JPH024425B2 - - Google Patents

Info

Publication number
JPH024425B2
JPH024425B2 JP56008013A JP801381A JPH024425B2 JP H024425 B2 JPH024425 B2 JP H024425B2 JP 56008013 A JP56008013 A JP 56008013A JP 801381 A JP801381 A JP 801381A JP H024425 B2 JPH024425 B2 JP H024425B2
Authority
JP
Japan
Prior art keywords
composite film
film
copolymer
extrusion coating
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56008013A
Other languages
Japanese (ja)
Other versions
JPS57123053A (en
Inventor
Juzo Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP801381A priority Critical patent/JPS57123053A/en
Publication of JPS57123053A publication Critical patent/JPS57123053A/en
Publication of JPH024425B2 publication Critical patent/JPH024425B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は複合フイルム、特に製膜性が良好で、
しかもヒートシール強度、ホツトタツク性に優れ
たポリオレフイン組成物がコーテイングされた複
合フイルムに関する。 押出しコーテイングによる複合フイルムのコー
テイング材料としては高圧法によるポリエチレ
ン、所謂LDPEがシーラントとして低温ヒートシ
ール性が良いこと及び加工性が優れていることか
ら、最も多量に使用されている。しかしながら
LDPEはヒートシール強度、ホツトタツク性等に
劣つているので、LDPEの改良あるいは代替が試
みられている。LDPEに代わる材料としては高密
度ポリエチレン(HDPE)、ポリプロピレン
(PP)、エチレン・酢酸ビニル共重合体(EVA)、
アイオノマー等が一部使用されているが、HDPE
はヒートシール強度は優れるが低温シール性が悪
く、又ネツクインが大きく、加工性に劣り、PP
はヒートシール強度は強いが、押出加工時にサー
ジングし易く、又熱分解し分子量が低下し易く、
ネツクインが大きいといつた加工上の欠点があ
り、EVAは低温シール性には優れるが、独特の
臭気を有すること、アイオノマーはヒートシール
強度、ホツトタツク性には優れるが、押出加工時
の負荷が大きく、加工性に劣る如く、全ての材料
が一長一短あり、いずれも最適とはいえない。そ
こで本発明者らは製膜性に優れ、しかもヒートシ
ール強度、ホツトタツク性に優れたシーラントを
有する複合フイルムいついて検討した結果、本発
明に到達した。 すなわち本発明は基材にメルトインデツクス1
ないし50g/10min、密度0.910ないし0.940g/
cm3、融点115ないし130℃およびエチレン含有率94
ないし99.5モル%のエチレンと炭素4ないし10の
α−オレフインンとのランダム共重合体(A)99ない
し30重量%とメルトインデツクス1ないし70g/
10minの高圧法ポリエチレン(B)1ないし70重量%
とからなる組成物を押出コーテイングしてなる複
合フイルムである。 共重合体(A)でエチレンと共重合される炭素数4
ないし10のα−オレフインとは具体的には1−ブ
テン、1−ペンテン、1−ヘキセン、4−メチル
−1−ペンテン、1−オクテン、1−デセンある
いはこれらの混合物であり、とくに炭素数6ない
し8のα−オレフイン、とりわけ4−メチル−1
−ペンテンが好ましい。 共重合体(A)のメルトインデツクス(MI)
(ASTMD1238E)は1ないし50g/10min、好ま
しくは5ないし40g/10minの範囲である必要が
ある。MIが50g/10minを越えるものは、押出
コーテイング時の負荷は小さいが、複合フイルム
にした場合、ヒートシール強度が弱く、MIが1
g/10min未満のものは流動特性に劣るため押出
加工時に劣る。 共重合体(A)の密度は0.910ないし0.940g/cm3
好ましくは0.915ないし0.935g/cm3の範囲である
必要がある。密度が0.940g/cm3を越えたものは
ホツトタツク性、透明性に劣り、密度が0.910
g/cm3未満のものはヒートシール強度に劣り、べ
たつき易いため、シーラントとした場合フイルム
がブロツキングするため好ましくない。 共重合体(A)は示差走査熱量計(DSC)の昇温
速度10℃/minでの吸熱曲線から求めた鋭いピー
クを示す点が1個ないし複数個あり、該ピークの
最高温度、すなわち融点が115ないし130℃、好ま
しくは115ないし125℃の範囲のものが本発明に適
する。融点が115℃未満のものはフイルムの耐熱
性が劣り、130℃を越えるものは低温ヒートシー
ル性に劣る。 本発明における共重合体(A)の密度の測定は、
ASTMD1505の方法で測定した値であり、共重
合体(A)の密度は共重合体成分の割合に大きく依存
し、共重合体(A)の密度が0.910ないし0.940g/cm3
の範囲にあるには、共重合体成分が0.5ないし6
モル%、好ましくは1.0ないし5.0モル%、とくに
好ましくは2.0ないし4.0モル%の範囲にあること
が必要である。 本発明で使用する前記性能を有する共重合体(A)
を製造する触媒としては、マグネシウム化合物と
チタン化合物とから形成される高活性チタン触媒
成分、例えば炭化水素不溶性のマグネシウム化合
物に担持されたチタン系固体触媒と有機アルミニ
ウム化合物からなる触媒を挙げることができる。 本発明で用いられる高圧法ポリエチレン(B)は
MIが1ないし70g/10min、、好ましくは3ない
し25g/10min、密度が好ましくは0.915ないし
0.925g/cm3のものである。MIが70g/10minを
越えるもの、及びMIが1g/10min未満のもの
は、共重合体(A)との相溶性が悪くなるため好まし
くない。 なお、本発明でいう高圧法ポリエチレンとは、
エチレンの単独重合体のみならず、本発明の目的
を損なわない範囲、例えば20重量%以下の少量の
他の重合性単量体、例えば酢酸ビニル、アクリル
酸エステル等とエチレンとの共重合体であつても
よい。 本発明の複合フイルムのシーライトに用いる組
成物は前記共重合体(A)と高圧法ポリエチレン(B)と
の混合比(重量比):(A)/(B)が99/1ないし30/
70、好ましくは95/5ないし70/30の範囲のもの
である。高圧法ポリエチレン(B)が1重量%未満で
は押出コーテイングに引取りサージングを起こし
良好な複合フイルムを得難く、高圧法ポリエチレ
ン(B)が70重量%を越えたものは押出コーテイング
時に耳切れを起こし良好な複合フイルムが得られ
ず、又ヒートシール強度、ホツトタツク性が改良
されない。 前記組成物を用いて本発明の複合フイルムを得
るには、共重合体(A)と高圧法ポリエチレン(B)を前
記範囲で例えばV−ブレンダー、リボンブレンダ
ー、ヘンシエルミキサー、タンブラーブレンダー
等で混合した後、基材にT−ダイで押出コーテイ
ングする方法あるいは前記混合物を更に押出機、
ニーダー、バンバリーミキサー等で混練後造粒し
たものを用いてT−ダイで押出コーテイングする
方法がある。 前記組成物には、耐候安定剤、耐熱安定剤、帯
電防止剤、防曇剤、アンチブロツキング剤、スリ
ツプ剤、滑剤、顔料、染料、流適剤等の通常ポリ
オレフインに添加して使用される各種配合剤を本
発明の目的を損わない範囲で配合しておいてもよ
い。 本発明の複合フイルムの基材となるものは、フ
イルム形成能を有する任意の重合体あるいは紙、
アルミニウム箔、セロハン等を使用することがで
きる。このような重合体としては、例えば、高密
度ポリエチレン、中、低密度ポリエチレン、エチ
レン・酢酸ビニル共重合体、エチレン・アクリル
酸エステル共重合体、アイオノマー、ポリプロピ
レン、ポリ−1−ブテン、ポリ−4−メチル−1
−ペンテン等のオレフイン系重合体、ポリ塩化ビ
ニル、ポリ塩化ビニリデン、ポリスチレン、ポリ
アクリレート、ポリアクリロニトリル等ビニル系
重合体、ナイロン6、ナイロン66、ナイロン7、
ナイロン10、ナイロン11、ナイロン12、ナイロン
610、ポリメタキシリレンアジパミド等のポリア
ミド、ポリエチレンテレフタレレート、ポリエチ
レンテレフタレート/イソフタレート、ポリブチ
レンテレフタレート等のポリエステル、ポリビニ
ルアルコール、エチレン・ビニルアルコール共重
合体、ポリカーボネート等を挙げることができ
る。これらの基材は目的、被包装物により適宜選
択することができる。例えば、被包装物が腐食し
やすい食品の場合には、ポリアミド、ポリ塩化ビ
ニリデン、エチレン・ビニルアルコール共重合
体、ポリビニルアルコール、ポリエステルの如
く、透明性、剛性、ガス透過抵抗性の優れた樹脂
が選択される。菓子や繊維包装等に対しては、透
明性、剛性、水透過抵抗性の良好なポリプロピレ
ン等を外層として選択することができる。又基材
が重合体であれば一軸または二軸に延伸されてい
てもよい。 前記基材に本発明に用いる組成物を押出コーテ
イングするには基材に直接押出コーテイングして
もよいし、又基材と該組成物との接着力を高める
ために、基材に予め公知の方法、例えば有機チタ
ン系、ポリエチレンイミン系、イソシアネート系
等のアンカーコート材を塗布した後、更には接着
性ポリオレフイン、高圧法ポリエチレン等を下貼
りした後押出コーテイングしてもよい。 本発明の複合フイルムは高速下でも厚薄むらの
ない良好な複合フイルムが得られるので、従来の
高圧法ポリエチレン単味を押出コーテイングした
複合フイルムに比べ生産性が良く、しかもホツト
タツク性、ヒートシール強度に優れ、基材によつ
ては透明性も優れるので各種包装袋、例えば、液
体スープ、漬物、糸こんにやく等の水物包装袋、
みそ、ジヤム等のペースト状物包装袋、砂糖、小
麦粉、ふりりかけ等の粉末物包装袋、医薬錠剤、
顆粒包装袋に適する。 次に実施例を挙げて本発明を更に詳しく説明す
るが、本発明はその要旨を越えない限りこれらの
例に何ら制約されるものではない。 実施例 1 MI:29g/10min、密度:0.921g/cm3、融点
121℃およびエチレン含有率96モル%のエチレ
ン・4−メチル−1−ペンテンランダム共重合体
(EMP−Ιと略す)90重量部とMI:65g/10min
および密度0.917g/cm3の高圧法ポリエチレン
(HPPE−Ιと略す)10重量部とをヘンシエルミ
キサーで混合した後、該混合組成物を65mmφの押
出機(設定温度:280℃)で溶融後、幅500mmのT
−ダイより、予め前記HPPE−Ιをラミネートし
た二軸延伸ナイロンフイルム(二軸延伸ナイロン
層:15μへHPPE−Ι層:20μをコーテイングし
たもの)(O−Ny−LAMIと略す)上に、30μ厚
で押出コーテイングした結果、ネツクインは51mm
(片耳)、押出コーテイング速度145m/min迄該
混合組成物の耳切れ及び膜ゆれ(サージング)が
生ぜず、厚薄むらのない良好な複合フイルムが得
られた。次いで該複合フイルムを以下の方法によ
り性能試験を行つた。 霞度(%):ASTM D 1003 衝撃強度(Kg・cm/cm):ASTM D 3420 ヒートシール部剥離強度(g/15mm):フイルム
面を重ね合せ、120℃、130℃、140℃、150℃、
170℃の温度、幅5mmのシールバーにより2
Kg/cm2の圧力で1秒間シールした後放冷した。
これから15mm幅の試験片を切り取り、クロスヘ
ツド速度200mm/minでヒートシール部を剥離
し、その際の強度を剥剥離強度とした。 ホツトタツク試験(mm):長さ550mm×幅20mmの試
験片を重ね合せ、130℃、140℃、150℃、160
℃、170℃の温度、幅5mm、長さ300mmのシーバ
ーにより、2Kg/cm2の圧力で1秒間シール後、
除圧と同時に各試験片に43gの荷重をかけてシ
ール部を強制剥離し、剥離した距離(mm)によ
りホツトタツク性の評価を行つた。すなわち、
剥離距離の短いもの程ホツトタツク性に優れ
る。 結果を第1表に示す。 実施施 2 実施例1のEMP−ΙとHPPE−Ιの混合比を
80重量部:20重量部とした混合組成物を用いる以
外は実施例1と同様に行つた。その結果、ネツク
インは34mm(片耳)で、押出コーテイング速度
145m/min迄耳切れ、膜ゆれが発生せず、厚薄
むらのない良好な複合フイルムが得られた。以下
実施例1に記載の方法で複合フイルムの性能評価
を行つた。結果を第1表に示す。 実施例 3 実施例2のEMP−の代わりにMI:14g/
10min、密度:0.922g/cm3、融点121℃およびエ
チレン含有率96モル%のエチレン・4−メチル−
1−ペンテンランダム共重合体(EMP−)を
用いる以外は実施例2と同様に行つた。その結
果、ネツクインは38mm(片耳)で押出コーテイン
グ速度145m/min迄耳切れ、膜ゆれが発生せず、
厚薄むらのない良好な複合フイルムが得られた。
以下実施例1に記載の方法で複合フイルムの性能
評価を行つた。結果を第1表に示す。 実施例 4 実施例1のEMP−の代わりにMI:7.8g/
10min、密度:0.920g/cm3、融点121℃およびエ
チレン含有率96モル%のエチレン・4−メチル−
1−ペンテンランダム共重合体(EMP−)を
用いる以外は実施例1と同様に行つた。その結
果、ネツクインは38mm(片耳)で押出コーテイン
グ速度145m/min迄耳切れ、膜ゆれが発生せず、
厚薄むらのない良好な複合フイルムが得られた。
以下実施例1に記載の方法で複合フイルムの性能
評価を行つた。結果を第1表に示す。 実施例 5 実施例4で用いたHPPE−の代わりに、
MI:10g/10min、密度0.916g/cm3の高圧法ポ
リエチレン(HPPE−)を用いる以外は実施例
4と同様に行つた。但し、基材フイルムは実施例
1のO−Ny−LAMIを用いた。その結果、ネツ
クインは38mm(片耳)で押出コーテイング速度
145m/min迄耳切れ、膜ゆれが発生せず、厚薄
むらのない良好な複合フイルムが得られた。以下
実施例1に記載の方法で複合フイルムの性能評価
を行つた。結果を第1表に示す。 比較例 1 実施例1で用いた混合組成物の代わりに、実施
例1のEMP−を単独で用いる以外は、実施例
1と同様に行つた。その結果、ネツクインは57〜
63mm(片耳)と大きく、押出コーテイング速度
145m/min迄は耳切れは発生しなかつたが、押
出コーテイング速度60m/min以上になると膜膜
ゆれが発生し、高速下では良好な複合フイルムが
得られなかつた。以下実施例1に記載の方法で複
合フイルムの性能評価を行つた。結果を第1表に
示す。 比較例 2 比較例1で用いたEMP−の代わりに実施例
3で用いたEMP−を単独で用いる以外は、比
較例1と同様に行つた。その結果、ネツクインは
71〜74mm(片耳)と大きく、押出コーテイング速
度145m/min迄は耳切れは発生しなかつたが、
押出コーテイング速度70m/min以上になると膜
ゆれが発生し、高速下では良好な複合フイルムが
得られなかつた。以下実施例1に記載の方法で複
合フイルムの性能評価を行つた。結果を第1表に
示す。 比較例 3 比較例1で用いたEMP−の代わりに実施例
4で用いたEMP−を単独で用いる以外は、比
較例1と同様に行つた。その結果、ネツクインは
64〜66mm(片耳)と大きく、押出コーテイング速
度145m/min迄は耳切れは発生しなかつたが、
押出コーテイング速度が80m/min以上になる
と、膜ゆれが発生し、高速下では良好な複合フイ
ルムが得られなかつた。以下実施例1に記載の方
法で複合フイルムの性能評価を行つた。結果を第
1表に示す。 比較例 4 実施例1で用いた混合組成物の代わりに、
MI:5.1g/10min、密度:0.919g/cm3の高圧法
ポリエチレン(HPPE−)を単独で用いる以外
は実施例1と同様に行つた。その結果、ネツクイ
ンは20mm(片耳)と小さく、押出コーテイング速
度145m/min迄膜ゆれも発生しなかつたが、押
出コーテイング速度80m/min以上になると耳切
れが発生し、高速下では良好な複合フイルムが得
られなかつた。以下実施例1に記載の方法で複合
フイルムの性能評価を行つた。結果を第1表に示
す。 比較例 5 実施例1で用いた混合組成物の代わりに、
MI:7.5g/10min、密度:0.924g/cm3及び酢酸
ビニル含量6wt%のエチレン・酢酸ビニル共重合
体(EVA)を用いる以外は実施例1と同様に行
つた。その結果、ネツクインは24mm(片耳)と小
さく、押出コーテイング速度145m/min迄ゆれ
も発生しなかつたが、押出コーテイング速度100
m/min以上になると耳切れが発生し、高速下で
は良好な複合フイルムが得られなかつた。尚、押
出機の設定温度は240℃とした。以下実施例1に
記載の方法で複合フイルムの性能評価を行つた。
結果を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a composite film, which has particularly good film formability.
Moreover, the present invention relates to a composite film coated with a polyolefin composition having excellent heat-sealing strength and hot-tack properties. As a coating material for composite films made by extrusion coating, high-pressure polyethylene, so-called LDPE, is used in the largest amount because it has good low-temperature heat-sealability as a sealant and is excellent in processability. however
Since LDPE is inferior in heat-sealing strength, hot-tack properties, etc., attempts have been made to improve or replace LDPE. Materials that can replace LDPE include high-density polyethylene (HDPE), polypropylene (PP), ethylene-vinyl acetate copolymer (EVA),
Although some ionomers are used, HDPE
Although PP has excellent heat sealing strength, it has poor low temperature sealing properties, has a large net seal, and has poor processability.
has strong heat-sealing strength, but is susceptible to surging during extrusion processing, and is susceptible to thermal decomposition and a decrease in molecular weight.
There are disadvantages in processing such as a large network, EVA has excellent low-temperature sealing properties but has a unique odor, and ionomers have excellent heat-sealing strength and hot-tack properties, but they require a large load during extrusion processing. All materials have advantages and disadvantages, such as poor workability, and none of them can be said to be optimal. Therefore, the present inventors investigated a composite film having a sealant that has excellent film forming properties, heat seal strength, and hot tack properties, and as a result, they arrived at the present invention. That is, in the present invention, the base material has a melt index of 1.
or 50g/10min, density 0.910 or 0.940g/
cm 3 , melting point 115-130°C and ethylene content 94
Random copolymer (A) of 99 to 99.5 mol% of ethylene and α-olefin having 4 to 10 carbon atoms and 99 to 30% by weight of melt index 1 to 70 g/
10min high pressure polyethylene (B) 1 to 70% by weight
It is a composite film formed by extrusion coating a composition consisting of. Number of carbon atoms copolymerized with ethylene in copolymer (A): 4
Specifically, α-olefin having 6 to 10 carbon atoms is 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, or a mixture thereof. to 8 α-olefins, especially 4-methyl-1
-Pentene is preferred. Melt index (MI) of copolymer (A)
(ASTMD1238E) should be in the range of 1 to 50 g/10 min, preferably 5 to 40 g/10 min. If the MI exceeds 50g/10min, the load during extrusion coating is small, but when made into a composite film, the heat sealing strength is weak and the MI is 1.
If it is less than g/10 min, the fluidity characteristics are poor and therefore it is inferior during extrusion processing. The density of the copolymer (A) is 0.910 to 0.940 g/cm 3 ,
It should preferably be in the range of 0.915 to 0.935 g/cm 3 . If the density exceeds 0.940g/ cm3 , the hot-tack properties and transparency will be poor, and the density will be 0.910.
If it is less than g/cm 3 , it is not preferable because it has poor heat-sealing strength and tends to become sticky, and when used as a sealant, the film will block. The copolymer (A) has one or more points showing a sharp peak determined from an endothermic curve measured at a heating rate of 10°C/min using a differential scanning calorimeter (DSC), and the highest temperature of the peak, that is, the melting point A range of 115 to 130°C, preferably 115 to 125°C is suitable for the present invention. If the melting point is less than 115°C, the film will have poor heat resistance, and if it exceeds 130°C, the low-temperature heat sealability will be poor. The measurement of the density of the copolymer (A) in the present invention is as follows:
This is a value measured by the method of ASTMD1505, and the density of copolymer (A) largely depends on the proportion of copolymer components, and the density of copolymer (A) is 0.910 to 0.940 g/cm 3
The copolymer component is in the range of 0.5 to 6
It is necessary that the amount is in the range of mol %, preferably 1.0 to 5.0 mol %, particularly preferably 2.0 to 4.0 mol %. Copolymer (A) having the above performance used in the present invention
Examples of the catalyst for producing the above include a highly active titanium catalyst component formed from a magnesium compound and a titanium compound, such as a catalyst consisting of a titanium-based solid catalyst supported on a hydrocarbon-insoluble magnesium compound and an organoaluminium compound. . The high pressure polyethylene (B) used in the present invention is
MI is 1 to 70g/10min, preferably 3 to 25g/10min, density is preferably 0.915 to
It has a weight of 0.925g/ cm3 . Those with an MI of more than 70 g/10 min and those with an MI of less than 1 g/10 min are not preferred because they have poor compatibility with the copolymer (A). In addition, the high-pressure polyethylene referred to in the present invention is
Not only a homopolymer of ethylene, but also a copolymer of ethylene with a small amount of other polymerizable monomers, such as vinyl acetate, acrylic ester, etc., within a range that does not impair the purpose of the present invention, such as 20% by weight or less. It may be hot. The composition used for the composite film of the present invention has a mixing ratio (weight ratio) of the copolymer (A) and high-pressure polyethylene (B): (A)/(B) of 99/1 to 30/
70, preferably in the range of 95/5 to 70/30. If the high-pressure polyethylene (B) content is less than 1% by weight, it will cause surging in the extrusion coating, making it difficult to obtain a good composite film, and if the high-pressure polyethylene (B) content exceeds 70% by weight, edges will break during the extrusion coating. A good composite film cannot be obtained, and the heat seal strength and hot tack properties cannot be improved. In order to obtain the composite film of the present invention using the above composition, the copolymer (A) and high-pressure polyethylene (B) are mixed in the above range using, for example, a V-blender, ribbon blender, Henschel mixer, tumbler blender, etc. After that, the base material is extrusion coated with a T-die, or the mixture is further coated with an extruder,
There is a method of extrusion coating using a T-die after kneading with a kneader, a Banbury mixer, etc. and granulating the product. The composition includes weathering stabilizers, heat stabilizers, antistatic agents, antifogging agents, antiblocking agents, slip agents, lubricants, pigments, dyes, flow agents, etc., which are usually added to the polyolefin. Various compounding agents may be blended within the range that does not impair the purpose of the present invention. The base material of the composite film of the present invention may be any polymer or paper having film-forming ability,
Aluminum foil, cellophane, etc. can be used. Examples of such polymers include high density polyethylene, medium and low density polyethylene, ethylene/vinyl acetate copolymer, ethylene/acrylic acid ester copolymer, ionomer, polypropylene, poly-1-butene, poly-4 -methyl-1
- Olefin polymers such as pentene, vinyl polymers such as polyvinyl chloride, polyvinylidene chloride, polystyrene, polyacrylate, polyacrylonitrile, nylon 6, nylon 66, nylon 7,
Nylon 10, Nylon 11, Nylon 12, Nylon
610, polyamides such as polymethaxylylene adipamide, polyesters such as polyethylene terephthalate, polyethylene terephthalate/isophthalate, and polybutylene terephthalate, polyvinyl alcohol, ethylene/vinyl alcohol copolymers, and polycarbonates. These base materials can be appropriately selected depending on the purpose and the item to be packaged. For example, in the case of foods that are easily packaged with corrosion, resins with excellent transparency, rigidity, and gas permeation resistance such as polyamide, polyvinylidene chloride, ethylene/vinyl alcohol copolymer, polyvinyl alcohol, and polyester are recommended. selected. For confectionery, textile packaging, etc., polypropylene or the like with good transparency, rigidity, and water permeation resistance can be selected as the outer layer. Further, if the base material is a polymer, it may be uniaxially or biaxially stretched. In order to extrusion coat the composition used in the present invention on the base material, the base material may be directly extrusion coated, or in order to increase the adhesive strength between the base material and the composition, a known coating may be applied to the base material in advance. For example, extrusion coating may be performed after applying an organic titanium-based, polyethyleneimine-based, or isocyanate-based anchor coating material, and further underlaying an adhesive polyolefin, high-pressure polyethylene, or the like. The composite film of the present invention can be obtained even at high speeds without any thickness or thinness unevenness, so it has better productivity than conventional composite films made by extrusion coating of single high-pressure polyethylene, and has excellent hot-tackability and heat-sealing strength. Depending on the base material, it also has excellent transparency, so it can be used for various packaging bags, such as packaging bags for liquid soups, pickles, string konjac, etc.
Paste packaging bags for miso, jam, etc., powder packaging bags for sugar, flour, furikake, etc., pharmaceutical tablets,
Suitable for granule packaging bags. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way unless the gist of the invention is exceeded. Example 1 MI: 29g/10min, density: 0.921g/cm 3 , melting point
90 parts by weight of ethylene/4-methyl-1-pentene random copolymer (abbreviated as EMP-I) at 121°C and ethylene content of 96 mol% and MI: 65 g/10 min
and 10 parts by weight of high-pressure polyethylene (abbreviated as HPPE-Ι) with a density of 0.917 g/cm 3 were mixed in a Henschel mixer, and the mixed composition was melted in a 65 mmφ extruder (set temperature: 280°C). , width 500mm T
- From a die, onto a biaxially stretched nylon film (biaxially stretched nylon layer: 15μ coated with HPPE-Ι layer: 20μ) (abbreviated as O-N y -LAMI) on which the HPPE-Ι has been laminated in advance, As a result of extrusion coating with a thickness of 30μ, the netuquin is 51mm.
(one edge), the mixed composition did not suffer from edge breakage or film shaking (surging) up to an extrusion coating speed of 145 m/min, and a good composite film with no thickness or thinness unevenness was obtained. The composite film was then subjected to a performance test using the following method. Haze (%): ASTM D 1003 Impact strength (Kg/cm/cm): ASTM D 3420 Peel strength of heat-sealed part (g/15mm): Overlap film surfaces, 120℃, 130℃, 140℃, 150℃ ,
2 with a temperature of 170℃ and a seal bar with a width of 5mm.
After sealing for 1 second under a pressure of Kg/cm 2 , the mixture was allowed to cool.
A test piece with a width of 15 mm was cut from this, and the heat-sealed portion was peeled off at a crosshead speed of 200 mm/min, and the strength at that time was defined as the peel strength. Hot tack test (mm): 550mm long x 20mm wide test pieces stacked at 130℃, 140℃, 150℃, 160℃
After sealing for 1 second at a pressure of 2Kg/cm2 using a sealer with a width of 5mm and a length of 300mm at a temperature of 170℃,
At the same time as the pressure was removed, a load of 43 g was applied to each test piece to forcibly peel off the seal portion, and the hot-tack property was evaluated based on the peeled distance (mm). That is,
The shorter the peeling distance, the better the hot-tack properties. The results are shown in Table 1. Implementation 2 The mixing ratio of EMP-Ι and HPPE-Ι in Example 1 was
The same procedure as in Example 1 was carried out except that a mixed composition of 80 parts by weight: 20 parts by weight was used. As a result, Netsuquin is 34mm (one ear) and extrusion coating speed
No edge breakage or film wobbling occurred up to 145 m/min, and a good composite film with no thickness or thinness unevenness was obtained. The performance of the composite film was evaluated using the method described in Example 1 below. The results are shown in Table 1. Example 3 MI: 14g/instead of EMP- in Example 2
10min, density: 0.922g/cm 3 , melting point 121°C, ethylene content 96 mol% ethylene 4-methyl-
The same procedure as in Example 2 was carried out except that 1-pentene random copolymer (EMP-) was used. As a result, NETSUQUIN did not cause edge breakage or film shaking at extrusion coating speed of 145 m/min at 38 mm (one edge).
A good composite film with no thick or thin unevenness was obtained.
The performance of the composite film was evaluated using the method described in Example 1 below. The results are shown in Table 1. Example 4 MI: 7.8g/instead of EMP- in Example 1
10min, density: 0.920g/cm 3 , melting point 121°C, ethylene content 96 mol% ethylene 4-methyl-
The same procedure as in Example 1 was conducted except that 1-pentene random copolymer (EMP-) was used. As a result, NETSUQUIN did not cause edge breakage or film shaking at extrusion coating speed of 145 m/min at 38 mm (one edge).
A good composite film with no thick or thin unevenness was obtained.
The performance of the composite film was evaluated using the method described in Example 1 below. The results are shown in Table 1. Example 5 Instead of HPPE- used in Example 4,
The same procedure as in Example 4 was conducted except that MI: 10 g/10 min and high pressure polyethylene (HPPE-) having a density of 0.916 g/cm 3 were used. However, O-N y -LAMI of Example 1 was used as the base film. As a result, Netsuquin has an extrusion coating speed of 38 mm (one ear)
No edge breakage or film wobbling occurred up to 145 m/min, and a good composite film with no thickness or thinness unevenness was obtained. The performance of the composite film was evaluated using the method described in Example 1 below. The results are shown in Table 1. Comparative Example 1 The same procedure as Example 1 was carried out except that EMP- of Example 1 was used alone instead of the mixed composition used in Example 1. As a result, Netkuin is 57~
Large size of 63mm (one ear), extrusion coating speed
No edge breakage occurred up to 145 m/min, but when the extrusion coating speed exceeded 60 m/min, film shaking occurred, and a good composite film could not be obtained at high speeds. The performance of the composite film was evaluated using the method described in Example 1 below. The results are shown in Table 1. Comparative Example 2 The same procedure as Comparative Example 1 was carried out except that EMP- used in Example 3 was used alone instead of EMP- used in Comparative Example 1. As a result, netquin
It was large at 71 to 74 mm (one ear), and no ear breakage occurred up to an extrusion coating speed of 145 m/min.
When the extrusion coating speed exceeded 70 m/min, film wobbling occurred, and a good composite film could not be obtained at high speeds. The performance of the composite film was evaluated using the method described in Example 1 below. The results are shown in Table 1. Comparative Example 3 The same procedure as Comparative Example 1 was conducted except that EMP- used in Example 4 was used alone instead of EMP- used in Comparative Example 1. As a result, netquin
It was large at 64 to 66 mm (one ear), and no ear breakage occurred up to an extrusion coating speed of 145 m/min.
When the extrusion coating speed exceeded 80 m/min, film wobbling occurred, and a good composite film could not be obtained at high speeds. The performance of the composite film was evaluated using the method described in Example 1 below. The results are shown in Table 1. Comparative Example 4 Instead of the mixed composition used in Example 1,
The same procedure as in Example 1 was carried out except that high-pressure polyethylene (HPPE-) having an MI of 5.1 g/10 min and a density of 0.919 g/cm 3 was used alone. As a result, NETSUIN was as small as 20 mm (one edge), and no film wobbling occurred up to an extrusion coating speed of 145 m/min, but edge breakage occurred when the extrusion coating speed exceeded 80 m/min. was not obtained. The performance of the composite film was evaluated using the method described in Example 1 below. The results are shown in Table 1. Comparative Example 5 Instead of the mixed composition used in Example 1,
The same procedure as in Example 1 was carried out except that an ethylene/vinyl acetate copolymer (EVA) having MI: 7.5 g/10 min, density: 0.924 g/cm 3 and vinyl acetate content of 6 wt% was used. As a result, the NETSUQUIN was as small as 24 mm (one ear), and no fluctuation occurred up to an extrusion coating speed of 145 m/min, but at an extrusion coating speed of 100 m/min,
When the speed exceeds m/min, edge breakage occurs, and a good composite film cannot be obtained at high speeds. Furthermore, the set temperature of the extruder was 240°C. The performance of the composite film was evaluated using the method described in Example 1 below.
The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 基材にメルトインデツクス1ないし50g/
10min、密度0.910ないし0.940g/cm3、融点115な
いし130℃およびエチレン含有率94ないし99.5モ
ル%のエチレンと炭素数4ないし10のα−オレフ
インンとのランダム共重合体(A)99ないし30重量%
とメルトインデツクス1ないし70g/10minの高
圧法ポリエチレン(B)1ないし70重量%とからなる
組成物を押出コーテイングしたことを特徴とする
複合フイルム。
1 Melt index 1 to 50g/base material
Random copolymer (A) of ethylene and α-olefin having 4 to 10 carbon atoms with a density of 0.910 to 0.940 g/cm 3 , a melting point of 115 to 130°C and an ethylene content of 94 to 99.5 mol% (A) 99 to 30% by weight %
and 1 to 70% by weight of high-pressure polyethylene (B) having a melt index of 1 to 70 g/10 min.
JP801381A 1981-01-23 1981-01-23 Composite film Granted JPS57123053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP801381A JPS57123053A (en) 1981-01-23 1981-01-23 Composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP801381A JPS57123053A (en) 1981-01-23 1981-01-23 Composite film

Publications (2)

Publication Number Publication Date
JPS57123053A JPS57123053A (en) 1982-07-31
JPH024425B2 true JPH024425B2 (en) 1990-01-29

Family

ID=11681456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP801381A Granted JPS57123053A (en) 1981-01-23 1981-01-23 Composite film

Country Status (1)

Country Link
JP (1) JPS57123053A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581558A (en) * 1981-06-26 1983-01-06 旭化成株式会社 Laminated film
JPS6032625A (en) * 1983-08-01 1985-02-19 Keiwa Shoko Kk Manufacture of linear low-density polyethylene extruded laminate base sheet
JPS6052945U (en) * 1983-09-16 1985-04-13 山陽国策パルプ株式会社 release paper
IT1190394B (en) * 1985-09-30 1988-02-16 Grace W R & Co THERMOPLASTIC MULTI-LAYER FILM FOR PACKAGING AND BAGS

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49101420A (en) * 1972-10-17 1974-09-25
JPS5268279A (en) * 1975-12-04 1977-06-06 Toyobo Co Ltd Composite films of polypropylene withexcellent processability
JPS5225177B2 (en) * 1973-11-12 1977-07-06
JPS52104585A (en) * 1976-02-28 1977-09-02 Gunze Kk Heat sealable bi axial oriented film
JPS5392887A (en) * 1977-01-27 1978-08-15 Mitsui Petrochem Ind Ltd Ethylene copolymer
JPS53125452A (en) * 1977-04-09 1978-11-01 Mitsui Petrochem Ind Ltd Polyolefin composition
JPS54154466A (en) * 1978-03-31 1979-12-05 Union Carbide Corp Method of making film from low density ethylene hydrocarbon copolymer
JPS54154488A (en) * 1978-03-31 1979-12-05 Union Carbide Corp Preparation of ethylene copolymer in fluedized bed reactor
JPS5512008A (en) * 1978-06-29 1980-01-28 Mitsui Petrochemical Ind Packing laminate sack
JPS57117547A (en) * 1980-11-26 1982-07-22 Union Carbide Corp Extrusion coating composition containing linear low density ethylene hydrocarbon copolymer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591794Y2 (en) * 1975-08-09 1984-01-19 大日本印刷株式会社 Film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49101420A (en) * 1972-10-17 1974-09-25
JPS5225177B2 (en) * 1973-11-12 1977-07-06
JPS5268279A (en) * 1975-12-04 1977-06-06 Toyobo Co Ltd Composite films of polypropylene withexcellent processability
JPS52104585A (en) * 1976-02-28 1977-09-02 Gunze Kk Heat sealable bi axial oriented film
JPS5392887A (en) * 1977-01-27 1978-08-15 Mitsui Petrochem Ind Ltd Ethylene copolymer
JPS53125452A (en) * 1977-04-09 1978-11-01 Mitsui Petrochem Ind Ltd Polyolefin composition
JPS54154466A (en) * 1978-03-31 1979-12-05 Union Carbide Corp Method of making film from low density ethylene hydrocarbon copolymer
JPS54154488A (en) * 1978-03-31 1979-12-05 Union Carbide Corp Preparation of ethylene copolymer in fluedized bed reactor
JPS5512008A (en) * 1978-06-29 1980-01-28 Mitsui Petrochemical Ind Packing laminate sack
JPS57117547A (en) * 1980-11-26 1982-07-22 Union Carbide Corp Extrusion coating composition containing linear low density ethylene hydrocarbon copolymer

Also Published As

Publication number Publication date
JPS57123053A (en) 1982-07-31

Similar Documents

Publication Publication Date Title
JP4855447B2 (en) Resin composition for sealant and container obtained therefrom
JPS6323059B2 (en)
TW200402461A (en) Sealant, a resin composition for sealant, a sealant film, laminate film and the container thereof
EP0321220B1 (en) Easily openable heat seal material
JPH07276584A (en) Laminated sheet
JP4621303B1 (en) Polymer composition, method for producing unstretched film, unstretched film, heat seal material and packaging material
WO1999033913A1 (en) Easy-open packaging
JPH024425B2 (en)
JPH066651B2 (en) Ethylene / α-olefin copolymer composition
JPS6341945B2 (en)
JP4314146B2 (en) Resin composition for sealant and easy heat sealable sealant film obtained therefrom
JPS643228B2 (en)
JP2003170555A (en) Biaxially stretched multilayer polypropylene film
JPH1110809A (en) Film for packaging
JPH09234837A (en) Laminate
JP2009227790A (en) Polymer composition, easily peelable film formed from the same, and laminate having layer of the composition
JP4520719B2 (en) Heat-fusible propylene polymer laminated film and use thereof
JP2004043545A (en) Resin composition for sealant, and easily heat-sealable sealant film to be obtained therefrom
JP4446427B2 (en) Heat-fusible propylene polymer film, laminated film and use thereof
JP2838120B2 (en) Polyethylene resin composition and laminated film thereof
JP3312500B2 (en) Extrusion molding resin composition
JP4214843B2 (en) Resin composition for extrusion lamination and laminate using the same
JPS6036549A (en) Ethylenic polymer composition for lamination
JP2800021B2 (en) Polypropylene resin composition
JPH0455218B2 (en)