JPH024559B2 - - Google Patents

Info

Publication number
JPH024559B2
JPH024559B2 JP4859481A JP4859481A JPH024559B2 JP H024559 B2 JPH024559 B2 JP H024559B2 JP 4859481 A JP4859481 A JP 4859481A JP 4859481 A JP4859481 A JP 4859481A JP H024559 B2 JPH024559 B2 JP H024559B2
Authority
JP
Japan
Prior art keywords
layer
single crystal
polycrystalline
wafer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4859481A
Other languages
Japanese (ja)
Other versions
JPS57166397A (en
Inventor
Junji Sakurai
Haruhisa Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4859481A priority Critical patent/JPS57166397A/en
Publication of JPS57166397A publication Critical patent/JPS57166397A/en
Publication of JPH024559B2 publication Critical patent/JPH024559B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は単結晶シリコン基板上に設けた熱酸化
膜上にポリシリコン等の多結晶層又は非晶質層を
成長させ、上記多結晶層又は非晶質層を単結晶化
するための単結晶化方法に係り、特に広い面積に
渡つて単結晶層を得るためのシリコンウエハーの
単結晶化方法に関する。
Detailed Description of the Invention The present invention involves growing a polycrystalline layer such as polysilicon or an amorphous layer on a thermal oxide film provided on a single-crystal silicon substrate, and growing the polycrystalline layer or the amorphous layer in a single layer. The present invention relates to a single crystallization method for crystallization, and particularly to a method for single crystallizing a silicon wafer to obtain a single crystal layer over a wide area.

パルスレーザ等のエネルギ線を非晶質シリコン
層又は多結晶シリコン層に照射することによつて
単結晶化させることはよく知られている。
It is well known that single crystallization is achieved by irradiating an amorphous silicon layer or a polycrystalline silicon layer with an energy beam such as a pulsed laser.

更に酸化膜基板上に単結晶層を形成すること
は、Appl.Phys.Lett.35 1979.71頁にSmith等によ
つて発表されて公知である。このSmith等の実験
では、酸化膜(SiO2)上に多結晶シリコンをス
トライプ状(2μm幅×20μm長)にパターンニン
グし、2μmより充分大なるスポツト径のCWアル
ゴン(Ar+)レーザビームで上記ストライプの長
さ方向に走査、溶融すると、種結晶(結晶核)が
ないのに(100)面方位の単結晶になり易いこと
が示された。しかし、必ず(100)が得られるわ
けではなく、又広い面積を単結晶化することはで
きなかつた。
Furthermore, forming a single crystal layer on an oxide film substrate is known as disclosed by Smith et al. in Appl. Phys. Lett. 35 1979.71. In the experiment by Smith et al., polycrystalline silicon was patterned into stripes (2 μm wide x 20 μm long) on an oxide film (SiO 2 ), and a CW argon ( Ar It was shown that when the stripe is scanned and melted in the length direction, it easily becomes a single crystal with a (100) plane orientation even though there is no seed crystal (crystal nucleus). However, it was not always possible to obtain (100), and it was not possible to form a single crystal over a wide area.

一方、シリコン基板等の単結晶に多結晶シリコ
ンが接していると、その部分から溶融し始め、酸
化膜(SiO2)上の多結晶シリコンも、元の単結
晶と同じ結晶方位の単結晶を成長させることがで
きることも公知である。このようなラテラルエピ
タキシ(lateral epitaxy)の従来の一例を第1
図に基づき説明する。
On the other hand, when polycrystalline silicon is in contact with a single crystal such as a silicon substrate, it begins to melt from that part, and the polycrystalline silicon on the oxide film (SiO 2 ) also forms a single crystal with the same crystal orientation as the original single crystal. It is also known that it can be grown. A conventional example of such lateral epitaxy is shown in the first example.
This will be explained based on the diagram.

第1図に於て、P型シリコンウ基板(100)の
単結晶ウエハー1上に熱処理(1000℃40分)によ
り、熱酸化膜(SiO2)を得る。該酸化膜2を0.5
〜1μ厚に形成させる。次にホトエツチング等に
よつて該酸化膜に窓開け3を行ない、該シリコン
基板の単結晶面が一部露呈したウエハー1並に酸
化膜2上にCVD(chemical vap our deposition)
法によつて0.5μ厚程度に多結晶シリコンAを成長
させ、次にCWアルゴンレザー5をX軸方向に照
射し且つ、走査することで、窓開部3を種として
多結晶層4は単結晶化し、酸化膜2上の多結晶層
もシリコン基板1と同じ面方位100の単結晶層に
変換される。上述の如き単結晶化法によるときは
窓開部3の極めて近傍のみ単結晶化が進み広い面
積に渡つて単結晶化をすることが出来ない欠点を
有する。
In FIG. 1, a thermal oxide film (SiO 2 ) is obtained on a single crystal wafer 1 of a P-type silicon substrate (100) by heat treatment (1000° C. for 40 minutes). The oxide film 2 is 0.5
Form to ~1μ thickness. Next, a window 3 is formed in the oxide film by photo-etching or the like, and CVD (chemical vapor deposition) is performed on the wafer 1 and the oxide film 2 in which the single crystal surface of the silicon substrate is partially exposed.
The polycrystalline silicon A is grown to a thickness of about 0.5μ by the method, and then by irradiating and scanning the CW argon laser 5 in the X-axis direction, the polycrystalline layer 4 is grown using the window opening 3 as a seed. Through crystallization, the polycrystalline layer on the oxide film 2 is also converted into a single crystalline layer having the same plane orientation as the silicon substrate 1, 100. When using the above-mentioned single crystallization method, single crystallization progresses only in the very vicinity of the window opening 3, and there is a drawback that single crystallization cannot be performed over a wide area.

例えば太陽電弛やVLSI基板としては広い酸化
膜の範囲に単結晶化シリコンを成長させる要求が
ある。
For example, for solar photovoltaic and VLSI substrates, there is a requirement to grow single crystal silicon over a wide oxide film range.

このような広範囲を単結晶させるために従来の
第1図で示す方法を用いると、ウエハー上の到る
所に窓開部を設けなければならずウエハー上に多
くのパターンをパターニングすることが出来なく
なる欠点を生ずる。
If the conventional method shown in FIG. 1 is used to form a single crystal over such a wide area, window openings must be provided all over the wafer, making it impossible to pattern many patterns on the wafer. It creates a defect that disappears.

本発明は上述の欠点を除去したシリコンウエハ
ーの単結晶化方法を提供するものであり、その特
徴とするところは、単結晶シリコンウエハー上に
絶縁層を形成し、該絶縁層上に複数の近接したス
トライプ状の多結晶層又は非晶質層を設け、該ス
トライプ状の多結晶層又は非晶質層に平行に照射
し、且つ走査されたエネルギー線によつて該スト
ライプ状の多結晶層又は非晶質層を単結晶化し、
次いでウエハー全面に再び多結晶層又は非晶質層
を成長させてエネルギー線を照射し、且つ走査し
て絶縁層上全面を単結晶化する工程を含むように
したことである。
The present invention provides a method for single-crystallizing a silicon wafer that eliminates the above-mentioned drawbacks, and is characterized by forming an insulating layer on a single-crystal silicon wafer, and forming a plurality of adjacent layers on the insulating layer. A striped polycrystalline layer or an amorphous layer is provided, and the striped polycrystalline layer or amorphous layer is irradiated parallel to the striped polycrystalline layer or the amorphous layer. The amorphous layer is made into a single crystal,
This method includes a step of growing a polycrystalline layer or an amorphous layer again on the entire surface of the wafer, irradiating it with energy rays, and scanning it to make the entire surface of the insulating layer into a single crystal.

以下、本発明の1実施例の詳細を第2図乃至第
3図について説明する。
Hereinafter, details of one embodiment of the present invention will be explained with reference to FIGS. 2 and 3.

第2図Aに示す如くシリコン単結晶P型基板1
00ウエハー1上に熱処理によつて該ウエハー上
に二酸化シリコン(SiO2)の酸化膜2を1μ厚程
度に成長させる。(第2図B)次に第3図Aに示
す如くスクライブライン3a上に窓開部をパター
ニングする。第2図Cは第3図AのA−A断面を
示すもので該スクライブライン3aは基板1の単
結晶の核となる表面まで露呈させても途中までで
もよくパターニングは例えば弗酸系のエツチング
液で酸化膜2をエツチングする。
As shown in FIG. 2A, a silicon single crystal P-type substrate 1
An oxide film 2 of silicon dioxide (SiO 2 ) is grown to a thickness of about 1 μm on the 00 wafer 1 by heat treatment. (FIG. 2B) Next, as shown in FIG. 3A, window openings are patterned on the scribe line 3a. FIG. 2C shows a cross section taken along the line A-A in FIG. 3A, and the scribe line 3a may be exposed up to the surface of the single crystal nucleus of the substrate 1, or may be patterned halfway through, for example, by hydrofluoric acid etching. The oxide film 2 is etched with a liquid.

次に第3図Aに示す如くパターニングされた絶
縁性の酸化膜2上に全面に2000Å厚の多結晶シリ
コン4aをCVD法によつて成長させる(第2図
D)。次に多結晶シリコン層4aを第3図Bに示
す如くパターニングする。即ち硝弗酸系のエツチ
ング液等でストライプ4a状に例えば巾は2μで
ストライプとストライプの間隔を2μに選択的に
エツチングする。
Next, polycrystalline silicon 4a having a thickness of 2000 Å is grown on the entire surface of the patterned insulating oxide film 2 as shown in FIG. 3A by CVD (FIG. 2D). Next, the polycrystalline silicon layer 4a is patterned as shown in FIG. 3B. That is, the stripes 4a are selectively etched using a nitric-fluoric acid-based etching solution, for example, with a width of 2 .mu.m and an interval of 2 .mu.m between the stripes.

第3図BのB―B断面が第2図Eに示した断面
図でストライプ4aはスクライブライン上に窓開
けされた核と直交する方向にパターニングされ、
且つ該ストライプと平行に、即ちストライプ4a
に沿つてパルス又はCWアルゴンレザー等のエネ
ルギ線5をX軸方向走査する。かくすることでス
トライプ4aはウエハー1と同一方位100の単結
晶となる。即ち、スクライブライン上の窓開部3
aを核として該核のラインと直交して配されたス
トライプ状の多結晶シリコン層4aが単結晶化さ
れて、ストライプ状の単結晶層となる。次に、第
2図Fに示すように、上記ストライプ状の単結晶
層4a上を含むウエハー全面に多結晶シリコン層
6を3000Å厚に気相成長させて、エネルギ線5を
照射する。この場合の走査方向はストライプと平
行でもこれと直交する方向でもよい。即ち、この
場合は多結晶層6の下端には核となる単結晶がス
トライプ4a状に形成されているのでエネルギ線
照射により多結晶層がメルトして単結晶化する時
の核は下端にあるため容易に全面100を単結晶
化できる。しかも、この場合は多結晶層6はメル
トし再固溶されるため表面は平滑となされる。
The BB cross section of FIG. 3B is the cross-sectional view shown in FIG. 2E, and the stripes 4a are patterned in a direction perpendicular to the core opened on the scribe line,
and parallel to the stripe, i.e. stripe 4a
An energy line 5 such as a pulsed or CW argon laser is scanned along the X-axis direction. In this way, the stripe 4a becomes a single crystal with the same orientation as the wafer 1. That is, the window opening 3 on the scribe line
A striped polycrystalline silicon layer 4a arranged perpendicularly to the line of the nucleus with a as a nucleus is single-crystallized to become a striped single-crystalline layer. Next, as shown in FIG. 2F, a polycrystalline silicon layer 6 is grown in a vapor phase to a thickness of 3000 Å over the entire surface of the wafer including the striped single crystal layer 4a, and is irradiated with an energy beam 5. The scanning direction in this case may be parallel to the stripes or perpendicular to them. That is, in this case, the single crystal serving as the nucleus is formed in the stripe 4a shape at the lower end of the polycrystalline layer 6, so when the polycrystalline layer melts and becomes single crystal by energy beam irradiation, the nucleus is at the lower end. Therefore, the entire surface 100 can be easily made into a single crystal. Moreover, in this case, the polycrystalline layer 6 is melted and redissolved, so that the surface is made smooth.

本発明は上述の如く、単結晶化するため広範囲
に渡つて絶縁性の酸化膜上の多結晶層又は非晶質
層を単結晶化し得表面を平坦に出来る特徴を有す
るものである。
As described above, the present invention has the feature that a polycrystalline layer or an amorphous layer on an insulating oxide film can be made into a single crystal over a wide range and the surface can be made flat.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のシリコンウエハーの単結晶化方
法を説明するためのウエハーの側断面図、第2図
A〜Fは本発明のシリコンウエハーの単結晶化方
法を説明するためのウエハーの各工程を示す側断
面図、第3図A,Bは本発明のシリコンウエハー
の単結晶化方法を説明するためのウエハーの各工
程を示す平面図である。 1…ウエハー、2…酸化膜、3…窓開部、4…
多結晶シリコン層、5…レーザ等のエネルギー
線、3a…スクライブ・ラインに設けた窓開部、
4a…ストライプ状多結晶シリコンである。
FIG. 1 is a side sectional view of a wafer for explaining the conventional method for single crystallizing a silicon wafer, and FIGS. 2 A to F are each step of the wafer for explaining the method for single crystallizing a silicon wafer of the present invention. FIGS. 3A and 3B are plan views showing each process of the wafer for explaining the method for single crystallizing a silicon wafer of the present invention. 1... Wafer, 2... Oxide film, 3... Window opening, 4...
Polycrystalline silicon layer, 5... Energy beam such as laser, 3a... Window opening provided in scribe line,
4a...Striped polycrystalline silicon.

Claims (1)

【特許請求の範囲】[Claims] 1 単結晶シリコンウエハー上に絶縁層を形成
し、該絶縁層上に複数の近接したストライプ状の
多結晶層又は非晶質層を設け、該ストライプ状の
多結晶層又は非晶質層に平行に照射し、且つ走査
されたエネルギー線によつて該ストライプ状の多
結晶層又は非晶質層を単結晶化し、次いでウエハ
ー全面に再び多結晶層又は非晶質層を成長させて
エネルギー線を照射し、且つ走査して絶縁層上全
面を単結晶化する工程を含むことを特徴とするシ
リコンウエハーの単結晶化方法。
1. An insulating layer is formed on a single crystal silicon wafer, and a plurality of adjacent striped polycrystalline layers or amorphous layers are provided on the insulating layer, and parallel to the striped polycrystalline layers or amorphous layers. The striped polycrystalline layer or amorphous layer is made into a single crystal by the energy beams irradiated and scanned, and then the polycrystalline layer or amorphous layer is grown again on the entire surface of the wafer, and then the energy beams are applied. A method for single-crystallizing a silicon wafer, comprising the steps of irradiating and scanning to single-crystallize the entire surface of an insulating layer.
JP4859481A 1981-03-31 1981-03-31 Converting method of silicon wafer into single crystal Granted JPS57166397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4859481A JPS57166397A (en) 1981-03-31 1981-03-31 Converting method of silicon wafer into single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4859481A JPS57166397A (en) 1981-03-31 1981-03-31 Converting method of silicon wafer into single crystal

Publications (2)

Publication Number Publication Date
JPS57166397A JPS57166397A (en) 1982-10-13
JPH024559B2 true JPH024559B2 (en) 1990-01-29

Family

ID=12807727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4859481A Granted JPS57166397A (en) 1981-03-31 1981-03-31 Converting method of silicon wafer into single crystal

Country Status (1)

Country Link
JP (1) JPS57166397A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090898A (en) * 1983-10-21 1985-05-22 Agency Of Ind Science & Technol Formation of single crystal silicon film
JPS62130509A (en) * 1985-12-02 1987-06-12 Agency Of Ind Science & Technol Manufacture of semiconductor substrate
JPH0282518A (en) * 1988-09-20 1990-03-23 Agency Of Ind Science & Technol Manufacture of semiconductor single crystal layer

Also Published As

Publication number Publication date
JPS57166397A (en) 1982-10-13

Similar Documents

Publication Publication Date Title
US4545823A (en) Grain boundary confinement in silicon-on-insulator films
USRE33096E (en) Semiconductor substrate
US4599133A (en) Method of producing single-crystal silicon film
JPS62206816A (en) Manufacture of semiconductor crystal layer
JPH024559B2 (en)
JPS62160712A (en) Manufacture of semiconductor device
JPS61251115A (en) Growth of semiconductor single crystal on insulating film
JPS6351370B2 (en)
JPH0652712B2 (en) Semiconductor device
JP2674751B2 (en) Method for manufacturing SOI substrate
JPS6189622A (en) Formation of silicon single crystal film
JPH0797555B2 (en) Method for manufacturing SOI substrate
JPS61117821A (en) Manufacture of semiconductor device
JPS58180019A (en) Semiconductor base body and its manufacture
JPS62179112A (en) Formation of soi structure
JP2527015B2 (en) Method for manufacturing semiconductor film
JPH0691008B2 (en) Method for manufacturing SOI substrate
JPH0519976B2 (en)
JPH0523492B2 (en)
JPS5919311A (en) Manufacture of semiconductor device
JPS61203629A (en) Single-crystallizing method for semiconductor layer
JPH0652711B2 (en) Semiconductor device
JPH0693428B2 (en) Method for manufacturing multilayer semiconductor substrate
JPH0334847B2 (en)
JPH0157491B2 (en)