JPS58196293A - Preparation of optical anisotropic pitch and raw material for preparing it - Google Patents

Preparation of optical anisotropic pitch and raw material for preparing it

Info

Publication number
JPS58196293A
JPS58196293A JP7843082A JP7843082A JPS58196293A JP S58196293 A JPS58196293 A JP S58196293A JP 7843082 A JP7843082 A JP 7843082A JP 7843082 A JP7843082 A JP 7843082A JP S58196293 A JPS58196293 A JP S58196293A
Authority
JP
Japan
Prior art keywords
optically anisotropic
anisotropic pitch
pitch
producing
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7843082A
Other languages
Japanese (ja)
Other versions
JPH0245673B2 (en
Inventor
Takayuki Izumi
泉 孝幸
Tsutomu Naito
勉 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP7843082A priority Critical patent/JPS58196293A/en
Publication of JPS58196293A publication Critical patent/JPS58196293A/en
Publication of JPH0245673B2 publication Critical patent/JPH0245673B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain efficiently and inexpensively optical anisotropic pitch having a low softening point to prepare carbon products, by adding a specific hydrocarbon fraction(mixture) to residual oil of a catalytic cracking device, subjecting the blend to polycondensation through thermal decomposition. CONSTITUTION:(A) A residual oil of a catalytic cracking device is blended with (B) about 15-50wt% hydrocarbon fraction(mixture) having >=0.4 aromatic carbon fraction fa and about 200-400 deg.C boiling point to give a raw material, which is subjected to polycondensation through thermal decomposition, to give the desired optical anisotropic pitch. The raw material has preferably about 200 deg.C initial boiling point, 15-40% running point of about 400 deg.C and 90% running point of about <=540 deg.C.

Description

【発明の詳細な説明】 は、接触分解装置残渣油から、炭素製品を製造するため
の低軟化点を有する光学的異方性ピッチを効率よく製造
するための製#る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for efficiently producing optically anisotropic pitch having a low softening point for producing carbon products from catalytic cracker residual oil.

芳香族系、ナフチ/系、並びにバラフィン系炭化水素を
含む軽油留分を、より軽質でより有用な生成物へ転化さ
せるために、石油及び石油化学工業においては、従来か
ら、一般に接触分解反応を用いる方法がとられている。
Catalytic cracking reactions have traditionally been commonly used in the petroleum and petrochemical industries to convert gas oil fractions containing aromatic, naphthi/paraffinic, and paraffinic hydrocarbons into lighter and more useful products. The method of using

これにより、種々の重要な軽質留分が得られる一方、接
触分解装置から副生ずる残渣油については、十分一な利
用がなされておらず、従って、該残渣油の価値は限られ
たものであった。このように、接触分解装置残渣油が安
価であることに着目して、近年これを、有機物の熱分解
によって製造される種々の高性能炭素製品、例えば炭素
繊維、炭素−フ4ルム、炭素リボン、炭素シート等のだ
めの原料として使用することが試みられている。
Although various important light fractions can be obtained through this process, the residual oil produced as a by-product from the catalytic cracking unit is not fully utilized, and therefore, the value of the residual oil is limited. Ta. Taking note of the low cost of catalytic cracker residual oil, in recent years it has been used to produce various high-performance carbon products produced by thermal decomposition of organic materials, such as carbon fibers, carbon films, and carbon ribbons. Attempts have been made to use it as a raw material for materials such as carbon sheets.

特に、高強度高弾性率を有する高性能炭素繊維は、高性
能複合材料の素材として極めて優れており、その高い製
造コストにもかかわらず、その需要は増大の一途をたど
っているところから、その製造コスト低減のための安価
な原料及び製造方法の開発が重要である。このような観
点から、近年開発されている安価な炭素質ピッチからの
炭素繊維の製造が注目の的であり、本発明もこの分野に
属するものである。
In particular, high-performance carbon fiber, which has high strength and high modulus, is extremely excellent as a material for high-performance composite materials, and despite its high manufacturing cost, its demand continues to increase. It is important to develop inexpensive raw materials and manufacturing methods to reduce manufacturing costs. From this point of view, the production of carbon fibers from inexpensive carbonaceous pitch, which has been developed in recent years, has been attracting attention, and the present invention also belongs to this field.

従来、多くの炭素質ピッチやタールは、熱分解重縮合反
応により、光学的異方性相へ転化され、・液晶物質とな
り、このように転化した光学的異方性ピッチから製造さ
れる炭素繊維社、高モジュラス、高強度であシ、極めて
高性能の炭素繊維であることが知られている(米国特許
第4005183号明細書)。これに伴い、従来から、
高性能炭素繊維製造のために必要な光学的異方性ピッチ
の製造方法に関して、多くの研究がガされ、既にいくつ
かの方法が開示されている(例えば、特公昭49−86
34号公報、特開昭56−89635号公報、50−1
18028号公報、54−55625号公報、56−1
67788号公鴨)。持分しながらこれら従来法は、い
ずれの場合も、高性能炭素製品、特に高性能炭素繊維を
製造するのに適した、均質で低軟化点を有する光学的異
方性ピッチを、低コストで大量にぐ−且つ安定的に提供
することができないという欠点を有していた。
Conventionally, many carbonaceous pitches and tars are converted into optically anisotropic phases through pyrolysis polycondensation reactions, resulting in liquid crystal substances, and carbon fibers manufactured from optically anisotropic pitches thus converted. It is known that carbon fiber has high modulus, high strength, and extremely high performance (US Pat. No. 4,005,183). Along with this, traditionally,
Many studies have been conducted on methods for producing optically anisotropic pitch, which is necessary for producing high-performance carbon fibers, and some methods have already been disclosed (for example, Japanese Patent Publication No. 49-86
No. 34, JP-A-56-89635, 50-1
18028 Publication, 54-55625 Publication, 56-1
No. 67788 Kokamo). In each case, these conventional methods produce homogeneous, low softening point, optically anisotropic pitch, suitable for producing high-performance carbon products, especially high-performance carbon fibers, at low cost and in large quantities. It had the disadvantage that it could not be provided in a stable manner.

本発明者は、従来のかかる欠点をなくすべく、光学的異
方性ピッチの組成について種々の検討を行った結果、光
学的異方性ピッチは、縮合多項芳香族の積層構造の発達
した、分子配向性のよいピッチであるが、実際には、種
々の屯のが混在し、そのうち、軟化点が低く、均質な炭
素繊維の製造に適したものは、特定の化学構造と組成を
有することを見出した。即ち、光学的異方性ピッチにお
いて、n−へブタン可溶成分(以下「o」成分と・  
t いう)、及びn−へブタン不溶且つベンゼン可溶成分(
以下rAJ成分という)の構造や分子量のみならず、こ
れらの含有量が、光学的異方性ピッチの全体としての性
状に極めて重要であること、艶に、該O成分及びA成分
以外の部分についてはベンゼン不溶であるがキノリン可
溶成分(以下「B」成分という)と、キノリンネ溶成分
(以下「C」成分という)を特定することにより、rO
J[AJ rBJ rcJ各成分をバランスさせ、高性
能炭素材料を製造するための光学的異方性ピッチとして
、実質的に均質で、極めて優れた性状を有するものとす
ることができることを見出した(特願昭55−1.62
972号)。更に、光学的異方性ピッチの特性と、原料
の特性との関係について研究を進め九゛結果、良い原料
であるためには、芳香族油分及びレジy分の存在が、重
要であることが判明した(特願昭56−11124号)
Uこれらの知見に基づき、低:I躯トの接触分解装置残
渣油を原料として優れた性状を有する光学的異方性ピッ
チを効率よく製造するためには、当該残渣油中に、低分
子量の芳香族成分が適当な量で含有されていることが好
ましいことを゛見出し、本発明に到達したものである。
The present inventor conducted various studies on the composition of optically anisotropic pitch in order to eliminate such drawbacks of the conventional technology. Pitch has good orientation, but in reality, a variety of pitches exist, and among them, those with a low softening point and suitable for producing homogeneous carbon fibers have a specific chemical structure and composition. I found it. That is, in the optically anisotropic pitch, the n-hebutane soluble component (hereinafter referred to as "o" component)
t), and n-hebutane-insoluble and benzene-soluble components (
It is important to note that not only the structure and molecular weight of the rAJ component (hereinafter referred to as rAJ component) but also their content are extremely important for the overall properties of the optically anisotropic pitch. is insoluble in benzene, but by identifying the quinoline-soluble component (hereinafter referred to as "B" component) and the quinoline-soluble component (hereinafter referred to as "C" component),
J[AJ rBJ rcJ It has been discovered that by balancing each component, it is possible to obtain a pitch that is substantially homogeneous and has extremely excellent properties as an optically anisotropic pitch for producing high-performance carbon materials ( Patent application 1977-1.62
No. 972). Furthermore, we conducted research on the relationship between the characteristics of optically anisotropic pitch and the characteristics of the raw material.9 As a result, we found that the presence of aromatic oil and resin content is important for a good raw material. It turned out (Special Application No. 11124/1982)
Based on these findings, in order to efficiently produce optically anisotropic pitch with excellent properties using the residual oil from a catalytic cracker as a raw material, it is necessary to incorporate a low molecular weight into the residual oil. The present invention was achieved by discovering that it is preferable to contain an appropriate amount of aromatic components.

従って、本発明の第一の目的は、炭素繊維等の高性能炭
素製品を製造するに必要な優れた性状を有する光学的異
方性ピッチを低コストで効率よく製造するための原料を
提供することである。本発明の第二の目的は、接触分解
装置残渣・油から、高付加価値の炭素製品を高効率で製
造するだめの・前駆物質である優れた性状を有する、光
学的異方性ピッチを製造するだめの製造方法を提供する
ことである。更に本発明の第三の目的は、接触分解装置
残渣油を用いて、高付加価値の炭素製品を高効率で製造
するだめの、前駆物質である優れた性状を有する光学的
r力性ピッチを連続的に製造するだめの方法を提(、l
Lすることである。
Therefore, the first object of the present invention is to provide a raw material for efficiently producing optically anisotropic pitch having excellent properties necessary for producing high-performance carbon products such as carbon fibers at low cost. That's true. The second purpose of the present invention is to produce optically anisotropic pitch, which has excellent properties and is a precursor for producing high value-added carbon products with high efficiency, from catalytic cracker residue/oil. An object of the present invention is to provide a method for producing sudame. Furthermore, the third object of the present invention is to produce optically strong pitch having excellent properties as a precursor for producing high value-added carbon products with high efficiency using catalytic cracker residual oil. We proposed a method for continuous production (, l
It is to do L.

即ち、本発明の第1は、「接触分解装置残渣油に芳香族
炭素分率faが0.4以上であって、約2006C以上
で約400’C以下の沸点を有する炭化水素留分又はこ
れらの混合物を、含有せしめたことを特徴とする光学的
異方性ピッチの原物であ一す、第2の発明は、[芳香族
炭素分率faが0.4以上であって、約200’C以上
で約4006C以下の沸点を有する縦比水素留分又はこ
れらの混合物を含有せしめた、接触分解装置の残渣油を
原料とし、熱分解重縮合反応をさせることを特徴とする
光学的異方性ピッチの製造方自である。
That is, the first aspect of the present invention is to provide ``catalytic cracker residual oil with an aromatic carbon fraction fa of 0.4 or more and a hydrocarbon fraction having a boiling point of about 2006C or more and about 400'C or less, or these fractions. The second invention is an original optically anisotropic pitch characterized by containing a mixture of An optical system characterized in that the residual oil of a catalytic cracking unit containing an aspect ratio hydrogen fraction having a boiling point of 4006C or more and about 4006C or less, or a mixture thereof, is used as a raw material and subjected to a pyrolysis polycondensation reaction. This is how the directional pitch is manufactured.

本発明で、接触分解とは、溶油留分、軽油留分その他の
重質油留分、特に沸点が約200’C〜約600’Cの
間にある直留軽油等を、触媒を用いてより軽質で有用な
生成物へ分解転化せしめることをいい、接触分解装置残
渣油とは、接触分解法により生成した、沸点が約400
℃以上の炭化水素成分を主成分とする残渣油をいう。こ
の接触分解装置残渣油には、接触分解装置から取シ出し
た後の蒸留操作の条件により、もとの原料油よシ沸点の
低い成分が含まれる・こともあシ、400°C以上の沸
点を有する成分のみの場合もある。又、一般に接触分解
装置残渣油は、約1000以上の分子量の成分をわずか
しか含有しないが、このような成分を50重量−以上含
有する場合は、これを除去することが好ましい。更に、
゛接触分解装置残渣油には、分解触媒の微粉末、微量の
固形物が含有されるが、、0,01重量−以下になるよ
うに除去することが好ましい。
In the present invention, catalytic cracking refers to catalytic cracking of soluble oil fractions, gas oil fractions, and other heavy oil fractions, especially straight-run gas oils with boiling points between about 200'C and about 600'C, using a catalyst. Catalytic cracker residual oil refers to oil produced by catalytic cracking with a boiling point of about 400.
It refers to residual oil whose main component is hydrocarbon components with a temperature of ℃ or higher. Due to the conditions of the distillation operation after removal from the catalytic cracker, this catalytic cracker residue oil contains components with a lower boiling point than the original feedstock oil. In some cases, there are only components that have a boiling point. Generally, catalytic cracker residue oil contains only a small amount of components having a molecular weight of about 1,000 or more, but if it contains 50 or more by weight of such components, it is preferable to remove them. Furthermore,
Although the residual oil from the catalytic cracking apparatus contains fine powder of the cracking catalyst and a trace amount of solid matter, it is preferable to remove them to a level of 0.01 weight or less.

特開昭56−167788号公報には、上記接触分解装
置残渣油から約400’C以下の沸点を有する留分を除
去した後熱処理することを特徴とする光学的異方性ピッ
チの製造方法が開示されている。即ち、この発明では、
接触分解装置残渣油中に含まれる約400’C以下の留
分は存在しない方が好ましいのでちる。しかるに本発明
における接触分解装置残渣油中には、上記400’C以
下の留分の存在がむしろ好ましく、これをわざわざ留去
する工程は、全く不要である。特開昭56−16778
8号公報に開示された発明と、本発明の場合で、このよ
うな顕著な相異を生じたのは、正に本発明が、勃願昭5
5−162972号及び特願昭56−11124号に開
示された発明において得られた知yに基づいてなされた
ものであるからに他ならない。即ち、特開昭56−16
7788号公報により開示された方法は、着想を異にし
、rOJ、rAJ、「B」、「C」各成分の・(ランス
とは無関係に1溶剤抽出で低分子量物を極力除去するこ
とにより得られる比較的高分子量の光学あ異方性ピッチ
を多量に含む、光学的異方性ピッチの製造方法として適
していると解−されるのに対し、本発明は、「0」、「
A」、「B」、「C」各成分のバランスを最も重視する
ために両発明には、根本的な差異があるからである。従
って、特開昭56−167788号公報の方法の場合に
は、生成した光中的異方性ピッチには、高軟化点成分が
含まれ易く、これを溶剤により除去する煩雑な工程が必
要となるのに対し、本発明の場合には、かかる煩雑な工
程も全く必要とせず、全製造−L、 a ハNめて簡1
゛略化される。本発明において、約2006C以上で約
400℃以下の沸点を有する留分には、低分子の芳香族
炭化水素が多量に含まれており、これらの存在は、短時
間の反応で上記「0」、FA」、r、 B J、rCJ
の)(ランスを好オしいものにし、生成物である光学的
異方性ピッチの配向性、均質性を保ちながら、軟化点を
低減させる働きを有する。これは、光学的異方性ピッチ
の配向性、均質性(あるいは相溶性)、及び軟化点とピ
ッチの分子構造との間に因果関係力τあることに基づく
ものである。
JP-A-56-167788 discloses a method for producing optically anisotropic pitch, which comprises removing a fraction having a boiling point of about 400'C or less from the catalytic cracker residual oil and then heat-treating it. Disclosed. That is, in this invention,
It is preferred that the fraction below about 400'C contained in the catalytic cracker residual oil is not present. However, in the catalytic cracker residual oil in the present invention, the presence of the above-mentioned fraction of 400'C or less is rather preferable, and the step of taking the trouble of distilling it off is completely unnecessary. Japanese Patent Publication No. 56-16778
The reason why there is such a remarkable difference between the invention disclosed in Publication No. 8 and the present invention is precisely because the present invention
This is because the invention was made based on the knowledge obtained in the inventions disclosed in No. 5-162972 and Japanese Patent Application No. 11124/1982. That is, JP-A-56-16
The method disclosed in Publication No. 7788 is based on a different idea, and the method of rOJ, rAJ, "B", and "C" components is obtained by removing as much of the low molecular weight substances as possible with one solvent extraction regardless of the lance. However, the present invention is suitable as a method for producing optically anisotropic pitch containing a large amount of relatively high molecular weight optically anisotropic pitch.
This is because there is a fundamental difference between the two inventions because the balance of each component "A", "B", and "C" is most important. Therefore, in the case of the method of JP-A-56-167788, the optically anisotropic pitch produced tends to contain components with high softening points, and a complicated process of removing them with a solvent is required. On the other hand, in the case of the present invention, such complicated steps are not required at all, and the entire manufacturing process is extremely simple.
゛It is abbreviated. In the present invention, the fraction having a boiling point of about 2006C or more and about 400C or less contains a large amount of low-molecular aromatic hydrocarbons, and their presence can be reduced to the above "0" by a short reaction. ,FA'',r,B J,rCJ
It has the function of reducing the softening point of the optically anisotropic pitch while maintaining the orientation and homogeneity of the optically anisotropic pitch. This is based on the fact that there is a causal force τ between the orientation, homogeneity (or compatibility), and softening point and the molecular structure of the pitch.

まず、光学的異方性ピッチの配向性は、分子の平面構造
及び、ある温度での液体流動性に関係t;ある。即ち、
ピッチ分子の平面構造性力声十分大きく、且つ、溶融紡
糸のとき、繊維軸方向に分子の=y面が再配列するため
に必要な十分に大きい液体流動性を持つことう;、高配
向性ピッチのだめの必要条件である。こ二で、分子の平
面構造性は、縮合多環芳香族の大へさ、ナフテン環の数
、側鎖の数と長さ等により誂まるため、分子中に含まれ
る芳香族構造の炭素+1.了−の全炭素原子・に対する
比率であるfaによつ−t jf価すること力;できる
。本発明におけるfaIl′1、赤外線吸収スペクトル
の泪1)定結朱から、加藤の方法(燃料協会誌55,2
44(1976))によって計算したが、一般に、fa
は縮合環芳香族が大きいほど、ナフテン環の数が少ない
ほど、ノ2ラフイ/側鎖の数力;少ない#1ど、又、側
鎖の長さが短い#1どfaは大きくなシ一般的には、f
aが大きい赤など、分子の平面構造性が大きいことを意
味する。このこと力・ら、原料 。
First, the orientation of the optically anisotropic pitch is related to the planar structure of the molecules and the fluidity of the liquid at a certain temperature. That is,
The planar structure of the pitch molecules is sufficiently large, and the liquid fluidity is sufficiently large to rearrange the =y plane of the molecules in the fiber axis direction during melt spinning; high orientation. This is a necessary condition for pitch damage. The planar structure of the molecule is determined by the size of the fused polycyclic aromatic, the number of naphthene rings, the number and length of side chains, etc. .. It is possible to calculate the value of -tjf by fa, which is the ratio of total carbon atoms to total carbon atoms. faIl'1 in the present invention, infrared absorption spectrum tears 1) From the fixed result, Kato's method (Fuel Association Journal 55, 2
44 (1976)), but in general, fa
In general, the larger the fused ring aromatic group, the fewer the number of naphthene rings, the smaller the number of side chains; Specifically, f
Red with a large a means that the molecule has a large planar structure. This power is raw material.

中に芳香族炭化水素が多く含まれることカニ、製品であ
る光学的異方性ピッチ分子の平面構造性をあげ、好まし
いことが理解される。分子の平面構造性が良くなれば、
光学的異方性ピッチの^己1句性力;大きくなり、紡糸
時に、分子が繊維軸方向に配夕1jし易くなるため、高
性能の炭素繊維を製造することが、容易とな・る。従っ
て、過度の反応により、必要以上に、光学的異方性ピッ
チ分子の分子量を大きくして、光学的異方性相の含有率
及び、その配向性を上げる必要はない。即ち、光学的異
方性ピッチの分子量を下げても、十分、炭素繊維の性能
は、維持されるのみならず、紡糸し易いことによるメリ
ットが大となる。このことは、原料中に比較的低分子量
の芳香族炭化水素を多く含ませることが、光学的異方性
ピッチ分子の平面構造性を上けると同時に、平均分子量
を減少させるために光学的異方性ピッチの軟化点を・下
げる結果を導く“ ことを意味し、従って、反応を十分
に行って、光学的異方性ピッチの均質性を高めることも
できる。
It is understood that it is preferable that a large amount of aromatic hydrocarbons be contained, as this increases the planar structure of the optically anisotropic pitch molecule that is the product. If the planar structure of the molecule improves,
As the optical anisotropic pitch becomes larger, it becomes easier for molecules to align in the fiber axis direction during spinning, making it easier to produce high-performance carbon fibers. . Therefore, there is no need to increase the molecular weight of the optically anisotropic pitch molecules more than necessary due to excessive reaction to increase the content of the optically anisotropic phase and its orientation. That is, even if the molecular weight of the optically anisotropic pitch is lowered, the performance of the carbon fiber is not only sufficiently maintained, but also the benefits of ease of spinning become greater. This means that containing a large amount of relatively low molecular weight aromatic hydrocarbons in the raw material increases the planar structure of the optically anisotropic pitch molecules and at the same time reduces the average molecular weight, thereby increasing the optical anisotropy. This means "leading to the result of lowering the softening point of the optically anisotropic pitch," and therefore, it is also possible to sufficiently carry out the reaction and increase the homogeneity of the optically anisotropic pitch.

これが、本発明において、接触分解装置残渣油に積極的
に、faが0.4以上で、沸点力X約2000C以上で
約4006C以下の炭化水素留分を含有せしめる理由で
ある。約2006C以上で約400’C以下の沸点を有
する留分が多すぎても、「0」、「A」、「B」、「C
」各成分の・(ランスをとることが困難となる。従って
、約2006C以上で約4006C以下の留分は、約’
13重量−〜約50重量%、好ましくは、約15重量−
〜約40重量%含有されていることが好ましい。かかる
含有針の調整は、これら留分の多い接触分解装置残渣油
から、これら留分を留出するか、又は、これら留分の含
有量の少ない接触分解装置残渣油中にこれら留分を追加
することにより、容易に行なうことができる。当該留分
としては、接触分解装置からの分解軽油留分のほか、熱
分解装置、例えば、ナフサ、水蒸気分解装置から得られ
る分解軽油留分及び、石炭の液化装置からの分解軽油−
を使用することができる。又、分子量が小さい低沸点の
膨化水素成分は、熱重縮合反応が遅く、最終的なピッチ
の収率を低下させる。このような現象を総合的に勘案し
、本発明の実施においては、使用する炭化水素留分の沸
点及びfaを特定したものである。
This is why, in the present invention, the catalytic cracker residual oil is actively made to contain a hydrocarbon fraction with an fa of 0.4 or more and a boiling point X of about 2000C or more and about 4006C or less. Even if there are too many fractions with boiling points above about 2006C and below about 400'C, "0", "A", "B", "C
It becomes difficult to take a lance of each component. Therefore, the fraction of about 2006C or more and about 4006C or less is about
13% by weight - about 50% by weight, preferably about 15% by weight
The content is preferably about 40% by weight. To adjust the content needle, these fractions are distilled from the catalytic cracker residual oil containing a large amount of these fractions, or these fractions are added to the catalytic cracker residual oil that contains a small amount of these fractions. This can be easily done by doing this. The fractions include cracked gas oil fractions from catalytic crackers, cracked gas oil fractions obtained from thermal crackers, such as naphtha and steam crackers, and cracked gas oils from coal liquefaction equipment.
can be used. In addition, the swelling hydrogen component having a small molecular weight and a low boiling point undergoes a slow thermal polycondensation reaction, reducing the final yield of pitch. Taking such phenomena into consideration comprehensively, the boiling point and fa of the hydrocarbon fraction to be used are specified in the implementation of the present invention.

このようにして、調整された原料の実施態様としては、
faが0.4以上であり、初留点力;約200°C以上
、15重量−〜40重量%の留出点が約400’Cであ
り、且つ、90重量%留出点75;約54′0°C以下
のものである。90重量%留出点が約540’C以上に
も上昇するも′のは、著しく分子量の高い成分を含み、
生成ピッチの軟化点を異常に高くするので好ましくない
In this way, embodiments of the prepared raw materials include:
fa is 0.4 or more, the initial boiling point force is about 200°C or more, the distillation point of 15% to 40% by weight is about 400'C, and the distillation point of 90% by weight is 75; 54'0°C or less. The reason why the 90% distillation point increases to more than about 540'C is because it contains a component with a significantly high molecular weight.
This is not preferable because it makes the softening point of the generated pitch abnormally high.

このようにして得られた所定の原料をITI ′、 :
 :p、41t、した光学的異方性ピッチは、その光学
的異方Pt相の含有率が90体積チ〜100体積チと高
いにもかかわらず、軟化点は低く、約230°C−1*
320°Cであり、炭−製品の製造に適している。
The predetermined raw material obtained in this way is ITI':
:p, 41t, the optically anisotropic pitch has a low softening point of about 230°C-1, although the optically anisotropic Pt phase content is as high as 90 to 100 volume parts. *
320°C, suitable for producing charcoal products.

特に、溶融紡糸によシ炭素繊維を製造する場合、紡糸温
度を低くすることができ、且つ、紡糸性力;良好で、高
性能の炭素繊維の製造に極めて好都合である。
In particular, when carbon fibers are produced by melt spinning, the spinning temperature can be lowered, and the spinning temperature is good, which is extremely convenient for producing high-performance carbon fibers.

本発明の原料を用いた場合には、い力・なる製造方法に
より製造した光学的異方性ピンチも、その「0」、「A
」、「B」、「C」成分の・くランスは良好で、低軟化
点のもの力I得られる。8pち、例えば、塩化アルミニ
ウム等の触媒を用いる方法でもよく、又、触媒を用いな
い熱分解重縮合反応及び、必要な場合にはそれに続く溶
存1抽出法によってもよく、更に、反応に際しては、必
要に応じ撹拌し千も、不活性ガスを・くプリングさせて
もよく、あるいは、加圧下に、あるいは減圧下に、反に
乙を行なわせることもできる。ここで、熱分解重縮合反
応とは、原料中の炭化水素の熱分解反応と重縮イi反応
が、ともに主反応として並列的に進行し、光学的異方性
ピンチを生7成する反応を意味し、大略は、パラフィン
鎖の切断、脱水素、閉環、重縮合による多環縮合芳香族
の平面型構造の発達にあると考えられるものである。
When the raw materials of the present invention are used, optically anisotropic pinches produced by a production method such as "0", "A", etc.
, ``B'', and ``C'' components have good properties and a low softening point. For example, a method using a catalyst such as aluminum chloride may be used, or a pyrolysis polycondensation reaction without using a catalyst and, if necessary, a subsequent dissolved 1 extraction method may be used. If necessary, the mixture may be stirred and an inert gas may be added to the mixture, or the reaction may be carried out under increased pressure or reduced pressure. Here, the pyrolysis polycondensation reaction is a reaction in which the pyrolysis reaction of hydrocarbons in the raw material and the polycondensation reaction proceed in parallel as main reactions, producing an optical anisotropic pinch. This is thought to be mainly due to the development of a planar structure of polycyclic condensed aromatics due to paraffin chain scission, dehydrogenation, ring closure, and polycondensation.

光学的異方性ピッチを製造するための熱分解重縮合反応
の温度は、約3806C〜約460IC,好ましくは、
約400’C〜約440@Cである。温度が低すぎては
、反応に長時間を要し、温度力監高すぎては、生成した
光学的異方性ピッチの軟化点力;高くなり、好ましくな
い。
The temperature of the pyrolytic polycondensation reaction to produce optically anisotropic pitch is about 3806C to about 460IC, preferably
About 400'C to about 440@C. If the temperature is too low, the reaction will take a long time, and if the temperature is too high, the softening point of the optically anisotropic pitch produced will become high, which is not preferable.

本発明の原料を用いる場合には、約2 k g/cm2
〜約50 k g/cm  の加圧下で熱分解重縮合さ
せた後、不活性ガスの流通下で加熱して、低分子量の物
質を除去する方法が好ましい。
When using the raw material of the present invention, approximately 2 kg/cm2
A preferred method is to carry out pyrolysis polycondensation under a pressure of ~50 kg/cm 2 and then heat under an inert gas flow to remove low molecular weight substances.

これらの方法゛により、光学的異方性ピッチを製造する
工程に、更に、生成した光学的異方性ピッチを分離する
工程を接続することは、特願昭56−11124号の場
合と同様、本発明の場合にも極めて有効である。これは
即ち、熱分解重縮合反応の工程の途中で、生成した光学
的異方性ピッチを分離する方法である。本発明の原料は
、比較的低分子量の芳香族成分の含有量が多いため、反
応により生成した光学的異方法ピッチが、必要以上に巨
大化することを防ぐことにも寄与するが、更に、上記の
熱分解重縮合反応の工程の途中で、生成した光学的異方
性ピッチを分離する方法を用いることは、生成した光学
的異方性ピッチが、4応終了まで高温に保たれるという
ことをなくすため、光学的異方性ピンチの重縮合反応か
必要以上に進むことにより、分子量が必要以」二に巨大
化するということを防止することができ、低軟化点の光
学的異方性ピッチを得るのに、一段と好都合である。
As in the case of Japanese Patent Application No. 56-11124, it is possible to further connect the process of producing optically anisotropic pitch with the process of separating the produced optically anisotropic pitch by these methods. This is also extremely effective in the case of the present invention. In other words, this is a method of separating the optically anisotropic pitch produced during the process of pyrolysis polycondensation reaction. Since the raw material of the present invention has a large content of relatively low molecular weight aromatic components, it also contributes to preventing the optically different method pitch produced by the reaction from becoming larger than necessary; The method of separating the optically anisotropic pitch produced during the process of the above-mentioned pyrolysis polycondensation reaction means that the optically anisotropic pitch produced can be kept at a high temperature until the end of the process. In order to avoid this problem, it is possible to prevent the molecular weight from increasing more than necessary due to the optical anisotropy pinch polycondensation reaction proceeding more than necessary. It's even more convenient for getting a sexual pitch.

熱分解重縮合反応の工程の途中で生成した、光学的異方
性ピッチを分離するためには、熱分解重縮合反応を、生
成した光学的異方性ピッチが約20体積チ〜約80体積
チとなった時点で中止して、反応槽を実質的に静置とす
る一方、熱分解重縮合反応が起こりにくく、且つ、ピッ
チの流体としての流動性が十分保たれる温度、即ち、約
350’C〜約400’C,好ましくは約360’C〜
約390’Cに保持することにより、下層に密度の大き
い光学的異方性相部分を、一つの連続相として成長熟成
しつつ沈積せしめ、これを上層の、より密度の小さな等
方性ピンチを多く含む相より分離すればよいが、特拡昭
57−052731号に開示した如く、一つの反応槽に
、反応域と静置域を設けることにより、反応槽としての
機能と同時に、沈積分離槽としての機能を一つの反応槽
に持たせることにより、熱分解重縮合反応工程と、生成
した光学的異方性ピッチの分離工程を、ともに連続的に
継続することもできる。即ち、反応槽の上部を撹拌され
た反応域とし、反応槽の下部を実質的な静置域とするこ
とにより、反応槽上方から本発明の原料を連続的に注入
すれば、反応槽下方から低軟化点で優れた性状を有する
光学的異方性ピッチを、連続的に取り出すことができる
。又、前記の、部分的に光学的異方性ピッチを含有する
ピッチを、その溶融状態で遠心分離操作にかけ、より比
重の大きい相である光学的異方性ピッチを効率よく連続
的に分離することができる。遠心分離操作条件としては
、約2606C〜約390”C好ましくは、約3306
C〜約360’Cの温度で、約10,0009−以下、
好ましくは、約5o仔〜約3ooopの遠心力加速度を
採用することができる。但し、ここで7は重力加速度で
ある。
In order to separate the optically anisotropic pitch produced during the process of the pyrolytic polycondensation reaction, the pyrolytic polycondensation reaction must be carried out until the optically anisotropic pitch produced is about 20 volumes to about 80 volumes. When the temperature reaches 1, the reaction tank is stopped and the reaction tank is left virtually stationary, while the temperature is maintained at a temperature at which the thermal decomposition polycondensation reaction is difficult to occur and the fluidity of the pitch as a fluid is maintained sufficiently, that is, approximately 350'C to about 400'C, preferably about 360'C to
By maintaining the temperature at approximately 390'C, the optically anisotropic phase with a higher density in the lower layer is allowed to grow and mature as one continuous phase and is deposited, and this is combined with the isotropic pinch in the upper layer with a lower density. It is sufficient to separate the phase containing the most amount, but as disclosed in Japanese Patent Application No. 57-052731, by providing a reaction zone and a standing zone in one reaction tank, it can function as a reaction tank and at the same time as a sedimentation separation tank. By providing a single reaction tank with this function, both the pyrolysis polycondensation reaction step and the separation step of the produced optically anisotropic pitch can be continued continuously. That is, by making the upper part of the reaction tank a stirred reaction zone and the lower part of the reaction tank a substantially static area, if the raw material of the present invention is continuously injected from the top of the reaction tank, the raw material of the present invention can be continuously injected from the bottom of the reaction tank. Optically anisotropic pitch having a low softening point and excellent properties can be continuously extracted. Further, the pitch partially containing optically anisotropic pitch is subjected to a centrifugation operation in its molten state to efficiently and continuously separate the optically anisotropic pitch, which is a phase with a higher specific gravity. be able to. The centrifugation operation conditions are about 2606C to about 390"C, preferably about 3306"C.
at a temperature of from about 360'C to about 10,0009°C,
Preferably, a centrifugal acceleration of about 5 degrees to about 3 degrees can be employed. However, 7 here is the gravitational acceleration.

本発明の原料を使用した場合には、特開昭56−+67
788号公報に開示されているような厳しい条件の蒸留
操作を省くことができるうえ、低分子量の芳香族炭化水
素成分が多いため、反応物の粘度が比較的低く、原料の
パイプ移送及び攪拌も十分行い易いばかりでなく、固形
物の除去も容易であり、必要な光学的異方性ピッチ製造
のだめの反応時間も、従来法に比して短縮することがで
きる。更に、本発明の原料を用いて製造した光学的異方
性ピンチは、光学的異方性相を90体積チ〜100体積
チ含有し、実質的に均質、且つ、低軟化点を有するとい
う極めて優れた性状を有する。
When the raw material of the present invention is used, JP-A-56-+67
Not only can the distillation operation under severe conditions as disclosed in Publication No. 788 be omitted, but since there are many low molecular weight aromatic hydrocarbon components, the viscosity of the reactant is relatively low, and the pipe transfer and stirring of the raw materials are easy. Not only is it sufficiently easy to carry out, solid matter can be easily removed, and the necessary reaction time for producing optically anisotropic pitch can be shortened compared to conventional methods. Furthermore, the optically anisotropic pinch produced using the raw material of the present invention contains an optically anisotropic phase of 90 to 100 volume, is substantially homogeneous, and has an extremely low softening point. Has excellent properties.

従って、従来法で必要とされた不融物の高温f過や、溶
剤抽出、又は、触媒の除去等の複雑でコストの高い工程
を必須上程とすることはない。炭素繊維の溶融紡糸、に
ついても、その紡糸温度(紡糸」二程でピッチに与える
必要のある最高温度)を約290’C〜約360’Cの
範囲内とすることができるため、分解ガスの発生等によ
るトラブルがないばかシでなく、温度制御も行い易く、
糸の太さ等も均質で、容易に高性能の糸を、糸切れが発
生することなく、紡糸することができるし、又、加温の
だめのエネルギー損失も少ない等、本発明の工業的観点
からの効果杜絶大であt。
Therefore, complicated and costly steps such as high-temperature filtration of infusible materials, solvent extraction, and catalyst removal, which are required in conventional methods, are not required. Regarding melt-spinning of carbon fibers, the spinning temperature (the highest temperature that must be applied to the pitch during the second step of spinning) can be within the range of about 290'C to about 360'C, so that the cracked gas can be reduced. It is easy to control the temperature and is free from troubles such as occurrences.
Industrial aspects of the present invention include the fact that the yarn thickness is uniform, high performance yarn can be easily spun without yarn breakage, and there is little energy loss during heating. The effect from this is enormous.

次に、本発明を実施例により、更に詳述するが本発明は
、これKより限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 本発明の原料として、初留点が204°C125重量%
留出点が400@C,70重量%留出点が450°C,
90]i量*留出点カ510’C<?:−レラの温度は
、いずれも減圧蒸留操作で測定した蒸留温度の常圧換算
値である)であり、400’Cでの留出油の芳香族炭素
分率faが0.43の接触分解装置残渣油を蒸留せずに
用いた。
Example 1 As a raw material of the present invention, an initial boiling point of 204°C 125% by weight
Distillation point is 400@C, 70% by weight distillation point is 450°C,
90]i amount*distillation point 510'C<? :-Rera temperature is the normal pressure equivalent value of the distillation temperature measured in vacuum distillation operation), and the aromatic carbon fraction fa of the distillate at 400'C is catalytic cracking with an aromatic carbon fraction fa of 0.43. The equipment residue oil was used without distillation.

この原料400:’/’う4を500m1のステンレス
製反応容器にと、!11.430’Cで2時間熱分解重
縮合反応を行った。反応に際しては、不活性ガスとして
、窒素ガスを2ノ/分で液相表面に流通し、撹拌翼で十
分に撹拌した。反応後、容器に残留したピッチを、以下
βRPと呼ぶが、このpRPのうち、光学的異方性相含
有率(以下AP%と呼ぶ)がlO体積チ以上のもの50
m/  をガラスビーカーにとり、窒素ガス雰囲気のマ
ツフルq中、約380°Cで2時間静置して、光学的異
方性相を沈積分離した後、室温に冷却固化せしめた。次
に、ガラスビーカーを破壊し、上層の光学的等方性相の
多い部分と、下層の光学的異方性相の部分に選別した。
Put 400:'/'4 of this raw material into a 500ml stainless steel reaction vessel! Thermal decomposition polycondensation reaction was carried out at 11.430'C for 2 hours. During the reaction, nitrogen gas was passed through the surface of the liquid phase at 2 no/min as an inert gas, and the mixture was thoroughly stirred with a stirring blade. The pitch remaining in the container after the reaction is hereinafter referred to as βRP, and among this pRP, those with an optically anisotropic phase content (hereinafter referred to as AP%) of 1O volume or more are 50
m/ was placed in a glass beaker and allowed to stand at about 380°C for 2 hours in a nitrogen gas atmosphere at about 380°C to separate the optically anisotropic phase, which was then cooled to room temperature and solidified. Next, the glass beaker was broken and separated into an upper layer containing a large amount of optically isotropic phase and a lower layer containing a large amount of optically anisotropic phase.

下層の光学的異方性相のAP%は100チであり、軟化
点は268°C,rob、rAJ、「B」、「C」の含
有率は、それぞれ11.7重Jl−チ、28.6重量%
、25.2重量%、34.5重量%であった。このよう
にして得た光学的異方性ピッチlOプラムを小型紡糸機
に充填し、昇温しつつ、窒素ガスで約100 mm H
gに加圧し、直径0.3mm  のノズルより押し出し
、下部に設けたボビンで、毎分600mの線速度で巻き
取った。
The AP% of the optically anisotropic phase in the lower layer is 100°C, the softening point is 268°C, and the contents of rob, rAJ, "B", and "C" are 11.7 times Jl-ch and 28 times, respectively. .6% by weight
, 25.2% by weight, and 34.5% by weight. The optically anisotropic pitch lO plum obtained in this way was filled into a small spinning machine, and heated to about 100 mm H with nitrogen gas.
g, extruded through a nozzle with a diameter of 0.3 mm, and wound up with a bobbin provided at the bottom at a linear speed of 600 m/min.

約330’C〜約370’Cの紡糸温度範囲て、最小糸
切れ頻度の温度を探し、−その(温度での糸切れ頻度を
評価した。比較のために、同様の実験を、本原料を40
0°Cまで蒸留した祉残タールを原料とした場合、及び
450’Cまで蒸留した蓋残タールを原料とした場合に
ついても行い、王者を比較した。但し、比較実験のうち
、前者については熱分解重縮合反応の時間を2.5時間
とした。
In the spinning temperature range of about 330'C to about 370'C, we searched for the temperature with the minimum yarn breakage frequency and evaluated the yarn breakage frequency at - that temperature.For comparison, a similar experiment was carried out using the present raw material. 40
The results were also compared for the cases in which the residual tar distilled to 0°C was used as the raw material and the case in which the residual tar distilled to 450'C was used as the raw material, and the winner was compared. However, in the comparative experiment, the time for the thermal decomposition polycondensation reaction was set to 2.5 hours for the former.

表1及び表2は、これらについての比較結果である。こ
れらの表から明らかなように、本発明の原料を用いた場
合には、キノリ/不溶成分であるC成分の含有量の少な
い、光学的異方性ピッチが得られるため、光学的異方性
ピッチの軟化点が低く、糸切れ頻度も少なくなり、極め
て良好であった。
Tables 1 and 2 show the comparison results. As is clear from these tables, when the raw materials of the present invention are used, an optically anisotropic pitch with a low content of the C component, which is an insoluble component, can be obtained. The softening point of the pitch was low and the frequency of thread breakage was reduced, which was extremely good.

実施例2 本発明の原料として、初留点204@C。Example 2 As the raw material of the present invention, the initial boiling point is 204@C.

35[1留出点が400’C,90重量%留出点が53
4°C(これらの温度は、実施例1の場合と同様、常圧
換算値である)であって、400°Cでの留出油の芳香
族炭素分率faが0.56である、接触分解装置残渣油
を用いた他は、実施例1と同様にして得たピッチは、表
4に示す如く、光学的異方性相が100チ(表中のAP
チが 100)で、且つ、低軟化点であり、当該炭素質ピッチ
の紡糸特性も、極めて優れたもので・あった。
35 [1 distillation point is 400'C, 90% by weight distillation point is 53
4°C (these temperatures are normal pressure equivalent values as in Example 1), and the aromatic carbon fraction fa of the distillate at 400°C is 0.56. As shown in Table 4, the pitch obtained in the same manner as in Example 1 except that catalytic cracker residual oil was used had an optically anisotropic phase of 100 chi (AP in the table).
100) and a low softening point, and the spinning properties of the carbonaceous pitch were also extremely excellent.

実施例3 本発明の原料として、初留点が204°C11B重量%
留出点が400”C,90重量%留出点が52,7°C
であり、(これらの温度は実施例1の場合と同様、常圧
換算値である)、400’Cでの留出油の芳香族炭素分
率faが0.57である、接触分解装置残渣油を用いた
他は、実施例1と同様にして、光学的異方性ピッチを得
た。
Example 3 As a raw material of the present invention, an initial boiling point of 204 ° C 11B weight %
Distillation point is 400”C, 90% by weight distillation point is 52.7°C
(These temperatures are normal pressure equivalent values as in Example 1), and the aromatic carbon fraction fa of the distillate at 400'C is 0.57, a catalytic cracker residue. An optically anisotropic pitch was obtained in the same manner as in Example 1 except that oil was used.

以下余白 (30) 表6の結果から明らかな如く、400°C以下の炭化水
素留分を含有せしめた本発明の原料油は、熱分解重縮合
反応により、光学的異方性相が100%で、且つ低軟化
点の炭素質ピッチを提供することができ、 400°C以下の炭化水素留分を除去した原料油を用い
た場合に比較して、当該炭素質ピッチの紡糸特性も著し
く優れたものである。
Margin below (30) As is clear from the results in Table 6, the feedstock oil of the present invention containing a hydrocarbon fraction below 400°C has an optically anisotropic phase of 100% due to the thermal decomposition polycondensation reaction. It is possible to provide a carbonaceous pitch with a low softening point, and the spinning properties of the carbonaceous pitch are also significantly superior compared to the case of using feedstock oil from which hydrocarbon fractions below 400°C have been removed. It is something that

出願人    東亜燃料工業株式会社 代理人 弁理士  尾 1)清 暉 (33) 特許庁長官 若杉和夫殿 1、□襄承 昭和57年 4I靜秦第078430 号2、発明の名
称 光学的貴方性ピンチの製造方法及び製遥[呻°番3、補
正をする者 事件との関係   特許社曙ひ、 91ゲ ヒトパシ 住所 鯨1佃区−シ柵1丁目11号 シ? )  t yljII ? ff1−12氏名 
東亜燃料工業市μ社 4、代理人 2)第4欄mの光学的異方性層の収率」とあるのを、[
下層の光学的異方性相の収率」と補正する。
Applicant: Toa Fuel Industry Co., Ltd. Agent Patent Attorney: Kiyoshi Kiyoshi (33) Commissioner of the Patent Office Kazuo Wakasugi1, □Xiang 1981 4I Seiqin No. 078430 No. 2, Title of Invention Manufacturing method and manufacturing method [Maker No. 3, Relationship with the case of the person making the amendment Patent company Akebono, 91ge Hitopashi address Kujira 1 Tsukuda-ku - Shizaku 1-11-shi? ) tyljII? ff1-12 name
Toa Fuel Industry City μ Company 4, Agent 2) Column 4, ``Yield of optically anisotropic layer m'' is changed to [
The yield of the optically anisotropic phase in the lower layer is corrected.

Claims (1)

【特許請求の範囲】 (11接触分解装置の残渣油に、芳香族炭素分率faが
Q、4以上であって、約200@C以上で約400@C
以下の沸点を有する炭化水素留分又はこれらの混合物を
含有せしめたことを特徴とする、光学的異方性ピッチ、
を製造するだめの原料。 (21芳香族炭素分率faが0.5以上であることを特
徴とする特許請求の範囲第(1)項に記載の、光学的異
方性ピッチを製造するだめの原料。 (3)  含有せしめる炭化水素留分の含有量が、約1
5重量−〜約50重量%であることを特徴とする特許請
求の範囲第(11項又は第Q)項に記載の、光学的異方
性ピッチを製造するだめの原料〜(4)  前記炭化水
素留分を含有する接触分解装置の残渣油原料の初留点か
約200@C,15〜401 ffiチ留出点が約40
0”C,90重量%留出点が約5400C以下であるこ
とを特徴とする特許請求の範囲第(11項ないし第0)
項のいずれかに記載の、光学的異方性ピッチを製造する
ための原料。 (5)  芳香族炭素分率faが0.4以上であって、
約200℃以上で、約400”C以下の沸点を有する炭
化水素留分又社これらの混合物を含有せしめた接触分解
装置9残液油を原料とし、熱分解重縮合反応をさせるこ
とを特徴とする光学的異方性ピッチの製造方法・。 (6)  芳香族炭素分率faが0.5以上であること
を特徴とする特許請求の範囲第釦項に記載の光学的異方
性ピッチの製造方法。 (7)  含有せしめる炭化水素留分の含有量が、約1
5重量−〜約50重量%であることを特徴とする特許請
求の範囲第6)項又は[i)項に記載の光学的異方性ピ
ッチの製造方法。 (8)  前記炭化水素留分を含有する接触分解装置の
残渣油原料の初留が約200’C,15〜40 M I
t %留出点が約400’C,90311%留出点が約
540’C以下であることを特徴とする特許請求の範囲
第(5)項ないし第(7)項のいずれかに記載の、光学
的異方性ピッチの製造方法。 (9)  熱分解重縮合反応の温度が約380@C’?
’あることを特徴とする特許請求の範囲第β)項ないし
第(8)項のいずれかに記載の光学的異方性ピッチの製
造方法。 (10熱分解重縮合反応の温度が約3806C〜約46
0°Cの範囲であることを特徴とする特許請求の範囲第
6)項ないし第S)項のいずれかに記載の光学的異方性
ピンチの製造方法。 (11)熱分解重縮合反応の温度が約410’C〜約4
40e′Cの範囲であることを特徴とする特許請求の範
囲第(5)項ないし第(10)項に記載の光学的異方性
ピッチの製造方法。 (12)熱分解重縮合反応によって生成した重縮合物中
の光学的異方性ピッチ部分が約20体檀チ〜約80体積
チの含、有率となるまで、熱分解重縮合反応を行った後
、該重縮合物を、約400@C以下に保持しながら、実
質上静置せしめることにより、光学的異方性ピッチを反
応槽の下層へ沈降集積せしめ、反応槽上層の非光学的異
方性相が大部分を占める部分から分離して取り出すこと
を特徴とする特許請求の範囲第(5)項カいし第(11
)項のいずれかに記載の光学的異方性ピッチの製造方法
。 (13)重縮合物を約3506C〜約400@Cの温度
範囲に保持しながら、実質上静置せしめることを特徴と
する特許請求の範囲第(12)項に記載の光学的異方性
ピッチの製造方法。 (14)重縮合物を゛約り60℃〜約390@Cの温度
範囲に保持しながら、実質上静置せしめることを特徴と
する特許請求の範囲第(12)項に記載の光学的異方性
ピッチの製造方法。 (15)反応槽の上部を熱分解重縮合反応の反応域とし
、反応槽下部を光学的異方性ピッチを下層へ沈降集積せ
しめるための、実質的な静置域とする反応槽の上方から
原料を連続的に注入しく下方から生成した光学的異方性
ピッチを連続的に抜き出すことを特徴とする特許請求の
範囲第(5)項ないし第(8)項のいずれかに記載の光
学的異方性ピッチの製造方法。
Scope of Claims (11) The residual oil from the catalytic cracking unit has an aromatic carbon fraction fa of Q, 4 or more, about 200@C or more, and about 400@C
Optically anisotropic pitch, characterized in that it contains a hydrocarbon fraction or a mixture thereof having a boiling point of:
Raw materials for manufacturing. (21 Raw material for producing optically anisotropic pitch according to claim (1), characterized in that the aromatic carbon fraction fa is 0.5 or more. (3) Contains The content of the hydrocarbon fraction is about 1
5% by weight - about 50% by weight of the raw material for producing optically anisotropic pitch according to claim 11 or Q) (4) The carbonization The initial boiling point of the residual oil feedstock of the catalytic cracking unit containing hydrogen fraction is approximately 200@C, 15 to 401 ffi, and the distillation point is approximately 40
0''C, 90% by weight distillation point is about 5400C or less (claims 11 to 0)
A raw material for producing the optically anisotropic pitch according to any one of the above. (5) the aromatic carbon fraction fa is 0.4 or more,
It is characterized by carrying out a thermal decomposition polycondensation reaction using the residual oil of the catalytic cracker 9 containing a hydrocarbon fraction having a boiling point of about 400"C or less at a temperature of about 200°C or higher and a mixture thereof as a raw material. (6) A method for producing an optically anisotropic pitch according to claim 1, wherein the aromatic carbon fraction fa is 0.5 or more. Manufacturing method. (7) The content of the hydrocarbon fraction to be contained is approximately 1
The method for producing optically anisotropic pitch according to claim 6) or claim (i), characterized in that the amount of the optically anisotropic pitch is from 5% by weight to about 50% by weight. (8) The initial distillation of the residual oil feedstock of the catalytic cracker containing the hydrocarbon fraction is about 200'C, 15-40 M I
t % distillation point is about 400'C and 90311% distillation point is about 540'C or less, according to any one of claims (5) to (7). , a method for producing optically anisotropic pitch. (9) The temperature of the thermal decomposition polycondensation reaction is about 380@C'?
'The method for producing an optically anisotropic pitch according to any one of claims β) to (8). (10 The temperature of the thermal decomposition polycondensation reaction is from about 3806C to about 46C.
The method for manufacturing an optically anisotropic pinch according to any one of claims 6) to S), characterized in that the temperature is in the range of 0°C. (11) The temperature of the thermal decomposition polycondensation reaction is about 410'C to about 4
A method for producing an optically anisotropic pitch according to claims (5) to (10), characterized in that the pitch is in the range of 40e'C. (12) The pyrolytic polycondensation reaction is carried out until the optically anisotropic pitch portion in the polycondensate produced by the pyrolytic polycondensation reaction reaches a content of about 20 body parts to about 80 volume parts. After that, the polycondensate is kept at about 400@C or less and allowed to stand still, thereby causing the optically anisotropic pitch to settle and accumulate in the lower layer of the reaction tank, and the non-optical pitch in the upper layer of the reaction tank. Claims (5) to (11) characterized in that the anisotropic phase is separated and taken out from the portion in which it occupies the majority.
) The method for producing an optically anisotropic pitch according to any one of the above items. (13) The optically anisotropic pitch according to claim (12), characterized in that the polycondensate is kept at a temperature range of about 3506 C to about 400 @ C and allowed to stand substantially still. manufacturing method. (14) The optical difference according to claim (12), characterized in that the polycondensate is kept at a temperature range of about 60° C. to about 390° C. and allowed to stand substantially still. Method of manufacturing directional pitch. (15) The upper part of the reaction tank is used as the reaction zone for the pyrolysis polycondensation reaction, and the lower part of the reaction tank is used as a substantial standing area for allowing the optically anisotropic pitch to settle and accumulate in the lower layer.From the top of the reaction tank The optical system according to any one of claims (5) to (8), characterized in that the raw material is continuously injected and the generated optically anisotropic pitch is continuously extracted from below. Method of manufacturing anisotropic pitch.
JP7843082A 1982-05-12 1982-05-12 Preparation of optical anisotropic pitch and raw material for preparing it Granted JPS58196293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7843082A JPS58196293A (en) 1982-05-12 1982-05-12 Preparation of optical anisotropic pitch and raw material for preparing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7843082A JPS58196293A (en) 1982-05-12 1982-05-12 Preparation of optical anisotropic pitch and raw material for preparing it

Publications (2)

Publication Number Publication Date
JPS58196293A true JPS58196293A (en) 1983-11-15
JPH0245673B2 JPH0245673B2 (en) 1990-10-11

Family

ID=13661822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7843082A Granted JPS58196293A (en) 1982-05-12 1982-05-12 Preparation of optical anisotropic pitch and raw material for preparing it

Country Status (1)

Country Link
JP (1) JPS58196293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249095A (en) * 1988-05-14 1990-02-19 Petoka:Kk Production of carbon material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167788A (en) * 1980-04-23 1981-12-23 Exxon Research Engineering Co Manufacture of carbon processed article precursor
JPS5837084A (en) * 1981-08-28 1983-03-04 Toa Nenryo Kogyo Kk Optically anisotropic carbonaceous pitch having low softening point and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167788A (en) * 1980-04-23 1981-12-23 Exxon Research Engineering Co Manufacture of carbon processed article precursor
JPS5837084A (en) * 1981-08-28 1983-03-04 Toa Nenryo Kogyo Kk Optically anisotropic carbonaceous pitch having low softening point and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249095A (en) * 1988-05-14 1990-02-19 Petoka:Kk Production of carbon material

Also Published As

Publication number Publication date
JPH0245673B2 (en) 1990-10-11

Similar Documents

Publication Publication Date Title
EP0044714B1 (en) Process for producing mesophase pitch
US4303631A (en) Process for producing carbon fibers
US4454019A (en) Process for producing optically anisotropic carbonaceous pitch
US4454020A (en) Process for producing a homogeneous low softening point, optically anisotropic pitch
US4601813A (en) Process for producing optically anisotropic carbonaceous pitch
JPS62270685A (en) Production of mesophase pitch
EP0067581A1 (en) Process for preparing a pitch material
RU2062285C1 (en) Method to produce petroleum fiber-forming pitch
US4655902A (en) Optically anisotropic carbonaceous pitch
JPS58196293A (en) Preparation of optical anisotropic pitch and raw material for preparing it
CN111548822A (en) Method for purifying and modifying petroleum residual oil
EP0089840A1 (en) Process for producing an optically anisotropic carbonaceous pitch
JPH0415274B2 (en)
JPH01247487A (en) Production of mesophase pitch
JPH03223391A (en) Mesophase pitch for carbonaceous material
JPS6144992A (en) Production of crude raw pitch for carbon fiber
JPS6250516B2 (en)
JPH01254796A (en) Mesophase pitch for carbonaceous material
JPS61287961A (en) Precursor pitch for carbon fiber
JPH0730337B2 (en) Method for producing precursor for producing mesophase pitch for carbon fiber
JPH0534393B2 (en)
JPS59189188A (en) Preparation of raw material pitch for carbon fiber having high strength and elastic modulus
JPS6250515B2 (en)
JPS61241391A (en) Production of mesophase pitch
JPH0260712B2 (en)