after which insoluble substances are separated and removed from the reaction product and optically A high-strength, high-modulus carbon characterized by obtaining a pitch having an optically anisotropic portion of 70% or more by obtaining an optically isotropic pitch and then removing a light fraction from this by vacuum distillation. The present invention relates to a method for producing raw material pitch for fibers. In the present invention, decant oil is a by-product oil containing a large amount of aromatic hydrocarbons that is generated from a fluid catalytic cracker whose main purpose is to obtain a product rich in gasoline fractions in the oil refining process. . The raw material oil for this equipment is normally vacuum gas oil produced from a vacuum distillation equipment, but in addition to this, the gas oil fraction, atmospheric distillation residual oil, and atmospheric distillation residual oil produced from an atmospheric distillation equipment are used in a hydrodesulfurization equipment. A mixture of oils that have been hydrogenated or oils whose main component is wax produced from solvent dewaxing equipment, which is a lubricating oil refining equipment, is used. Amorphous silica as a catalyst
Reaction temperature in the presence of alumina, silica-magnesia-based catalysts or zeolite-based catalysts
470~540℃, reaction pressure 0.5~5Kg/ cm2G , catalyst/
A catalytic cracking reaction is carried out at an oil ratio of 5 to 15, and the residual oil is extracted from the residual oil obtained by removing the main product, gasoline fraction, etc., from the distillation residual oil attached to this fluid catalytic cracker. Remove the catalyst to obtain decant oil. In the present invention, light fractions are removed from this decant oil by distillation to obtain a distillation residual oil having a boiling point of 400°C or higher. As the distillation method at this time, vacuum distillation is preferably used. Further, aromatic compounds having four or more rings and partially hydrogenated products thereof refer to the following. That is, the aromatic compound having 4 or more rings refers to one or more kinds selected from the group such as pyrene, naphthacene, chrysene, benzanthracene, perylene, benzoperene, benzonaphthacene, picene, thiolanthrene, etc., and their alkyl derivatives. It means a mixture. Also 4
The partial hydrogenation product of an aromatic compound having more than one ring means a compound in which hydrogen is added to a part of the aromatic ring of the above-mentioned substance. It is preferable that a partial hydride having a nuclear hydrogenation rate of 50% or less is the main component of the partial hydride. It is necessary that the aromatic heavy oil used in the present invention contains 60 wt % or more of the above-mentioned aromatic compounds having four or more rings and a mixture of partially hydrogenated products thereof. In addition to preparing the aromatic heavy oil from one or more of the above-mentioned components, it can also be produced by the following method. In other words, it is produced by hydrotreating coal tar produced by carbonization of coal, a distillation fraction of coal tar, or a distillation residue, and then removing light components by distillation, or by liquefying coal. Hydrotreating the liquefied product,
It is then manufactured by removing light components by distillation. To explain in more detail, in the former case, coal tar, creosote oil, anthracene oil, etc. are used as raw materials, and a hydrogenation catalyst containing a sulfide of a metal of a group and/or group of the periodic table is used in a high-temperature, high-pressure hydrogen atmosphere. The hydrogenation reaction is carried out at
In particular, using a nickel-molybdenum sulfide or cobalt-molybdenum sulfide catalyst, the reaction temperature is 280~280°C.
360℃, reaction pressure 50-200Kg/ cm2G , hydrogen/raw material ratio
Conditions of 300 to 3000 volumes/volume and a liquid hourly space velocity of 0.5 to 2 volumes/volume are preferred. Further, during this hydrogenation, a method is preferably used in which 0.2 to 10% by weight of phenol and/or alkylphenol whose side chain alkyl group has a total number of carbon atoms of 1 to 3 is added. As the alkylphenols mentioned here, cresols, xylenols, methylethylphenols and propylphenols are preferably used. In the latter case, coal liquefied products include carbonization liquefaction, which involves heating coal to high temperatures and recovering the distilled tar components, solvent extraction liquefaction, which extracts coal with a solvent, and extraction of coal with a hydrogen-donating solvent. Extraction chemical decomposition liquefaction method that simultaneously decomposes
Those produced by the extraction hydrogenation and liquefaction method in which solvent extraction is carried out under the supply of high-pressure hydrogen gas, and the direct hydrogenation and liquefaction method in which hydrocracking of coal is carried out using a catalyst under the supply of high-pressure hydrogen gas are used. The conditions for hydrotreating this coal liquefied material are the same as in the former case.
Light oil components are removed from these oils by distillation to obtain distillation residual oil with a boiling point of 400°C or higher. At this time, vacuum distillation and steam distillation are used, and vacuum distillation is preferably used. These distillation residues
The components are analyzed by means such as NMR and gas claw mass spectrometry, and the mixture containing 60 wt % or more of an aromatic hydrocarbon having 4 or more rings and a partially hydrogenated compound thereof is used as (B) of the present invention. 60wt
If it is less than %, the initial carbonization modification property in the subsequent thermal reforming reaction will not be expressed satisfactorily. In addition, the aromatic compounds having 4 or more rings and the mixture of these partially hydrogenated compounds, which are the components of (B), are the aromatic compounds having 4 or more rings.
50 wt%, and preferably 80 to 50 wt% of a partially hydrogenated aromatic compound having four or more rings. For example, the proportion of partial hydride is 50wt%
In the case of less than
If it exceeds 80wt%, pitching will be slow. In any case, when the aromatic compound and the partially hydrogenated product are within the above-mentioned specific ranges, both the hydrogen donating property and the initial carbon modification property are most preferably exhibited. In the thermal reforming reaction, a mixture of distillation residual oil (A) obtained from the above-mentioned decant oil and aromatic heavy oil (B) is used as a raw material oil. The mixing ratio is 50 to 90 parts by weight of (A) and 50 to 10 parts by weight of (B). The mixing ratio of (B) is 10
If the amount is less than part by weight, it will be used in the subsequent thermal reforming reaction.
Since hydrogen donating properties and initial carbonization modification properties, which are the effects of (B), are hardly exhibited, high-quality carbon fibers cannot be produced from this thermal reforming reaction product. Especially during spinning, there are many yarn breakages and it is not possible to wind the yarn at high speed. Another drawback is that the strength and elastic modulus of the fiber after firing are low. If the mixing ratio of (B) exceeds 50 parts by weight, the amount of aromatic compounds with 4 or more rings and their partially hydrogenated products will be too large relative to the amount of the components of the decant oil, and in this case, the spinning temperature will be too high.
When the temperature drops below 300℃, the fibers fuse after winding.
In addition, since more defects are generated during the infusibility process, the strength and elastic modulus of the fiber after firing are lowered. Thermal reforming reaction is carried out using a continuous heating device or batch heating device under nitrogen gas aeration or in an inert atmosphere such as saturated steam of raw oil or reaction product oil at a reaction temperature of 400 to 470°C for a reaction time of 10. This is carried out by heat treatment while stirring under conditions of less than 1 hour. At this time, in order to shorten the thermal reforming reaction time, the gauge pressure is 0.5 to 5 kg/cm 2 , preferably 1 kg/cm 2 .
Reaction temperature 440-460 under low pressure of ~3Kg/ cm2
It is preferable to carry out the heat treatment under the conditions of 1 to 2 hours of reaction time and removing the generated light components and gas components without nitrogen aeration.
If the reaction temperature is less than 400°C, the progress of the thermal reforming reaction will be extremely slow, making it uneconomical. Also, the reaction temperature
If the temperature exceeds 470°C, the polycondensation reaction progresses significantly, causing a buildup of caulking on the wall of the reaction vessel, and furthermore, the spinnability of the resulting raw material pitch is poor.
In particular, thread breaks occur frequently. Furthermore, if the reaction time exceeds 10 hours, the hydrogen donating property of the partially hydride is lost, and the spinnability of the resulting raw material pitch is reduced. The properties of the thermal modification reaction product are 1 to 5 wt of quinoline insoluble matter.
%, and the toluene insoluble content is 10 to 30 wt%. In this thermal reforming reaction, the component (A) and the component (B) undergo a co-carbonization reaction to produce a component preferable as a raw material pitch for producing carbon fibers. The details of this co-carbonization reaction are not completely clear, but when the component (A) undergoes thermal decomposition and polycondensation reaction during the thermal reforming reaction, partial hydrogen in the component (B) The compound releases hydrogen and suppresses the excessive progress of the polycondensation reaction, while the aromatic compound having four or more rings, which is another component of (B), causes the polycondensation reaction. Therefore, while suppressing the production of polymeric substances, the thermal reforming reaction proceeds rapidly as a whole, and a pitch-like material with good flatness and excellent graphitization properties is produced. Especially 4
It is noteworthy that partially hydrogenated aromatic compounds with more than one ring change into the corresponding aromatic compounds with four or more rings after releasing hydrogen, so they have both hydrogen donating properties and initial carbon modification properties. This is why the present invention was first achieved by discovering a coexisting substance that has such an effect during a thermal reforming reaction. This effect is particularly large in partial hydrides with a nuclear hydration rate of 50% or less, and in partial hydrides with a nuclear hydration rate of over 50%, the effects on both hydrogen donating properties and initial carbon modification properties are small. Also 3
Partially hydrogenated aromatic compounds below the ring only have hydrogen-donating properties, are hardly pitched themselves, and do not have the above-mentioned initial carbonization modification properties. Furthermore, since these have a low boiling point, when the thermal reforming reaction is carried out at normal pressure, they will escape out of the system and have little effect. Furthermore, when pressurizing, high pressure is required, which reduces the economic efficiency of the device. In the present invention, if (A)(B) contains a fraction with an azeotropic point of less than 400°C, the yield will not only decrease, but also the cocarbonization modification property will decrease. It is necessary that it not be contained. The co-carbonization modification property (B) does not work well on any heavy oil. For example, even when similar thermal reforming reactions were carried out by mixing (B) with coal tar pitch or high-temperature steam cracking pitch of crude oil, good results could not be obtained. This is thought to be because the co-carbonization modification property of (B) is hardly expressed for pitches that are already extremely aromatic, such as coal tar pitch. According to the experimental studies conducted by the present inventors, the co-carbonization modification property of (B) was expressed best for distillation residual oil of decant oil at 400°C or higher. In the present invention, the thermal reforming reaction may be carried out in one stage, and the subsequent steps may include only the step of separating and removing insoluble substances and the step of distillation under reduced pressure. Separation and removal of insoluble substances is carried out using gravity, centrifugal force, etc. at a temperature of 380° C. or lower. The reason why the temperature was set at 380°C or less was to prevent the formation of optically anisotropic substances due to this heating. Alternatively, extraction using aromatic crude oil such as quinoline or anthracene oil is also possible. By separating and removing these insoluble substances, it is possible to remove substances that do not melt during spinning. The pitch-like material produced here has no optically anisotropic portion and is isotropic even when observed under a polarizing microscope. The components constituting mesophase have already been produced in the thermal reforming reaction, but they are thought to be observed isotropically because they are diluted by the light oil that is simultaneously produced by the thermal decomposition reaction in the thermal reforming process. When the light oil content is removed by vacuum distillation, the molecules that make up the mesophase that have already been generated in the thermal reforming reaction are able to be located close to each other, stacked together by van der Waals forces, and polarized light. Optical anisotropy appears under the microscope. It is also one of the features of the present invention that the meso phase is formed by a vacuum distillation process. The properties of pitchchi after vacuum distillation are quinoline insoluble content 5
It is preferable that the toluene insoluble content be 70 to 95 wt%, and the optical anisotropy content as determined by polarizing microscopy be 70% or more. In other words, the quinoline insoluble content is 30wt.
% or when the toluene insoluble content exceeds 95 wt%, the spinning temperature becomes high and the spinning properties are poor, such as frequent yarn breakage. Also, the quinoline insoluble content is 5wt.
If the toluene insoluble content is less than 70wt%, there will be many yarn breakages during spinning, and the fibers will fuse after spinning. Furthermore, if the optically anisotropic portion is less than 70%, there is a drawback that the strength and elastic modulus of the fiber after firing are low. Furthermore, the raw material pitch for producing carbon fiber produced by the method of the present invention has good spinnability, carbonization and graphitization properties. That is, it is possible to spin fibers with a diameter of 5 to 15 μm at a spinning temperature of 300 to 400° C. and a winding speed of 500 m/min, and there is little chance of yarn breakage.
Furthermore, since the spun pitch fibers have high strength, subsequent handling is easy. This pitch fiber is
Infusibility can be achieved by air oxidation at temperatures of 150 to 350°C, and no fusion of the fibers occurs. After carbonization treatment and graphitization treatment, the properties of strength, elastic modulus, and elongation are particularly excellent. As described above, the method described in the present invention represents a method for producing a raw material pitch for producing high-quality carbon fibers, and makes an extremely large contribution in an industrial sense. Next, the present invention will be explained in detail with reference to examples, but the present invention is not limited to the following examples unless the gist of the present invention is exceeded. Example 1 Feedstock oil mainly composed of vacuum gas oil from Middle East crude oil was catalytically cracked in a fluid catalytic cracker using a zeolite catalyst at a reaction temperature of 510°C, a pressure of 2.5 kg/cm 2 and a G catalyst/oil ratio of 10. The catalyst was removed from the resulting heavy product oil, and the resulting decant oil was distilled under reduced pressure to remove light components to obtain a distillation residual oil (hereinafter referred to as 1-A) with a boiling point of 400° C. or higher. The properties of 1-A are specific gravity (15/4℃) 1.12, residual coal 12.3wt%, and sulfur content 1.21wt.
It was %. In addition, heavy anthracene oil obtained by vacuum distillation of coal tar was reacted using a nickel sulfide-molybdenum catalyst at a reaction temperature of 340°C and a reaction pressure of 150 kg/cm 2 .
(G), Hydrogenation is carried out in a small continuous flow equipment under the condition of liquid hourly space velocity of 1.0 volume/volume, and the light components are removed from the resulting hydrogenated oil by vacuum distillation, and the 4-ring is heated to a boiling point of 400°C or higher. A distillation residual oil (hereinafter referred to as 1-B) containing 81 wt% of the above aromatic compounds and their partially hydrogenated products was obtained. Its properties are shown in Table 1. A mixture of 60 parts by weight of 1-A and 40 parts by weight of 1-B was heated at a reaction temperature of 460°C under a pressure of 1 kg/cm 2 G while stirring in a nitrogen atmosphere using a batch type thermal reformer.
The thermal reforming reaction was carried out under conditions of a reaction time of 1.5 hours.
The properties of the thermally modified product are shown in Table 2. From this, insoluble substances were separated and removed by quinoline extraction, and then light components were removed by vacuum distillation to obtain raw material pitch for carbon fibers. Its properties are shown in Table 3. When this pitch was melt-spun at a spinning temperature of 352°C using a spinning nozzle with a hole diameter of 0.4 mmφ, fibers with a diameter of 10 μ could be spun at a winding speed of 600 m/min without any yarn breakage occurring once in 5 minutes. It was hot. After making this pitch fiber infusible at 300℃ in an air atmosphere,
After carbonization treatment up to a temperature of 1000°C in a nitrogen gas atmosphere, graphitization treatment was performed up to a temperature of 2500°C in an argon atmosphere. The carbon fiber fired at 1000°C had a tensile strength of 20 t/cm 2 and the elastic modulus of 1800 t/cm 2 , and the graphitized fiber fired at 2500°C had a tensile strength of 28 t/cm 2 and an elastic modulus of 3000 t/cm 2 . Example 2 A mixture of 80 parts by weight of 1-A and 20 parts by weight of 1-B was thermally reformed using a batch type thermal reformer under conditions of a reaction temperature of 420°C and a reaction time of 7 hours while stirring under a nitrogen atmosphere at normal pressure. The reaction was carried out. The properties of the thermally modified product are shown in Table 2. This was heated to 360°C and allowed to stand to precipitate insoluble substances, and the insoluble substances were separated and removed. Thereafter, light components were removed by distillation under reduced pressure to obtain raw material pitch for carbon fibers. Its properties are shown in Table 3. When this pitch was melt-spun using a spinning nozzle with a hole diameter of 0.5 mmφ at a spinning temperature of 365°C,
At a winding speed of 500 m/min, it was possible to spin fibers with a diameter of 12 μm without any yarn breakage occurring once in 5 minutes. This pitch fiber was made infusible at 300°C in an air atmosphere, carbonized at a temperature of 1000°C in a nitrogen gas atmosphere, and then graphitized at a temperature of 2500°C in an argon atmosphere. Carbon fiber fired at 1000℃ has a tensile strength of 18t/cm 2 and an elastic modulus of 1550t/cm 2 .
Graphitized fiber fired at 2500℃ has a tensile strength of 26t/
cm 2 and elastic modulus of 2650t/cm 2 . Example 3 Boiling point 360 obtained by distilling coal tar under reduced pressure
Add 2.5wt of cresol to 97.5wt% of distillation residue above ℃
% added, using a nyl sulfide-molybdenum catalyst at a reaction temperature of 320℃ and a reaction pressure of 150Kg/cm 2
(G), Hydrogenation is carried out in a small continuous flow equipment under the condition of liquid hourly space velocity of 1.0 volume/volume, light components are removed from the resulting hydrogenated oil by vacuum distillation, and the 4-ring is heated to a boiling point of 400°C or higher. A distillation residual oil (hereinafter referred to as 3-B) containing 77.5 wt% of the above aromatic compounds and their partially hydrogenated compounds was obtained. The properties are shown in Table 1. A mixture of 1-70 parts by weight and 30 parts by weight of 3-B was stirred in a batch type thermal reformer under a nitrogen atmosphere at a pressure of 0.5 Kg/cm 2 G and a reaction temperature.
Thermal reforming reaction was carried out under the conditions of 440°C and reaction time of 3 hours. The properties of the thermally modified product are shown in Table 2. From this, insoluble substances were separated and removed by quinoline extraction, and then light components were removed by vacuum distillation to obtain raw material pitch for carbon fiber. Its properties are shown in Table 3. When this pitch was melt-spun using a spinning nozzle with a hole diameter of 0.5 mmφ at a spinning temperature of 338°C, the winding speed was 800°C.
It was possible to spin fibers with a diameter of 9 μm at a speed of m/min without any yarn breakage occurring once in 5 minutes. This pitch fiber was made infusible at 300°C in an air atmosphere, carbonized at a temperature of 100°C in a nitrogen gas atmosphere, and then graphitized at a temperature of 2500°C in an argon atmosphere. Carbon fiber fired at 1000℃ has tensile strength
21t/cm 2 and elastic modulus of 1650t/cm 2 , and graphitized fiber fired at 2500°C has a tensile strength of 31t/cm 2 and elastic modulus of
It was 3900t/ cm2 . Example 4 Pulverized Australian sub-bituminous coal of 100 mesh or less 1
Mix 3 parts by weight of tetralin with 3 parts by weight to form a slurry, fill it into an autoclave, and create an initial hydrogen pressure of 40Kg/cm 2
The liquefaction reaction was carried out at a reaction temperature of 415° C. and a reaction time of 1 hour while stirring. Liquefied coal with a boiling point of 350°C or higher obtained by separating unreacted substances and solid content such as ash from the reaction product by filtration, and then removing the solvent and light content by distillation.
A mixture of 97.5 wt% and 2.5 wt% of phenol was reacted using a nickel sulfide-molybdenum catalyst at a reaction temperature of 350°C, a reaction pressure of 150 Kg/cm 2 (G), and a liquid hourly space velocity.
Hydrogenation is carried out using a small continuous flow equipment under conditions of 1.0 volume/volume, and light components are removed from the resulting hydrogenated oil by vacuum distillation to produce aromatic compounds with 4 or more rings and their boiling points of 400°C or higher. A distillation residual oil (hereinafter referred to as 4-B) containing 73.2 wt% of partially hydrogenated products was obtained. The properties are shown in Table 1. 1-
A mixture of 75 parts by weight of A and 25 parts by weight of 4-B was subjected to a thermal reforming reaction using a batch type thermal reformer under conditions of a reaction temperature of 430° C. and a reaction time of 6 hours while stirring under a nitrogen atmosphere at normal pressure. This is heated to 360°C and allowed to settle, allowing the insoluble substances to settle. The insoluble substances are separated and removed using a decanting method, and the light components are removed using vacuum distillation to produce a raw material pitch for carbon fiber production. I got it. Its properties are shown in Table 3. When melt spinning was performed using this spinning nozzle with a pitch hole diameter of 0.5 mmφ at a spinning temperature of 372°C, 5
It was possible to spin fibers with a diameter of 13 μm without a single yarn breakage per minute. This pitch fiber was made infusible at 300°C in an air atmosphere, carbonized at a temperature of 1000°C in a nitrogen atmosphere, and then graphitized at a temperature of 2500°C in an argon atmosphere. Carbon fiber fired at 1000℃ has a tensile strength of 18t/cm 2 and an elastic modulus of
The graphitized fibers fired at 2500°C had a tensile strength of 25 t/cm 2 and an elastic modulus of 2750 t/cm 2 . Comparative Example 1-A was subjected to thermal reforming reaction, separation and removal of insoluble substances, and vacuum distillation under the same conditions as described in Example 1 to obtain pitch. The properties of the thermally modified product and pitch are shown in Tables 2 and 3, respectively.
This pitch was melt-spun under the same conditions as in Example 1, but there were too many yarn breakages and spinning could not be completed. Also, when the winding speed was reduced to 200m/min, the diameter was 23μ.
The fiber was spun. This pitch fiber was subjected to infusible, carbonized and graphitized treatments under the same conditions as in Example 1. Carbon fiber fired at 1000℃ has tensile strength
13t/cm 2 and elastic modulus of 1400t/cm 2 , and the graphitized fiber fired at 2500°C has a tensile strength of 15t/cm 2 and an elastic modulus of
It was 2250t/ cm2 . Comparative Examples 2, 3, and 4 1-B, 3-B, and 4-B were individually subjected to thermal reforming reaction, separation and removal of insoluble substances, and vacuum distillation under the same conditions as described in Example 1. I got it. The properties of the thermally modified product and pitch are shown in Tables 2 and 3, respectively. This pitch was subjected to melt spinning under the same conditions as in Example 1, but in all cases there were too many yarn breakages and spinning could not be completed.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A)石油を原料油として流動接触分解装置より
副生するデカント油から蒸留によつて軽質留分を
除去して得た沸点400℃以上の蒸留残油50〜90重
量部、および(B)4環以上の芳香族化合物およびこ
れらの部分水素化物の混合物を60wt%以上含有
する芳香族系重質油50〜10重量部、とからなる混
合物を不活性雰囲気下で反応温度400〜470℃、反
応時間1〜10時間の熱改質反応を行い、次いでこ
の反応生成物より不溶解性物質を分離除去して光
学的等方性ピツチを得、ついで減圧蒸留によつて
軽質留分を除去することにより光学的異方性部分
が70%以上のピツチを得ることを特徴とする高強
度、高弾性率炭素繊維用原料ピツチの製造方法。 2 (B)の成分である4環以上の芳香族化合物およ
びこれらの部分水素化物の混合物が、4環以上の
芳香族化合物が20〜50wt%とこれらの部分水素
化物が80〜50wt%とから成ることを特徴とする
特許請求の範囲第1項記載の高強度、高弾性率炭
素繊維用原料ピツチの製造方法。 3 (B)の成分である4環以上の芳香族化合物の部
分水素化物が核水素化率50%以下の部分水素化物
70wt%以上から成ることを特徴とする特許請求
の範囲第1項記載の高強度高弾性率炭素繊維用原
料ピツチの製造方法。 4 熱改質反応をゲージ圧0.5〜5Kg/cm2の加圧
下、反応温度440〜470℃、反応時間1〜2時間の
条件で、生成する軽質留分ならびにガス成分を抜
き出しながら行うことを特徴とする特許請求の範
囲第1項記載の高強度、高弾性率炭素繊維用原料
ピツチの製造方法。 5 熱改質反応生成物の性状がキノリン不溶分1
〜5wt%かつトルエン不溶分10〜30wt%であり、
不溶解性物質を分離除去した光学性等方性ピツチ
の性状がキノリン不溶分1wt%以下であり、減圧
蒸留後のピツチの性状がキノリン不溶分5〜
30wt%かつトルエン不溶分70〜95wt%であるこ
とを特徴とする特許請求の範囲第1項記載の高強
度、高弾性率炭素繊維用原料ピツチの製造方法。
[Scope of Claims] 1 (A) Distillation residual oil 50-90 with a boiling point of 400°C or higher obtained by removing light fractions by distillation from decant oil produced as a by-product from a fluid catalytic cracker using petroleum as a feedstock. and (B) 50 to 10 parts by weight of an aromatic heavy oil containing 60 wt% or more of a mixture of aromatic compounds with 4 or more rings and partially hydrogenated products under an inert atmosphere. A thermal reforming reaction is carried out at a reaction temperature of 400 to 470°C for a reaction time of 1 to 10 hours, and then insoluble substances are separated and removed from the reaction product to obtain an optically isotropic pitch, which is then distilled under reduced pressure. A method for producing a raw material pitch for high-strength, high-modulus carbon fiber, characterized in that a pitch with an optically anisotropic portion of 70% or more is obtained by removing light fractions. 2. The mixture of aromatic compounds with 4 or more rings and their partially hydrogenated compounds, which are the components of (B), consists of 20 to 50 wt% of the aromatic compounds with 4 or more rings and 80 to 50 wt% of their partially hydrides. A method for producing a raw material pitch for high-strength, high-modulus carbon fiber according to claim 1, characterized in that: 3 Partial hydrides of aromatic compounds with 4 or more rings, which are components of (B), have a nuclear hydrogenation rate of 50% or less
A method for producing a raw material pitch for high-strength, high-modulus carbon fibers according to claim 1, characterized in that the pitch is comprised of 70 wt% or more. 4. Thermal reforming reaction is carried out under the conditions of pressurization of 0.5 to 5 kg/cm 2 gauge pressure, reaction temperature of 440 to 470°C, and reaction time of 1 to 2 hours, while extracting the produced light fraction and gas components. A method for producing a raw material pitch for high-strength, high-modulus carbon fiber according to claim 1. 5 The property of the thermal modification reaction product is quinoline insoluble content 1
~5wt% and toluene insoluble content of 10~30wt%,
The properties of the optically isotropic pitch after separating and removing insoluble substances are 1 wt% or less of quinoline insolubles, and the properties of the pitch after vacuum distillation are 5 to 5% of quinoline insolubles.
30 wt% and a toluene insoluble content of 70 to 95 wt%, the method for producing a raw material pitch for high strength, high elastic modulus carbon fiber according to claim 1.
JP6233183A 1983-04-11 1983-04-11 Preparation of raw material pitch for carbon fiber having high strength and elastic modulus Granted JPS59189188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6233183A JPS59189188A (en) 1983-04-11 1983-04-11 Preparation of raw material pitch for carbon fiber having high strength and elastic modulus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6233183A JPS59189188A (en) 1983-04-11 1983-04-11 Preparation of raw material pitch for carbon fiber having high strength and elastic modulus

Publications (2)

Publication Number Publication Date
JPS59189188A JPS59189188A (en) 1984-10-26
JPH0254395B2 true JPH0254395B2 (en) 1990-11-21

Family

ID=13197041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6233183A Granted JPS59189188A (en) 1983-04-11 1983-04-11 Preparation of raw material pitch for carbon fiber having high strength and elastic modulus

Country Status (1)

Country Link
JP (1) JPS59189188A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949212B (en) * 2018-08-01 2020-11-13 国家能源投资集团有限责任公司 Preparation method and preparation device of coal liquefied asphalt and coal liquefied asphalt

Also Published As

Publication number Publication date
JPS59189188A (en) 1984-10-26

Similar Documents

Publication Publication Date Title
US4184942A (en) Neomesophase formation
EP0054437B1 (en) Carbonaceous pitch with dormant anisotropic components, process for preparation thereof, and use thereof to make carbon fibres
KR860001156B1 (en) A process for the production of carbon fibers
JPH048472B2 (en)
CA1197205A (en) Aromatic pitch derived from a middle fraction of a cat cracker bottom
CN111575053B (en) Method for preparing mesophase pitch by size exclusion separation-thermal polycondensation and application thereof
KR20150058009A (en) A method for isotropic pitch for manufacturing carbon fiber
CA1181707A (en) Starting pitches for carbon fibers
CN112625722B (en) Method for preparing spinnable asphalt by combining raw materials and application of spinnable asphalt in preparation of carbon fibers
JPS59216921A (en) Manufacture of carbon fiber
EP0063052B1 (en) Starting pitches for carbon fibers
US4591424A (en) Method of preparing carbonaceous pitch
JP2014227545A (en) Method of producing pitch for carbon fiber
JPS59196390A (en) Preparation of pitch for carbon fiber
JPH0150272B2 (en)
JPH05132675A (en) Production of pitch
JPH0254395B2 (en)
US4579645A (en) Starting pitch for carbon fibers
JPH0148312B2 (en)
JPH0148314B2 (en)
JPS59221384A (en) Production of raw material pitch for carbon fiber
JP2630466B2 (en) Manufacturing method of carbon material
JPS59128208A (en) Manufacture of starting material for manufacturing carbonaceous material
JPH0144752B2 (en)
JPH01247487A (en) Production of mesophase pitch