JPH0244508Y2 - - Google Patents

Info

Publication number
JPH0244508Y2
JPH0244508Y2 JP12096984U JP12096984U JPH0244508Y2 JP H0244508 Y2 JPH0244508 Y2 JP H0244508Y2 JP 12096984 U JP12096984 U JP 12096984U JP 12096984 U JP12096984 U JP 12096984U JP H0244508 Y2 JPH0244508 Y2 JP H0244508Y2
Authority
JP
Japan
Prior art keywords
winding
voltage
tertiary
transformer
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12096984U
Other languages
Japanese (ja)
Other versions
JPS6138919U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12096984U priority Critical patent/JPS6138919U/en
Publication of JPS6138919U publication Critical patent/JPS6138919U/en
Application granted granted Critical
Publication of JPH0244508Y2 publication Critical patent/JPH0244508Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案は、限流リアクトルが直列に接続された
三次巻線を有し、かつ移行電圧に対する保護対策
を講じた三巻線変圧器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a three-winding transformer that has a tertiary winding in which a current limiting reactor is connected in series, and that takes protection measures against transition voltage.

〔考案の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、電力需要の増大と系統運用および経済性
の面から、送電系統に使用される変圧器は、超高
圧、大容量化をたどつている。これらの需要に対
応して一相について高圧巻線、低圧巻線および三
次巻線の異なる独立した三巻線を有する三巻線変
圧器が広く採用されている。
In recent years, transformers used in power transmission systems have become increasingly high-voltage and large-capacity due to the increase in power demand, system operation, and economic efficiency. In response to these demands, three-winding transformers having three different independent windings for one phase: a high-voltage winding, a low-voltage winding, and a tertiary winding have been widely adopted.

この三巻線変圧器は、系統の連繋、力率調整、
第三高周波抑制に良好な特性を有するため、送電
系統の大容量変圧器として優れているが、機器全
体が大型化する傾向がある。そこでこの種変圧器
は、一般に複数個の単位変圧器に分割して製造
し、この各単位変圧器毎に輸送して現地において
各単位変圧器の相互間を接続する手法が広く採用
されている。
This three-winding transformer is useful for grid connection, power factor adjustment,
Because it has good characteristics in suppressing high-frequency waves, it is excellent as a large-capacity transformer for power transmission systems, but the overall size of the device tends to increase. Therefore, this type of transformer is generally manufactured by dividing it into multiple unit transformers, transporting each unit transformer separately, and connecting each unit transformer to each other at the site, which is widely adopted. .

しかして、変圧器においては、系統機器の保護
上、巻線端子間での短絡電流を系統の遮断容量以
下に抑えることが必要となる。三巻線変圧器の場
合は、三次巻線の端子電圧が10〜70KVであるの
に対し、これに適用される遮断器の容量は、たか
だか50KAに限定されるため、三次巻線端子間で
の短絡電流を遮断容量以下に抑える必要がある。
この短絡電流の値は、巻線間インピーダンス特に
低圧巻線と三次巻線との間のインピーダンスによ
り決まるが、短絡電流を抑制するため、さらに限
流リアクトルを三次巻線に直列に接続することが
行なわれている。
Therefore, in the transformer, in order to protect the system equipment, it is necessary to suppress the short-circuit current between the winding terminals to below the breaking capacity of the system. In the case of a three-winding transformer, the terminal voltage of the tertiary winding is 10 to 70KV, but the capacity of the circuit breaker applied to this is limited to 50KA at most, so the voltage between the tertiary winding terminals is It is necessary to suppress the short circuit current below the breaking capacity.
The value of this short-circuit current is determined by the impedance between the windings, especially the impedance between the low-voltage winding and the tertiary winding, but in order to suppress the short-circuit current, it is possible to further connect a current limiting reactor in series with the tertiary winding. It is being done.

第2図に従来の三巻線変圧器の一相分の概略構
成を示している。すなわち鉄心41に内側から三
次巻線31、低圧巻線21および高圧巻線11を
巻回してこれをタンク51内に収容した単位変圧
器61と、鉄心42に内側から三次巻線32、低
圧巻線22および高圧巻線12を巻回してこれを
タンク52内に収容した単位変圧器62とを有
し、高圧巻線11,12を直列接続して高圧線路
側端子Uと中性点側端子Oとし、低圧巻線21,
22を並列接続して低圧線側端子uと中性点側端
子θとし、また三次巻線31,32を直列に接続
して一方の端子a1と他方を限流リアクトル7を通
して端子a2としている。
FIG. 2 shows a schematic configuration of one phase of a conventional three-winding transformer. That is, there is a unit transformer 61 in which a tertiary winding 31, a low voltage winding 21, and a high voltage winding 11 are wound around an iron core 41 from the inside and housed in a tank 51, and a tertiary winding 32 and a low voltage winding are wound around an iron core 42 from the inside. It has a unit transformer 62 in which the line 22 and the high voltage winding 12 are wound and housed in the tank 52, and the high voltage windings 11 and 12 are connected in series to form a high voltage line side terminal U and a neutral point side terminal. O, low voltage winding 21,
22 are connected in parallel to form the low voltage line side terminal u and the neutral point side terminal θ, and the tertiary windings 31 and 32 are connected in series and one terminal A 1 and the other are passed through the current limiting reactor 7 to form the terminal A 2 . There is.

そしてこれらの単相器の3台で三相バンクを構
成するには、高圧側をY形結線、低圧側をY形結
線および三次側をΔ結線で接続すればよい。この
ように各巻線を各単位変圧器タンク51,52毎
に分割して収容して各単位変圧器61,62を構
成したことにより、各単位変圧器61,62毎に
輸送することによつて輸送寸法重量を小さくする
ことができる。
In order to configure a three-phase bank with three of these single-phase devices, the high voltage side can be connected in a Y-type connection, the low-voltage side can be connected in a Y-type connection, and the tertiary side can be connected in a Δ connection. By configuring each unit transformer 61, 62 by dividing and housing each winding in each unit transformer tank 51, 52 in this way, it is possible to transport each unit transformer 61, 62 separately. Transport size and weight can be reduced.

しかして、合理的な巻線配置構造を有する第2
図の三巻線変圧器において、変圧器の一方の巻線
に雷インパルス電圧が印加された場合、静電誘導
および電磁誘導によつて他の巻線に誘起される移
行電圧への保護対策を講じなければならない。す
なわち、第2図において、低圧巻線21の線路端
子uの電圧が高い場合、低圧線路端子uからの雷
インパルス侵入に対し、三次巻線31,32には
巻線間のインダクタンスおよびキヤパシタンスで
決る移行電圧が発生し、この電圧はしばしば三次
巻線自身の絶縁レベルを超えることがある。
Therefore, a second winding having a rational winding arrangement structure
In the three-winding transformer shown in the figure, when a lightning impulse voltage is applied to one winding of the transformer, protective measures must be taken against the transition voltage induced in the other winding by electrostatic induction and electromagnetic induction. must be taught. In other words, in FIG. 2, when the voltage at the line terminal u of the low-voltage winding 21 is high, the tertiary windings 31 and 32 have a voltage that is determined by the inductance and capacitance between the windings in response to lightning impulses entering from the low-voltage line terminal u. A transition voltage occurs, which often exceeds the insulation level of the tertiary winding itself.

この時に単位変圧器61においては、低圧巻線
21の線路端子uに対向する三次巻線31の端部
は、三次線路端子a1になつており、通常線路端子
a1,a2はサージアブソーバz1,z2で保護されるの
で、その移行電圧は低いレベルに抑えられる。と
ころが単位変圧器62においては、低圧巻線22
の線路端子uに対向する三次巻線32の端部32
aは、限流リアクトル7に接続されて電圧を制限
する装置を持たないため、大きな移行電圧が発生
することになる。このため、鉄心42と三次巻線
32との間の絶縁寸法を三次巻線の端子a2の絶縁
レベルから決まる絶縁寸法以上にする必要があ
る。このように絶縁寸法を大きくとれば、それに
伴つて外側に配置される巻線径が増し、したがつ
て変圧器の重量が増加して発生損失も増大して不
経済な変圧器となる。
At this time, in the unit transformer 61, the end of the tertiary winding 31 facing the line terminal u of the low voltage winding 21 is the tertiary line terminal a1 , which is a normal line terminal.
Since a 1 and a 2 are protected by surge absorbers z 1 and z 2 , their transition voltage can be suppressed to a low level. However, in the unit transformer 62, the low voltage winding 22
The end 32 of the tertiary winding 32 facing the line terminal u of
A has no device connected to the current limiting reactor 7 to limit the voltage, so a large transition voltage will occur. Therefore, the insulation dimension between the iron core 42 and the tertiary winding 32 needs to be greater than or equal to the insulation dimension determined from the insulation level of the terminal a2 of the tertiary winding. If the insulation dimensions are increased in this manner, the diameter of the windings disposed on the outside increases accordingly, which increases the weight of the transformer and increases the loss generated, resulting in an uneconomical transformer.

〔考案の目的〕[Purpose of invention]

本考案の目的は、低圧巻線に雷インパルスの侵
入時に発生する三次巻線の端部の移行電圧を十分
に抑制し、鉄心と三次巻線間の寸法をその巻線端
子の絶縁レベルから決る絶縁寸法以上に拡げるこ
となく製作でき、小形化した三巻線変圧器を提供
するにある。
The purpose of this invention is to sufficiently suppress the transition voltage at the end of the tertiary winding that occurs when lightning impulses enter the low-voltage winding, and to determine the dimensions between the iron core and the tertiary winding from the insulation level of the winding terminals. To provide a miniaturized three-winding transformer that can be manufactured without expanding beyond insulation dimensions.

〔考案の概要〕[Summary of the idea]

本考案による三巻線変圧器は、分割された2つ
の三次巻線単位を限流リアクトルを介して直列接
続することにより、低圧巻線の線路端と対向する
2つの三次巻線単位の端部をサージアブソーバー
で保護された線路端子としたことを特徴とするも
のである。
The three-winding transformer according to the present invention connects two divided tertiary winding units in series via a current limiting reactor, so that the ends of the two tertiary winding units opposite to the line end of the low voltage winding The line terminal is protected by a surge absorber.

〔考案の実施例〕[Example of idea]

以下本考案を第1図に示す実施例について説明
するが、同図において第2図と同一符号は同一部
分を示すものであるから、その説明を省略する。
すなわち、本考案における三巻線変圧器は、2台
の単位変圧器61,62を有すること、その各変
圧器61,62の高圧巻線11,12、低圧巻線
21,22の配置および接続構成は、第2図に示
す従来のものと同一である。
The present invention will be described below with reference to the embodiment shown in FIG. 1. In this figure, the same reference numerals as in FIG. 2 indicate the same parts, so the explanation thereof will be omitted.
That is, the three-winding transformer according to the present invention has two unit transformers 61 and 62, and the arrangement and connection of the high voltage windings 11 and 12 and the low voltage windings 21 and 22 of each transformer 61 and 62. The configuration is the same as the conventional one shown in FIG.

本考案においては、第1図に示すように三次巻
線31,32を限流リアクトル7を介して直列に
接続したことを特徴とするものである。この接続
構成により、単位変圧器61の低圧巻線21の線
路端子uに対向する三次巻線31の端部は、線路
端子a1となり、また単位変圧器62の低圧巻線2
2の線路端子uに対向する三次巻線32の端部
は、線路端子a2となる。
The present invention is characterized in that the tertiary windings 31 and 32 are connected in series via a current limiting reactor 7, as shown in FIG. With this connection configuration, the end of the tertiary winding 31 facing the line terminal u of the low voltage winding 21 of the unit transformer 61 becomes the line terminal a 1 , and the low voltage winding 2 of the unit transformer 62
The end of the tertiary winding 32 facing the line terminal u of No. 2 becomes the line terminal a2 .

しかして、線路端子a1および線路端子a2にはサ
ージアゾソーバーz1,z2を接続して端子電圧が端
子の絶縁レベル以下になるように保護しているた
め、低圧巻線21および22から三次巻線31お
よび32への移動電圧が最大となる線路端子uの
対向部でも、三次巻線31,32自身の絶縁レベ
ルつまり線路端子a1,a2の絶縁レベル以下に抑え
ることができる。
Since the line terminals a 1 and a 2 are connected to surge diazosorbers z 1 and z 2 to protect the terminal voltages from being below the insulation level of the terminals, the low voltage windings 21 and 22 Even at the opposing portion of the line terminal u where the transfer voltage from the tertiary windings 31 and 32 to the tertiary windings 31 and 32 is maximum, it can be suppressed to the insulation level of the tertiary windings 31 and 32 themselves, that is, the insulation level of the line terminals a 1 and a 2 or less. .

したがつて鉄心42と三次巻線32との間に発
生する電圧つまり低圧巻線22から三次巻線32
への移行電圧が従来の結線では三次の線路端子
a1,a2の絶縁レベル以上であつたが、本考案の結
線ではこれ以下となるため、鉄心42と三次巻線
32との間の絶縁寸法を小さくすることができ
る。
Therefore, the voltage generated between the iron core 42 and the tertiary winding 32, that is, the voltage generated between the low voltage winding 22 and the tertiary winding 32
In conventional wiring, the transition voltage to the tertiary line terminal
Although the insulation level was higher than that of a 1 and a 2 , the wiring connection of the present invention is lower than this level, so that the insulation dimension between the iron core 42 and the tertiary winding 32 can be reduced.

なお、第1図に示す本考案の実施例では、三次
巻線の外側に低圧巻線と高圧巻線を配置した場合
について説明したが、単巻変圧器ならば、三次巻
線の外側に分路巻線と直列巻線を配置しても同様
な効果を得ることができる。また第1図の場合
は、2分割した三次巻線31,32を別々のタン
クに収納した場合を示しているが、2分割した三
次巻線31,32を同一鉄心で各々異なる鉄心脚
に巻装し、同一タンク内に収納した場合について
も、限流リアクトル7を同様な位置で接続すれ
ば、同等な効果を得ることができる。
In the embodiment of the present invention shown in Fig. 1, a case has been explained in which the low-voltage winding and high-voltage winding are arranged outside the tertiary winding, but in the case of an auto-transformer, they are arranged outside the tertiary winding. A similar effect can be obtained by arranging a path winding and a series winding. Furthermore, in the case of Fig. 1, the tertiary windings 31 and 32 divided into two parts are stored in separate tanks, but the tertiary windings 31 and 32 divided into two parts are wound on different core legs on the same core. Even when the current limiting reactor 7 is installed and housed in the same tank, the same effect can be obtained by connecting the current limiting reactor 7 at the same position.

〔考案の効果〕[Effect of idea]

以上のように本考案によれば、2分割された三
次巻線単位を限流リアクトルを間に置いて直列に
接続したことにより、低圧巻線から分割された三
次巻線単位に移行される移行電圧は、それぞれの
端子部でサージアブソーバーによつて三次巻線自
身の絶縁レベル以下に抑さえられるため、巻線と
鉄心間との絶縁寸法を小さくすることができる。
As described above, according to the present invention, by connecting two divided tertiary winding units in series with a current limiting reactor placed between them, a transition is made from a low voltage winding to a divided tertiary winding unit. Since the voltage is suppressed to below the insulation level of the tertiary winding itself by the surge absorber at each terminal, the insulation dimension between the winding and the iron core can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の三巻線変圧器の一実施例を示
す巻線配置図、第2図は従来の三巻線変圧器を示
す巻線配置図である。 61,62……単位変圧器、51,52……タ
ンク、11,12……高圧巻線単位、21,22
……低圧巻線単位、31,32……三次巻線単
位、41,42……鉄心、U……線路側高圧端
子、O……中性点側高圧端子、u……線路側低圧
端子、θ……中性点側低圧端子、a1,a2……三次
巻線端子。
FIG. 1 is a winding layout diagram showing an embodiment of the three-winding transformer of the present invention, and FIG. 2 is a winding layout diagram showing a conventional three-winding transformer. 61, 62... Unit transformer, 51, 52... Tank, 11, 12... High voltage winding unit, 21, 22
...Low voltage winding unit, 31, 32... Tertiary winding unit, 41, 42... Iron core, U... Line side high voltage terminal, O... Neutral point side high voltage terminal, u... Line side low voltage terminal, θ...neutral side low voltage terminal, a1 , a2 ...tertiary winding terminal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高圧巻線、低圧巻線および三次巻線の三巻線を
1相当り2つの巻線単位に分割して夫々異なる鉄
心脚に巻装した三巻線変圧器において、前記2分
割された三次巻線単位を限流リアクトルを介して
直列に接続し、その両三次巻線単位の線路端子側
と各三次巻線単位の外側に巻装した巻線の線路端
子側とを対向して配置したことを特徴とする三巻
線変圧器。
In a three-winding transformer in which the three windings of a high-voltage winding, a low-voltage winding, and a tertiary winding are divided into two winding units per unit and wound on different iron core legs, the tertiary winding is divided into two. Wire units are connected in series via a current limiting reactor, and the line terminal sides of both tertiary winding units and the line terminal sides of the windings wound outside each tertiary winding unit are arranged to face each other. A three-winding transformer featuring:
JP12096984U 1984-08-08 1984-08-08 three winding transformer Granted JPS6138919U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12096984U JPS6138919U (en) 1984-08-08 1984-08-08 three winding transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12096984U JPS6138919U (en) 1984-08-08 1984-08-08 three winding transformer

Publications (2)

Publication Number Publication Date
JPS6138919U JPS6138919U (en) 1986-03-11
JPH0244508Y2 true JPH0244508Y2 (en) 1990-11-27

Family

ID=30679766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12096984U Granted JPS6138919U (en) 1984-08-08 1984-08-08 three winding transformer

Country Status (1)

Country Link
JP (1) JPS6138919U (en)

Also Published As

Publication number Publication date
JPS6138919U (en) 1986-03-11

Similar Documents

Publication Publication Date Title
US10424929B2 (en) Transformers with multi-turn primary windings for dynamic power flow control
US4473817A (en) Coupling power line communications signals around distribution transformers
US6891303B2 (en) High voltage AC machine winding with grounded neutral circuit
CN101523682A (en) Thyristor valve of a hvdc transmission system
US4677401A (en) Noise filter for three-phase four-wire system
CN111106600B (en) Parameter optimization method for high-impedance grounding device of neutral point of large and medium hydraulic generator
US10903653B2 (en) Voltage agnostic power reactor
CN106253255A (en) A kind of generator neutral point high induction reactance grounding device
CN205303137U (en) Auto transformer with voltage regulation coil
JPH0244508Y2 (en)
JPH099499A (en) Current limiter
EP3533124A1 (en) Fault current limiter with modular mutual reactor
EP2287990A1 (en) A device protecting against high frequency overvoltage
CN100433209C (en) Lightning protection antiinterference capactive transformer
JPH056649Y2 (en)
JPS6184008A (en) Three-phase transformer
JPS61234014A (en) Transition voltage protector for toroidal transformer
CN217956691U (en) Anti-surge protection circuit
JP2000277363A (en) Capacitance divider voltage transformer
KR200212603Y1 (en) Lightning arrester device
JPS61135105A (en) Transformer winding
Alexander et al. EHV application of autotransformers
JPS6115570B2 (en)
JPS6232602B2 (en)
JPS6196709A (en) Autotransformer