JP2000277363A - Capacitance divider voltage transformer - Google Patents

Capacitance divider voltage transformer

Info

Publication number
JP2000277363A
JP2000277363A JP11302117A JP30211799A JP2000277363A JP 2000277363 A JP2000277363 A JP 2000277363A JP 11302117 A JP11302117 A JP 11302117A JP 30211799 A JP30211799 A JP 30211799A JP 2000277363 A JP2000277363 A JP 2000277363A
Authority
JP
Japan
Prior art keywords
capacitance
conductor
metal layer
layer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11302117A
Other languages
Japanese (ja)
Inventor
Satoo Hayade
聰雄 早出
Akira Kobayashi
朗 小林
Takashi Sakurai
貴志 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP11302117A priority Critical patent/JP2000277363A/en
Priority to DE2000630496 priority patent/DE60030496T2/en
Priority to EP20000101081 priority patent/EP1022749B1/en
Publication of JP2000277363A publication Critical patent/JP2000277363A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/005Insulators structurally associated with built-in electrical equipment

Landscapes

  • Transformers For Measuring Instruments (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PROBLEM TO BE SOLVED: To construct a capacitance divider voltage transformer without increasing space. SOLUTION: A voltage transformer comprises a power cable or an insulated bus, having an internal semiconductor layer 3, a main insulating layer 4, and an external semiconductor layer 5 arranged outside a conductor 2, and a capacitance divider voltage metal layer 6, an auxiliary insulating layer 7, a ground metal layer 8, are as necessary, a protection layer 9 arranged outside the power cable or the insulating bus. A divided voltage extracting tap T is provided by connecting an insulated line 10 to the layer 6, and a ground tap E is provided by connecting a ground line 11 to the layer 8. In this case, the thickness and the like of the layer 7 are selected such that a capacitance C1 provided by the layer 4 is sufficiently larger than a capacitance C2 provided by the layer 7, so as to obtain a low voltage between the taps T and E.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、パワーケーブル
又は絶縁母線を利用した静電容量分圧形電圧変成器に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance-divided voltage transformer using a power cable or an insulated bus.

【0002】[0002]

【従来の技術】電圧変成器(VT)には変成器構成の誘
導形VTと直列キャパシタ構成の静電容量分圧形VTが
ある(図7)。誘導形VTと静電容量分圧形VTの使用
区分は使用されるライン電圧(システム電圧)によりほ
ぼ以下のように区分される。
2. Description of the Related Art There are two types of voltage transformers (VT): an inductive type VT having a transformer configuration and an electrostatic capacity dividing type VT having a series capacitor configuration (FIG. 7). The usage type of the induction type VT and the capacitance division type VT is roughly classified as follows according to the line voltage (system voltage) used.

【0003】オープン形変電所と発電所の場合、36k
Vまでは誘導形VTが使用され、72.5kV以上では
静電容量分圧形VTが使用されている。また、GIS形
の変電所と発電所の場合、245kVまでは誘導形VT
が使用され、300kV以上では静電容量分圧形VTが
使用されている。
[0003] In the case of open substations and power plants, 36k
Up to V, an inductive VT is used, and above 72.5 kV, a capacitance-divided VT is used. In the case of GIS type substations and power plants, induction type VTs up to 245 kV
Is used, and when the voltage is 300 kV or more, a capacitance-divided VT is used.

【0004】上記誘導形VTと静電容量分圧形VTの使
用区分の境は電圧によって厳格に決められている訳では
なく、同一仕様でどちらが安いかという経済的理由が主
な要因である。一般には電圧が高くなるに従い静電容量
分圧形VTが経済的に有利となる。
[0004] The boundary between the use of the induction type VT and the use of the capacitance division type VT is not strictly determined by the voltage, but is mainly due to the economic reason of which one is the same specification and which is cheaper. In general, the higher the voltage, the more economically the capacitance-divided VT is advantageous.

【0005】[0005]

【発明が解決しようとする課題】誘導形VT(図7
(a))に直流耐圧試験や直流絶縁試験のように直流電
圧を印加するとき周波数を0にすると誘導形VTはリア
クタンス(LO)によりインピーダンス(ωLO)を発生
させているためにインピーダンスが0となってしまう。
この誘導形VTをラインから切り離して試験をしないと
本当の絶縁チェックができないことになる。そのため断
路装置あるいは引出装置が必要となる。
SUMMARY OF THE INVENTION An induction type VT (FIG. 7)
When the frequency is set to 0 when a DC voltage is applied as in the DC withstand voltage test or the DC insulation test in (a)), the inductive VT generates impedance (ωL O ) by reactance (L O ), so that the impedance is reduced. It will be 0.
Unless this inductive VT is separated from the line and tested, a true insulation check cannot be performed. Therefore, a disconnecting device or a drawing device is required.

【0006】また、間違って誘導形VTをラインに接続
したまま試験したとき、インピーダンス0により短絡電
流が流れ誘導形VTを破壊させる可能性があるため、電
圧が3.6kV以下のラインでは誘導形VTの1次側に
パワーフューズを取り付ける場合が多い。
In addition, when a test is performed with the inductive VT connected to the line by mistake, a short-circuit current may flow due to impedance 0 and the inductive VT may be destroyed. In many cases, a power fuse is attached to the primary side of the VT.

【0007】一方、静電容量分圧形VT(図7(b))
の場合は、このような問題がないことから静電容量分圧
形VT単体とその付属装置を含めた上での経済的比較を
すれば、静電容量分圧形VTの使用範囲の拡大が期待さ
れる。
On the other hand, a capacitive voltage dividing type VT (FIG. 7B)
In the case of the above, since there is no such a problem, an economical comparison of the capacitance-divided VT alone and its attached devices shows that the range of use of the capacitance-divided VT can be expanded. Be expected.

【0008】また最近のデジタルリレー/メータの普及
に伴いVTの2次負荷は極端に減少している。電圧36
kV以下のVTは従来200VAであった負荷が現在3
0VAになっている。また、電圧72.5kV以上のV
Tは従来500VAであったものが現在50VAになっ
ている。将来は更にもう少し減少する可能性がある。
Further, with the recent spread of digital relays / meters, the secondary load of the VT has been extremely reduced. Voltage 36
The VT below kV is now 200VA and the load is now 3
0 VA. In addition, a voltage of 72.5 kV or more V
T has been reduced from 500 VA in the past to 50 VA. In the future, it may decrease even further.

【0009】また、ガス絶縁開閉装置(GIS)では誘
導形VTが使用されることが多いが、スペースを増加さ
せずに電圧検出ができることになれば、又はSF6ガス
を使用しないで電圧検出できることになれば、それらは
静電容量分圧形VTとなる可能性が大であり、静電容量
分圧形VTの製作限界を更に拡げる可能性がある。
In addition, an inductive type VT is often used in a gas insulated switchgear (GIS). However, if voltage detection can be performed without increasing space, or voltage detection can be performed without using SF6 gas. If so, there is a great possibility that they will be capacitance divided VTs, which may further expand the manufacturing limit of the capacitance divided VT.

【0010】この発明は、上記課題に鑑みてなされたも
のであり、その目的とするところは、設置スペースを必
要としないパワーケーブル又は絶縁母線を利用した静電
容量分圧形電圧検出器を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a capacitance-divided voltage detector using a power cable or an insulated bus that does not require an installation space. Is to do.

【0011】[0011]

【課題を解決するための手段】この発明の静電容量分圧
形電圧検出器は、導体の上に内部半導体層、主絶縁層、
外部半導体層が施されたパワーケーブル又は絶縁母線の
外部半導体層の上に静電容量分圧用メタル層を施し、そ
の上に補助絶縁層を介して接地メタル層を設け、静電容
量分圧用メタル層と接地メタル層との間から静電容量分
圧電圧を引き出したことを特徴とする。
According to the present invention, there is provided a capacitance-divided voltage detector according to the present invention, comprising: an internal semiconductor layer, a main insulating layer,
A metal layer for capacitance division is provided on the external semiconductor layer of the power cable or the insulating bus bar on which the external semiconductor layer is provided, and a ground metal layer is provided thereon via an auxiliary insulation layer, and the metal for capacitance division is provided. A capacitance divided voltage is drawn from between the layer and the ground metal layer.

【0012】この静電容量分圧形電圧検出器はその一端
を封じきり、他端側をコネクタを介してガス絶縁開閉装
置内部の回路導体に接続して使用することができる。
This capacitance-divided voltage detector can be used with one end sealed and the other end connected to a circuit conductor inside the gas insulated switchgear via a connector.

【0013】または、静電容量分圧形電圧検出器をパワ
ーケーブル又は絶縁母線の少なくとも一方に設けてその
導体をガス絶縁装置内の回路導体に接続して使用する。
Alternatively, a capacitance-divided voltage detector is provided on at least one of a power cable and an insulated bus, and its conductor is connected to a circuit conductor in a gas insulation device for use.

【0014】または、接続用母線である円柱状の内部導
体と、この内部導体と同電位である1または複数の円筒
状の外部導体を同心配置し、内部導体と外側の外部導体
の間又は内部導体と外側の外部導体および各外部導体の
間にそれぞれ円筒状の接地メタル層を同心配置すると共
に、最も外側の外部導体の外側に円筒状の接地メタル層
を同心配置し、さらに、内部導体と外部導体と接地メタ
ル層との間に、それぞれ静電容量分圧用メタル層を配置
し、内部導体と外部導体をリード線で接続すると共に、
各静電容量分圧用メタル層同志、各接地メタル層同志を
それぞれリード線で接続してなることを特徴とする。
Alternatively, a cylindrical internal conductor serving as a connection bus and one or more cylindrical external conductors having the same potential as the internal conductor are concentrically arranged, and the space between the internal conductor and the external external conductor or inside the internal external conductor is provided. A cylindrical grounding metal layer is concentrically arranged between the conductor and the outer outer conductor and each outer conductor, and a cylindrical grounding metal layer is concentrically arranged outside the outermost outer conductor. Between the outer conductor and the ground metal layer, a metal layer for electrostatic capacity division is arranged, and the inner conductor and the outer conductor are connected by a lead wire,
Each of the capacitance dividing metal layers and each of the grounding metal layers are connected by a lead wire.

【0015】[0015]

【発明の実施の形態】実施の形態1 図1にパワーケーブル又は絶縁母線を利用した静電容量
分圧形電圧変成器(以下CVTという)の断面構造を示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 shows a cross-sectional structure of a capacitance-divided voltage transformer (hereinafter referred to as CVT) using a power cable or an insulated bus.

【0016】CVT1は、パワーケーブル又は絶縁母線
として導体2の上に電界,電位緩和用の内部半導体層
3,主絶縁層4,電界,電位緩和用の外部半導体層5を
有するものを利用し、外部半導体層5の上に、静電容量
分圧用メタル層6,補助絶縁層7,接地メタル層8と必
要に応じ最外側層として保護層9を設け、分圧用メタル
層6から絶縁線10で分圧タップTを引き出し、接地メ
タル層8から導線11で接地タップEを引き出した構成
となっている。なお、保護層9は機械的なストレス除去
や耐候性,熱放散向上等を考慮して設ける。
The CVT 1 uses a power cable or an insulating bus having an internal semiconductor layer 3 for alleviating an electric field and potential on the conductor 2, a main insulating layer 4, an external semiconductor layer 5 for reducing the electric field and potential on the conductor 2. On the external semiconductor layer 5, a metal layer 6 for capacitive voltage division, an auxiliary insulating layer 7, a ground metal layer 8, and a protective layer 9 as an outermost layer if necessary, are provided. The configuration is such that the voltage dividing tap T is drawn out, and the grounding tap E is drawn out from the grounding metal layer 8 by the conducting wire 11. The protective layer 9 is provided in consideration of mechanical stress removal, weather resistance, improvement of heat dissipation, and the like.

【0017】上記補助絶縁層7は、該層に掛る交流電圧
が低圧レベルとなるように、主絶縁層4のキャバシタン
スC1との比を考慮したキャバシタンスC2が得られるよ
うに材料及び厚みを選択する。
The material and the thickness of the auxiliary insulating layer 7 are adjusted so that the AC voltage applied to the auxiliary insulating layer 7 is at a low voltage level and the capacitance C 2 in consideration of the ratio with the capacitance C 1 of the main insulating layer 4 is obtained. select.

【0018】また、静電容量分圧用メタル層6は、ある
程度の電流を流せるように考慮し、ケーブル接続点のど
ちらか一方に静電容量分圧用メタル層6より絶縁線10
で分圧電圧タップTを引き出し、接地メタル層8からは
従来通り導線11で接地タップEを引き出す。
In consideration of allowing a certain amount of current to flow, the capacitance dividing metal layer 6 is connected to one of the cable connection points by an insulating wire 10 from the capacitance dividing metal layer 6.
To pull out the divided voltage tap T, and the grounding tap E is drawn out from the grounding metal layer 8 by the conducting wire 11 as in the conventional case.

【0019】上記静電容量分圧用キャバシタンスC1
2については、ケーブル又は絶縁母線の長さにより変
化するがC1/C2の比が一定であるため、電圧別にC1
の必要最低限の静電容量を決めておく。ケーブルサイズ
が決まれば、あとはケーブルの最短長さを算出し、その
長さ以上で自由に適用する。
The capacitance division capacitance C 1 ,
C 2 varies with the length of the cable or the insulated bus, but since the ratio of C 1 / C 2 is constant, C 1 is different for each voltage.
The minimum required capacitance is determined in advance. Once the cable size is determined, calculate the shortest length of the cable and apply it freely if it is longer than that length.

【0020】図2に示すように上記構成のCVT1を3
台(1R,1Y,1B)三相器としてスター接続し、接地
タップEを中性点として接地する。更に、三相分のタッ
プT R,TY,TBを取り出し、タップTR,TY,TBより
低圧絶縁ケイブル(又は低圧シールド線)21にて三相
低圧VT箱22に引き込み、その箱内の5脚の鉄心24
を用いた三相低圧VT25の1次巻線26にそれぞれチ
ョークコイル23を介して接続する。VT25の1次巻
線26/2次巻線27/3次巻線28の結線はスター/
スター/オープンデルタであり、スター中性点は接地さ
れる。
As shown in FIG.
Stand (1R, 1Y, 1B) Star connection as a three-phase device and grounding
The tap E is grounded as a neutral point. In addition, three phase
T R, TY, TBTake out and tap TR, TY, TBThan
Three-phase with low-voltage insulation cable (or low-voltage shielded wire) 21
It is pulled into the low pressure VT box 22 and the five cores 24 in the box.
To the primary winding 26 of the three-phase low-voltage VT 25 using
It is connected via the yoke coil 23. Primary winding of VT25
The connection of the wire 26 / secondary winding 27 / tertiary winding 28 is star /
Star / open delta with star neutral point grounded
It is.

【0021】低圧VT箱22はCVTに直に取り付ける
必要がなく、CVT1と少し離れた場所、例えば低圧盤
内又はGISのタンクの外に取り付ける。端子箱29か
ら出力されるVT25の2次巻線27及び3次巻線28
の出力はディジタルリレー/メータに入力する。
The low-pressure VT box 22 does not need to be directly mounted on the CVT, but is mounted at a place slightly away from the CVT 1, for example, in a low-pressure board or outside a GIS tank. Secondary winding 27 and tertiary winding 28 of VT 25 output from terminal box 29
Is input to a digital relay / meter.

【0022】上記CVT(図1)の実施例について説明
する。
An embodiment of the CVT (FIG. 1) will be described.

【0023】実施例1 図3について、断面構造図1と同様に構成されるCVT
1の1端を,導体2(22)の端部を各層部材3〜8で
包むように封じきり、他端から導体22が突出した状態
でCVT1を保護層9で覆う。一方、ガス絶縁開閉器等
の機器容器31に上記CVT1接続用の導体21を有す
るブッシング32を設けると共に、機器容器31の内部
導体33にCVT1を接続用のコネクタ34を設け、ブ
ッシング側導体21をコネクタ34に接続して置く。ま
た、ブッシング側導体21とCVT1側導体21が接続可
能なようにコネクタ23を設ける。
Embodiment 1 Referring to FIG. 3, a CVT having a sectional structure similar to that of FIG.
1 of 1 end cover Fujikiri to surround the end of the conductor 2 (2 2) in each layer member 3 to 8, the CVT1 in a state in which the conductor 2 2 is projected from the other end with a protective layer 9. On the other hand, a bushing 32 having the conductor 21 for connection of the CVT 1 is provided on a device container 31 such as a gas insulated switchgear, and a connector 34 for connecting the CVT 1 is provided on an internal conductor 33 of the device container 31. 1 is connected to the connector 34 and placed. Moreover, the bushing-side conductor 2 1 CVT1 side conductor 2 1 provided connector 2 3 to be connectable.

【0024】しかして、CVT1をブッシング32に嵌
入することで、CVT側導体22をブッシング側導体21
を介してガス絶縁開閉器等の内部導体33に接続するこ
とができる。なお、電圧分圧タップT及び接地タップE
はCVT1よりGISの外側に引き出す。また、ブッシ
ング32と機器容器31との間及びブッシング32とC
VT1との間は気密にすると共に、CVT1がブッシン
グ32から抜けないようにする。
[0024] Thus, by fitting the CVT1 bushing 32, the CVT side conductor 2 2 bushing side conductor 2 1
Can be connected to an internal conductor 33 such as a gas insulated switch. Note that the voltage dividing tap T and the ground tap E
Is pulled out of GIS from CVT1. Further, between the bushing 32 and the equipment container 31 and between the bushing 32 and C
The space between the VT1 and the VT1 is made airtight, and the CVT1 is prevented from falling out of the bushing 32.

【0025】実施例2 図4について、機器41と接続するパワーケーブル11
又は機器41,41間を接続する絶縁母線12を上記図
1に示すと同様にCVTに形成し、ケーブルコネクタ4
2を取り付け、片側のコネクタ42からタップT及び接
地E(図示省略)を引き出す。パワーケーブル11はケ
ーブルの仕事を、絶縁母線12は母線の仕事をしながら
CVTとして機能する。上記CVT1のタップTや接地
タップEは常に1対と考え、両側のコネクタのどちらか
片側から引き出す。
[0025] For Example 2 Figure 4, the power cable 1 1 to be connected to the device 41
Or insulated bus 1 2 connected between devices 41, 41 formed in the CVT similar to that shown in FIG. 1, the cable connector 4
2 is attached, and the tap T and the ground E (not shown) are pulled out from the connector 42 on one side. Power cable 1 1 work cable, insulated bus 1 2 functions as CVT while working busbar. The tap T and the ground tap E of the CVT 1 are always considered as a pair, and are pulled out from one of the connectors on both sides.

【0026】なお、図1の構成で主絶縁層4と補助絶縁
層7の絶縁材料を熱可塑性材料で構成すればパワーケー
ブルと同様な曲がり易いCVTとなり、熱硬化性材料
で、構成すれば、エポキシ成形品のような曲がりにくい
機械的強度の大きいCVTが得られる。これを使いわけ
て使用する。
If the insulating material of the main insulating layer 4 and the auxiliary insulating layer 7 is made of a thermoplastic material in the structure shown in FIG. 1, the CVT becomes easy to bend like a power cable, and if it is made of a thermosetting material, A CVT that is hard to bend and has high mechanical strength, such as an epoxy molded product, can be obtained. We will use this separately.

【0027】実施の形態2 図5、図6に実施の形態2にかかるCVTの構成を示
す。このCVT1は、大電流通電可能なGIS接続用母
線である円柱状内部導体2の上に図1の場合と同様に、
内部半導体層3、主絶縁層4、外部半導体層5、静電容
量分圧用メタル層6、補助絶縁層7、円筒状接地メタル
層8を順次設ける。その上に補助絶縁層61、静電容量
分圧用メタル層62、半導体層63、外部主絶縁層6
4、半導体層65、円筒状の箔からなる外部導体66を
順次設ける。更にその上に半導体層67、外部主絶縁層
68、半導体層69、静電容量分圧用メタル層70、補
助絶縁層71、接地メタル層72、保護層73を順次設
ける。
Second Embodiment FIGS. 5 and 6 show a configuration of a CVT according to a second embodiment. This CVT 1 is placed on a cylindrical inner conductor 2 which is a bus for GIS connection through which a large current can flow, as in FIG.
An internal semiconductor layer 3, a main insulating layer 4, an external semiconductor layer 5, a metal layer 6 for capacitance division, an auxiliary insulating layer 7, and a cylindrical grounding metal layer 8 are sequentially provided. An auxiliary insulating layer 61, a metal layer 62 for capacitance division, a semiconductor layer 63, an external main insulating layer 6
4. A semiconductor layer 65 and an external conductor 66 made of a cylindrical foil are sequentially provided. Further thereon, a semiconductor layer 67, an external main insulating layer 68, a semiconductor layer 69, a metal layer for capacitance division 70, an auxiliary insulating layer 71, a ground metal layer 72, and a protective layer 73 are sequentially provided.

【0028】内部導体2と外部導体66を絶縁電線74
で接続して外部導体66を内部導体2と同電位とする。
また、静電容量分圧用メタル層6,62,70を絶縁電
線75で接続してタップTとし、接地メタル層8と72
を絶縁電線76で接続して接地端子Eとする。
The inner conductor 2 and the outer conductor 66 are connected to an insulated wire 74
To make the outer conductor 66 the same potential as the inner conductor 2.
The metal layers 6, 62, and 70 for dividing the capacitance are connected by an insulated wire 75 to form a tap T.
Are connected by an insulated wire 76 to form a ground terminal E.

【0029】内部導体2と静電容量分圧用メタル層6間
の静電容量をC1、このメタル層6と接地メタル層間の
静電容量をC2、このメタル層と静電容量分圧用メタル
層62間の静電容量をC2′、このメタル層62と外部
導体66間の静電容量をC1′、この導体66と静電容
量分圧用メタル層70間の静電容量をC1″、このメタ
ル層70と接地メタル層72間の静電容量をC2″とす
ると、内部導体2とタップT間の静電容量はC1+C1
+C1″、タップTと接地タップE間の静電容量はC2
2′+C2″となる。そのため静電容量の大きなCVT
が構成される。
The capacitance between the internal conductor 2 and the capacitance dividing metal layer 6 is C 1 , the capacitance between this metal layer 6 and the ground metal layer is C 2 , and the capacitance between the metal layer and the capacitance dividing metal layer is C 2 . The capacitance between the layers 62 is C 2 ′, the capacitance between the metal layer 62 and the external conductor 66 is C 1 ′, and the capacitance between the conductor 66 and the capacitance dividing metal layer 70 is C 1. Assuming that the capacitance between the metal layer 70 and the ground metal layer 72 is C 2, the capacitance between the internal conductor 2 and the tap T is C 1 + C 1 ′.
+ C 1 ″, and the capacitance between tap T and ground tap E is C 2 +
C 2 ′ + C 2 ″. Therefore, CVT having a large capacitance
Is configured.

【0030】静電容量分圧用メタル層6,62,70が
同じ電圧を分担するように、即ち、C1=C1′=
1″、C2=C2′=C2″、となるように絶縁層の厚
み、誘電率等を設計する。
The capacitance dividing metal layers 6, 62 and 70 share the same voltage, that is, C 1 = C 1 '=
The thickness and dielectric constant of the insulating layer are designed so that C 1 ″ and C 2 = C 2 ′ = C 2 ″.

【0031】ブッシング32は図3の場合と同様にブッ
シング側導体21を備え、機器容器31に取付けられて
いる。このブッシング側導体21の下端にはコネクタ23
が設けられている。CVT側導体22の先端はコネクタ
3を介してブッシング側導体21と接続可能となってお
り、CVT1をブッシング32へ挿入するとCVT側導
体22はブッシング側導体21に接続され、CVT1の内
部導体2により負荷等へ大電流を供給可能となると共
に、タップTから分圧電圧が出力される。
The bushing 32 has a bushing-side conductor 2 1 as in the case of FIG. 3, is attached to the equipment container 31. Connector 2 3 This bushing side conductor 2 1 of the lower end
Is provided. The tip of the CVT side conductor 2 2 is a connectable bushing side conductor 2 1 via the connector 2 3, CVT-side conductor 2 2 When inserting the CVT1 into bushing 32 is connected to the bushing side conductor 2 1, CVT1 A large current can be supplied to a load or the like by the internal conductor 2 and a divided voltage is output from the tap T.

【0032】実施の形態2によれば、GIS接続用母線
が静電容量の比較的大きいCVTが得られる。そして、
この母線の外側に低圧用貫通形変流器又は低圧用分割形
変流器を配置すれば、一体形計器用変圧変流器を兼ねる
母線となる。
According to the second embodiment, a CVT in which the GIS connection bus has a relatively large capacitance can be obtained. And
If a low-voltage through-type current transformer or a low-voltage split-type current transformer is arranged outside this bus, it becomes a bus that also serves as an integrated instrument-use voltage transformer.

【0033】実施の形態2は外部導体が1つの例である
が、外部導体を同心的に複数設け、各外部導体間にそれ
ぞれ接地メタル層を設け、それぞれの外部導体と接地メ
タル層間に、半導体層、主絶縁層、半導体層、静電容量
分圧用メタル層、補助絶縁層を設け、内部導体と複数の
外部導体を電線74で接続すると共に、各静電容量分圧
用メタル層及び各接地メタル層をそれぞれ電線75及び
76で接続することにより、更に静電容量の大きいCV
Tを得ることができる。
The second embodiment is an example in which one external conductor is provided. However, a plurality of external conductors are provided concentrically, a ground metal layer is provided between each external conductor, and a semiconductor layer is provided between each external conductor and the ground metal layer. Layers, a main insulating layer, a semiconductor layer, a metal layer for capacitance division, and an auxiliary insulation layer. The internal conductor and a plurality of external conductors are connected by the electric wire 74, and each metal layer for capacitance division and each ground metal are provided. By connecting the layers with electric wires 75 and 76, respectively, a CV having a larger capacitance can be obtained.
T can be obtained.

【0034】[0034]

【発明の効果】この発明の静電容量分圧形変成器は、上
述のとおり構成されているので、以下に記載する効果を
奏する。 (1)パワーケーブル又は絶縁母線を利用して構成でき
る。 (2)外部は接地されているため充電部露出が無く安全
で相間絶縁距離不要である。 (3)ケーブルコネクタで接続するため脱着が可能で断
路器を兼ねることもできる。 (4)ガス絶縁開閉装置の共通母線に適用することがで
きる。その場合、SF6ガスを使用していないこと、又
は外部取り付けとなることからSF6ガス量を低減させ
る耐環境形となる。
Since the capacitance-divided transformer of the present invention is constructed as described above, the following effects can be obtained. (1) It can be configured using a power cable or an insulated bus. (2) Since the outside is grounded, there is no exposure of the charged portion, and the device is safe and does not require an interphase insulation distance. (3) Since the connection is made with a cable connector, it can be detached and attached and can also serve as a disconnector. (4) The present invention can be applied to a common bus of a gas insulated switchgear. In this case, since the SF6 gas is not used or is externally mounted, the environment-resistant type in which the SF6 gas amount is reduced is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態1にかかる静電容量分圧形電圧変成
器の要部構造を示す横断面図。
FIG. 1 is a cross-sectional view illustrating a main structure of a capacitance-divided voltage transformer according to a first embodiment.

【図2】同静電容量分圧形電圧変成器と低圧電圧変成器
の接続回路図。
FIG. 2 is a connection circuit diagram of the capacitance-divided voltage transformer and the low-voltage transformer.

【図3】実施例1にかかる静電容量分圧形電圧変成器の
構造を示す縦断面図。
FIG. 3 is a longitudinal sectional view showing the structure of the capacitance-divided voltage transformer according to the first embodiment.

【図4】実施例2にかかる機器接続例を示す側面図。FIG. 4 is a side view showing a device connection example according to the second embodiment;

【図5】実施の形態2にかかる静電容量分圧形電圧変成
器の要部構造を示す横断面図。
FIG. 5 is a cross-sectional view showing the main structure of the capacitance-divided voltage transformer according to the second embodiment;

【図6】同、静電容量分圧形変成器の構造を示す縦断面
図。
FIG. 6 is a longitudinal sectional view showing the structure of the capacitance voltage dividing type transformer.

【図7】従来誘導型電圧変成器と静電容量分圧形電圧変
成器の構成説明図。
FIG. 7 is a configuration explanatory diagram of a conventional induction type voltage transformer and a capacitance-divided type voltage transformer.

【符号の説明】[Explanation of symbols]

1…パワーケーブル又は絶縁母線を利用した静電容量分
圧形電圧変成器(CVT) 2…導体 3…内部半導電層 4…主絶縁層 5…外部半導電層 6…静電容量分圧用メタル層 7…補助絶縁層 8…接地メタル層 9…保護層 10…タップ引出絶縁線(リード線) 11…接地タップ引出導線 22…低圧電圧変成器箱 23…チョークコイル 31…ガス絶縁開閉装置等の機器容器 34…コネクタ 41…ガス絶縁開閉装置等の機器 42…ケーブルコネクタ 61…補助絶縁層 62…静電容量分圧用メタル層 63…半導体層 64…外部主絶縁層 65…半導体層 66…外部導体 67…半導体層 68…外部主絶縁層 69…半導体層 70…静電容量分圧用メタル層 71…補助絶縁層 72…接地メタル層 73…保護層 74…絶縁電線 75,76…タップ引出絶縁線(リード線) C1…導体と静電容量分圧用メタル層との間の容量 C2…静電容量分圧用メタル層と接地メタル層間の容量 T…静電容量分圧タップ。
DESCRIPTION OF SYMBOLS 1 ... Capacitance division type voltage transformer (CVT) using a power cable or an insulating bus bar 2 ... Conductor 3 ... Inner semiconductive layer 4 ... Main insulating layer 5 ... External semiconductive layer 6 ... Capacitance dividing metal Layer 7 ... Auxiliary insulating layer 8 ... Ground metal layer 9 ... Protective layer 10 ... Tap lead-out insulated wire (lead wire) 11 ... Ground tap lead-out wire 22 ... Low voltage transformer box 23 ... Choke coil 31 ... Gas insulated switchgear Equipment container 34 ... Connector 41 ... Gas insulated switchgear etc. equipment 42 ... Cable connector 61 ... Auxiliary insulation layer 62 ... Capacitance voltage division metal layer 63 ... Semiconductor layer 64 ... External main insulation layer 65 ... Semiconductor layer 66 ... External conductor 67 ... Semiconductor layer 68 ... External main insulation layer 69 ... Semiconductor layer 70 ... Capacitance voltage dividing metal layer 71 ... Auxiliary insulation layer 72 ... Ground metal layer 73 ... Protective layer 74 ... Insulated wire 75,76 ... Touch C 1 : Capacitance between conductor and metal layer for capacitance division C 2 : Capacitance between metal layer for capacitance division and ground metal layer T: Capacitance division tap.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜井 貴志 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 Fターム(参考) 5E081 AA03 BB04 CC22 DD15 EE11 GG05 5G017 BB19  ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Takashi Sakurai 2-1-1-17 Osaki, Shinagawa-ku, Tokyo F-term in Meidensha Co., Ltd. 5E081 AA03 BB04 CC22 DD15 EE11 GG05 5G017 BB19

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導体の上に内部半導体層、主絶縁層、外
部半導体層が施されたパワーケーブル又は絶縁母線の外
部半導体層の上に静電容量分圧用メタル層を施し、その
上に補助絶縁層を介して接地メタル層を設け、静電容量
分圧用メタル層と接地メタル層との間から静電容量分圧
電圧を引き出したことを特徴とする静電容量分圧形電圧
変成器。
1. A metal layer for electrostatic capacity division is provided on an external semiconductor layer of a power cable or an insulating bus in which an internal semiconductor layer, a main insulating layer, and an external semiconductor layer are provided on a conductor, and an auxiliary layer is provided thereon. A capacitance-divided voltage transformer characterized in that a grounded metal layer is provided via an insulating layer, and a capacitance-divided voltage is drawn from between the capacitance-divided metal layer and the grounded metal layer.
【請求項2】 請求項1記載の静電容量分圧形電圧変成
器の一端側を封じきり、他端側をガス絶縁開閉装置内部
の回路導体に接続したことを特徴とする静電容量分圧形
電圧変成器。
2. The capacitance dividing voltage transformer according to claim 1, wherein one end of the voltage dividing type voltage transformer is sealed off, and the other end is connected to a circuit conductor inside the gas insulated switchgear. Voltage type voltage transformer.
【請求項3】 請求項1記載の静電容量分圧形電圧変成
器をパワーケーブル又は絶縁母線の少なくとも一方に設
けてその導体をガス絶縁開閉装置内の回路導体に接続し
たことを特徴とする静電容量分圧形電圧変成器。
3. A voltage dividing type voltage transformer according to claim 1, provided on at least one of a power cable and an insulating bus, and a conductor thereof is connected to a circuit conductor in a gas insulated switchgear. Capacitive voltage divider.
【請求項4】 接続用母線である円柱状の内部導体と、
この内部導体と同電位である円筒状の外部導体を同心配
置し、 内部導体と外側の外部導体の間および外部導体の外側に
円筒状の接地メタル層を同心配置し、 さらに、内部導体と外部導体と接地メタル層との間に、
それぞれ静電容量分圧用メタル層を配置し、 内部導体と外部導体をリード線で接続すると共に、各静
電容量分圧用メタル層同志、各接地メタル層同志をそれ
ぞれリード線で接続してなることを特徴とする静電容量
分圧形電圧変成器。
4. A cylindrical internal conductor which is a connection bus,
A cylindrical outer conductor having the same potential as the inner conductor is concentrically arranged. A cylindrical grounding metal layer is concentrically arranged between the inner conductor and the outer conductor and outside the outer conductor. Between the conductor and the ground metal layer,
A metal layer for capacitance division should be placed, and the inner conductor and the outer conductor should be connected by lead wires, and each metal layer for capacitance division and each ground metal layer should be connected by leads. A capacitance-divided voltage transformer characterized by the following:
【請求項5】 接続用母線である円柱状の内部導体と、
この内部導体と同電位である複数の円筒状の外部導体を
同心配置し、 内部導体と外側の外部導体の間および各外部導体の間に
それぞれ円筒状の接地メタル層を同心配置すると共に、
最も外側の外部導体の外側に円筒状の接地メタル層を同
心配置し、 さらに、内部導体と外部導体と接地メタル層との間に、
それぞれ静電容量分圧用メタル層を配置し、 内部導体と外部導体をリード線で接続すると共に、各静
電容量分圧用メタル層同志、各接地メタル層同志をそれ
ぞれリード線で接続してなることを特徴とする静電容量
分圧形電圧変成器。
5. A cylindrical inner conductor which is a connection bus,
A plurality of cylindrical outer conductors having the same potential as the inner conductor are concentrically arranged, and a cylindrical grounding metal layer is concentrically arranged between the inner conductor and the outer outer conductor and between each outer conductor,
A cylindrical grounding metal layer is arranged concentrically outside the outermost outer conductor, and between the inner conductor, the outer conductor and the grounding metal layer,
A metal layer for capacitance division should be placed, and the inner conductor and the outer conductor should be connected by lead wires, and each metal layer for capacitance division and each ground metal layer should be connected by leads. A capacitance-divided voltage transformer characterized by the following:
JP11302117A 1999-01-22 1999-10-25 Capacitance divider voltage transformer Pending JP2000277363A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11302117A JP2000277363A (en) 1999-01-22 1999-10-25 Capacitance divider voltage transformer
DE2000630496 DE60030496T2 (en) 1999-01-22 2000-01-20 Electrostatic capacitive voltage divider
EP20000101081 EP1022749B1 (en) 1999-01-22 2000-01-20 Electrostatic capacitive divided-voltage transformer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1376099 1999-01-22
JP11-13760 1999-01-22
JP11302117A JP2000277363A (en) 1999-01-22 1999-10-25 Capacitance divider voltage transformer

Publications (1)

Publication Number Publication Date
JP2000277363A true JP2000277363A (en) 2000-10-06

Family

ID=26349604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11302117A Pending JP2000277363A (en) 1999-01-22 1999-10-25 Capacitance divider voltage transformer

Country Status (3)

Country Link
EP (1) EP1022749B1 (en)
JP (1) JP2000277363A (en)
DE (1) DE60030496T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928639A (en) * 2011-08-07 2013-02-13 江苏思源赫兹互感器有限公司 Electronic capacitive voltage divider
JP2014508951A (en) * 2011-03-25 2014-04-10 イアンディス High voltage measurement system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709048B (en) * 2011-09-09 2013-09-11 上海良治电器技术有限公司 New winding process for high-voltage coils of X-ray machine
FR3025029B1 (en) * 2014-08-21 2016-08-05 Nexans DEVICE FOR NON-CONTACT MEASUREMENT OF AN ELECTRICAL VOLTAGE IN A MEDIUM OR HIGH VOLTAGE ELECTRICAL NETWORK CABLE
CN107808711A (en) * 2017-11-13 2018-03-16 国网湖南省电力有限公司 A kind of transformer synthesis tests special test cable

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466047A (en) * 1981-08-06 1984-08-14 Avocat Jean P Capacitor for medium-range voltage capacitive dividers
DE3917862A1 (en) * 1989-06-01 1990-12-06 Asea Brown Boveri ARRANGEMENT FOR THE POWER SUPPLY OF A DISPLAY DEVICE FOR THE DISPLAY OF A SUPPLYING VOLTAGE VOLTAGE IN A MEDIUM VOLTAGE SWITCHGEAR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508951A (en) * 2011-03-25 2014-04-10 イアンディス High voltage measurement system
CN102928639A (en) * 2011-08-07 2013-02-13 江苏思源赫兹互感器有限公司 Electronic capacitive voltage divider

Also Published As

Publication number Publication date
DE60030496D1 (en) 2006-10-19
DE60030496T2 (en) 2007-02-01
EP1022749B1 (en) 2006-09-06
EP1022749A1 (en) 2000-07-26

Similar Documents

Publication Publication Date Title
KR20000016037A (en) High voltage ac apparatus
Paap et al. Overvoltages in power transformers caused by no-load switching
CN109935455A (en) A kind of 110kV dry-type three-phase transformer
JP2000277363A (en) Capacitance divider voltage transformer
US5126917A (en) Gas insulated switchgear
US2005147A (en) Coupling capacitor system
US4881147A (en) Protection of sensitive electrical installations against the effects of lightning, and devices proposed for such arrangement
US2004954A (en) Potential device
US2344261A (en) Dielectric monitor system
CN216598723U (en) Gas insulation voltage transformer cabinet
CN217061742U (en) Tubular bus bin with voltage and current transformer
CN102611092B (en) Mutation overvoltage impedance suppression device for electronic voltage transformer and application of device
CN207098424U (en) For connecting the gas insulation switch cabinet of air-insulated transformer
Sutherland Snubber circuit design for transformers in urban high rise office building
JP2000298144A (en) Current measuring device
CN114024242A (en) Gas insulation voltage transformer cabinet
CN116845910A (en) Coupling capacitor protector and application thereof
Bellaschi et al. Dielectric strength and protection of modern dry-type air-cooled transformers
CN114300241A (en) Tubular bus bin with voltage current transformer
JPS6260407A (en) Gas insulated switching device
JPS61254011A (en) Gas insulated switchgear
JPS6211485B2 (en)
JPH03131768A (en) Method for detecting voltage of main circuit for gas insulation switchgear
JPH05326301A (en) Grounding type instrument transformer
JPH0410661Y2 (en)