JPH0244085B2 - - Google Patents

Info

Publication number
JPH0244085B2
JPH0244085B2 JP58225396A JP22539683A JPH0244085B2 JP H0244085 B2 JPH0244085 B2 JP H0244085B2 JP 58225396 A JP58225396 A JP 58225396A JP 22539683 A JP22539683 A JP 22539683A JP H0244085 B2 JPH0244085 B2 JP H0244085B2
Authority
JP
Japan
Prior art keywords
paper
oil
insulating material
polypropylene film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58225396A
Other languages
Japanese (ja)
Other versions
JPS60119018A (en
Inventor
Kenji Tsunashima
Tatsuya Ito
Yoshisuke Iwata
Naotaka Ichanagi
Kyoshi Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP22539683A priority Critical patent/JPS60119018A/en
Publication of JPS60119018A publication Critical patent/JPS60119018A/en
Publication of JPH0244085B2 publication Critical patent/JPH0244085B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は改良された天然または合成繊維を用い
てなる電気絶縁紙と、二軸配向ポリプロピレンフ
イルムとを貼り合せ積層してなる油浸ケーブル用
絶縁材料に関するものである。 〔従来技術〕 本発明者等は先に油浸ケーブル用絶縁材料とし
て、二軸配向ポリプロピレンフイルムの両面に、
セルローズ繊維、プラスチツク合成紙、プラスチ
ツク繊維と天然繊維との混抄紙等の天然または合
成繊維を用いてなる電気絶縁紙を、熱硬化型の接
着剤を用いて貼り合せ積層した絶縁材料を提案し
てきた。(例えば特願昭57−36509号など) しかし、この絶縁材料では、熱硬化型の接着剤
を用いるために、製造コストが高くなるばかり
か、接着剤の極性基によつて絶縁材料としての誘
電損失やtanδが大きくなり、例えば50万V以上の
超高圧ケーブルでは発熱が多くなつて使用できな
いという欠点があつた。 更に熱硬化型の接着剤と、二軸配向ポリプロピ
レンフイルムとの接着性を良くするために、二軸
配向ポリプロピレンフイルムの上にコロナ放電処
理のような表面活性化処理をするので、イオン成
分による汚れのためか、tanδが大きくなるばかり
か、耐電圧も低下するという品質上の欠点を有し
ていた。 一方、熱硬化型の接着剤の代りに熱可塑化型ポ
リプロピレンを使うこと、即ち繊維紙と二軸配向
ポリプロピレンフイルムとを押出機より押出した
無延伸ポリプロピレンを接着剤として貼り合せた
絶縁紙も知られている(例えば特公昭54−10712
号等)。 しかし、このものは、押出機から直接押出した
溶融体を接着剤とするために、この接着剤の厚み
を15μmよりも薄くすることができず、このため
該絶縁紙を電気絶縁油に浸漬すると、該絶縁紙が
油で膨潤するために、油浸ケーブルとして使用す
れば、絶縁層の巻き締りが生じ、絶縁欠陥の原因
となる問題点があつた。更に接着剤として、溶融
状態のプロピレンホモポリマーを使用しているた
めに、冷却過程での結晶化速度が非常に速く、従
つて冷却過程で接着する場合、十分なアンカー効
果が期待できないうちに結晶化が進行してしまう
ために、強力な接着力を得ることができず、その
結果ケーブルに使用したとき、ケーブルの機械的
な折り曲げ(ベンド)などのときに、絶縁紙に剥
離が生じ、電気的な欠陥をもたらす欠点があつ
た。 〔発明の目的〕 本発明は、上記従来の油浸による絶縁材料の膨
潤、tanδの悪化、層間接着力の低下等と、それに
伴う欠点を解消するために得られたものであつ
て、その目的とするところは、油浸時の膨潤程度
を極力小さくし、しかもtanδなどの電気特性に優
れ、強力な層間接着力を有した経済性の高い油浸
ケーブル用絶縁材料を提供することにある。 〔発明の構成〕 本発明の油浸ケーブル用絶縁材料は、二軸配向
ポリプロピレンフイルムの両面に天然又は合成繊
維を用いてなる電気絶縁紙を貼り合せ積層した絶
縁材料において、該ポリプロピレンフイルムと該
電気絶縁紙との接着に、融点100〜150℃のポリオ
レフインを用い、しかも該ポリオレフイン層の厚
さを0.5〜8μmにしたことを特徴とするものであ
る。 本発明における二軸配向ポリプロピレンフイル
ムの極限粘度〔η〕は1.2〜2.8dl/g、好ましく
は1.3〜2.2dl/gであるのが良い。 〔η〕の値が1.2未満、好ましくは1.3未満の場
合には、得られるフイルムが脆く、クラツクが入
り易く、電気絶縁材料として使用に耐えない。 又、〔η〕の値が2.8を越える場合には、得られ
るフイルムの油による膨潤の程度が従来のポリプ
ロピレンフイルムよりほとんど改良されず、大き
な膨潤値、即ち膨潤度にして3%を越える値を示
すために好ましくない。 又、重量平均分子量Mwと数平均分子量Mnと
の比Mw/Mnは3以上であるのが良い。 Mw/Mnの比が前記値より小さくなると油に
よる膨潤の程度が大きくなり、絶縁性も低下する
ので好ましくない。 又、製膜時にフイルム破れが多発するのみなら
ず、厚さむらも大きくなる。 本発明における二軸配向ポリプロピレンフイル
ムの場合、アイソタクチツク度は93%以上、好ま
しくは96%以上、更に好ましくは98%以上である
と、油による膨潤の程度が小さく好ましい。 又、該ポリプロピレンフイルムには、帯電防止
剤、すべり剤、熱安定剤、ブロツキング防止剤、
核剤、粘度調整剤などの添加剤を含有させないこ
とが大切である。 ポリプロピレンフイルムの厚さは、10〜1000μ
mの範囲にあるのが好ましい。 本発明における二軸配向ポリプロピレンフイル
ムに積層する電気絶縁紙(以下、紙と云う)と
は、JIS C2301〜2308に定められているようなセ
ルローズを主成分とする天然繊維紙、あるいはセ
ルローズの如き天然繊維とプラスチツクのフイブ
リルとを混抄した混抄紙、あるいはプラスチツク
のみからなる合成紙のいずれでも良いが、特に本
発明に適したものは、セルローズを主成分とする
天然繊維紙である。 電気絶縁紙の表面最大あらさRmaxは、5〜
25μm、見掛け密度は0.6〜1.2g/cm、厚さ15〜
150μmの範囲のものが、電気特性、油通性など
に優れ、よく用いられる。 本発明の場合、電気絶縁紙はカレンダーリング
等で表面を平滑化した紙が耐電圧や層間接着力等
が大きくて好ましい。 層間の接着剤として用いられるポリオレフイン
は、プロピレンを50モル%以上含有したプロピレ
ン共重合体で、例えばエチレン、プロピレン、プ
テン、ヘキセンなどからなる二元あるいは三元共
重合体(ランダム、グラフト、ブロツク)が代表
的なものであるが、必ずしもこれに限定されるも
のではない。 本発明に用いるポリオレフインとしては、特に
エチレン・プロピレン(エチレン量1〜10モル
%)ランダム共重合体、エチレン・プロピレン
(エチレン量10〜50モル%)ブロツク共重合体が
好ましい。 該ポリオレフインの融点は100〜150℃、好まし
くは110〜145℃でなければならない。 この融点が100℃未満、好ましくは100℃未満で
あると、電気的なtanδが大きくなり、又油浸中で
の膨潤度が大きくなつて電気的欠陥となり、油浸
ケーブル用の絶縁材料として使用できない。 又、該融点が150℃、好ましくは145℃を越える
ときは、電気絶縁紙と二軸配向ポリプロピレンフ
イルムとの接着性が劣り、油浸中で剥離し、更に
経済的な速度でラミネートてきない。 該ポリオレフインの極限粘度〔η〕は、0.4〜
2.5、好ましくは0.6〜1.8、更に好ましくは0.7〜
1.4(dl/g)と低粘度であり、油浸時の膨潤を小
さく押え、しかも層間の接着力を向上させること
ができる。 更に、該ポリオレフイン層の厚さは0.5〜8μm、
好ましくは0.8〜3.0μmでなければならない。該
層の厚さが0.5μm未満、好ましくは0.8μm未満の
ときは、電気絶縁紙と二軸配向ポリプロピレンフ
イルムとの接着性が劣り、逆に該層の厚さが8μ
mを越えるとき、好ましくは3μmを越えるとき
には、電気的tanδが大きくなり、更に油浸中での
膨潤度が大きくなつて電気的な欠陥となる。 又、該ポリオレフイン層は無配向であるより
も、分子鎖が配向しているほうが絶縁油に対する
膨潤性、機械的性質、電気的性質の点から好まし
い。配向の程度は、該ポリオレフイン層の長手方
向と巾方向の屈折率(それぞれNmd、Ntdで示
す)の相加平均値(Nmd+Ntd)/2から、厚
さ方向の屈折率Nzdを引いた値が0.01以上あるの
が好ましい。 〔製造方法〕 次に本発明に係る絶縁材料の製造方法について
説明する。 〔法〕 本発明に使用する二軸配向ポリプロピレンフイ
ルム用原料の製造方法は、特に限定されないが、
好ましい一例を挙げれば、公知の種々の塩化マグ
ネシウムに担持した四塩化チタン触媒と有機アル
ミニウム化合物、およびエステル系化合物等の第
3成分からなる触媒系を用いて、プロピレン自身
を溶媒とする塊状重合法でプロピレンを重合し、
次いでプロピレン等の低沸点炭化水素で、プロピ
レンに可溶の低立体規則性のポリプロピレンを除
去することによつて得られる。 前記ポリプロピレンポリマー原料(A)および接着
ポリマーとしてのポリオレフインにエチレンを10
〜40%ブロツク共重合させたエチレン・プロピレ
ンブロツク共重合体(B)とをそれぞれシート押出機
に供給し、BABなる3層積層の溶融体を口金か
ら吐出させ、冷却ドラム上にキヤストする。この
シートを外部加熱法で予熱したのち、長手方向に
120〜150℃で4〜8倍延伸し、更に幅方向に120
〜170℃て6〜12倍に延伸し、必要に応じて100〜
170℃で2〜10秒間熱処理し、3層積層の二軸延
伸ポリプロピレンフイルムを得る。 かくして得られた3層積層ポリプロピレンフイ
ルムの全厚さは40〜250μmであり、そのうちエ
チレン・プロピレンブロツク共重合体層の表面は
粗面化されており、その厚さは0.5〜8μmになる
ようにする。表面を粗面化するのは易滑性、耐ブ
ロツキング性のためである。この3層積層フイル
ムの両表面に、電気絶縁紙を重ね合わせ、150〜
220℃に加熱されたホツトプレスロール間に、線
圧0.1〜1t/cmで短時間押圧し、絶縁紙/3層積
層フイルム/絶縁紙からなる絶縁材料を得る。 〔法〕 また別の製造方法としては、絶縁紙の上に、接
着剤となるポリオレフイン、たとえばエチレン・
プロピレンランダム共重合体をホツトメルトコー
テイング法によつて0.5〜8μm厚さに均一にコー
テイングする。このコーテイングされた2枚の絶
縁紙の間に、二軸配向ポリプロピレンフイルム単
膜を包み込むようにして上記と同様にホツトプレ
スロール間にて押圧し、絶縁紙/二軸配向ポリプ
ロピレンフイルム/絶縁紙からなる絶縁材料を得
る。 本発明の絶縁材料の場合、接着ポリマーとして
のポリオレフイン層が配向を有する点において
〔法〕の製造が特に好ましい。 〔発明の効果〕 本発明の絶縁材料は、電気絶縁クラフト紙と、
二軸配向ポリプロピレンフイルムとを、特定のポ
リオレフインを特定の厚さで接着剤としてラミネ
ートした構造を有するため、次のような作用効果
を奏することができる。 (1) 油による膨潤が極めて小さい。 (2) 油の流通性が優れている。 (3) 誘電率、誘電正接ともに小さく、絶縁破壊電
圧は極めて高い。 (4) 絶縁材料の機械的性質が優れている。 (5) 油への溶解分が少ないので、油を汚染する程
度が極めて小さい。 (6) 製造コストが安価であり、経済性に優れてい
る。 従つて、本発明の油浸ケーブル用絶縁材料は油
浸ケーブル絶縁層用として極めて有用なものであ
る。 次に、本発明に用いる測定法を以下に纏めて示
す。 (1) アイソタクチツク度 試料のフイルムを約1cm平方の大きさに切断
し、これをソツクスレー抽出器に入れ、沸騰メ
チルアルコールで6時間抽出する。抽出した試
料を60℃で6時間真空乾燥する。これから重量
W(mg)の試料を取り、これを再びソツクスレ
ー抽出器に入れて、沸騰N−ヘプタンで6時間
抽出する。次いで、この試料を取り出し、アセ
トンで充分洗浄した後、60℃で6時間真空乾燥
した後、重量を測定する。 その重量をW′(mg)とすると、アイソタクチ
ツク度は次式で求められる。 アイソタクチツク度(%)=100×W′/W (2) 複屈折 アツベの屈折計を用いて、フイルムの長手方
向の屈折率(Ny)及び幅方向の屈折率(Nx)
を測定し、NyとNxの差の絶対値を該フイルム
の複屈折とする。なお、測定時の光源は、ナト
リウムD線を用い、マウント液はサリチル酸メ
チルを用いる。 (3) 電気絶縁油による膨潤度 100mm平方の試料を切り取り、120℃の恒温槽
にて20時間乾燥後、すぐにその厚さを測定し、
D(μm)とする。 この試料を100℃のドデシルベンゼン油中に
浸して24時間放置後、取り出してすぐに試料の
厚さを測定し、これをD′(μm)とする。膨潤
度は次式で求められる。 膨潤度(%)=100×(D′−D)/D (4) 紙〜フイルム間の油浸後の接着強度 積層材料を110℃のドデシルベンゼン中に3
日間浸漬した後、これを取り出してアセトンで
充分に洗浄した後、20℃の室温に1日間放置す
る。これを試料として紙とフイルムの間の接着
の剥離強さを、JIS K 6854−1973記載のたわ
み性材料同志のT型剥離試験の方法に準じて測
定し、これを接着強度とする。 (5) 重量平均分子量Mw及び数平均分子量Mnの
測定法は次の通りである。 装置:ゲル浸透クロマトグラフGPC−150C カラム:Shodex A80M 溶媒:o−ジクロルベンゼン (0.1%アイオノール添加) 速度:1ml/分 温度:135℃ 試料濃度:0.1(wt/vol)% 濾過:0.1μm焼結フイルター 注入量:0.4ml 検出器:示差屈折率検出器 分子校正:ポリスチレン基準 (6) 極限粘度〔η〕は、ASTM D1601にそつて
測定したもので、135℃のテトラリン中で測定
する。単位dl/g。 (7) 絶縁破壊電圧(BDV)はASTM D149に従
つて測定した(20℃)。 (8) 電気的tanδは、ASTM D150に従い周波数
50Hz、温度100℃で、絶縁紙測定電極MEP−C
型(日新電機株式会社製)を使用して測定し
た。 (9) 融点Tmは、走査型熱量計(DSC)によつて
求めた結晶の融点に伴う平衡温度であり、吸熱
ピークという。吸熱ピーク温度が2個以上であ
る場合は、最も吸熱ピーク高さの高いものを採
用するが、ほぼ同じ場合は、これらの数の平均
温度を用いる。DSCの測定条件は、試料重量
5mg、昇温速度20℃/分、窒素気流下で行う。 (10) 表面粗さRmaxは、JIS B0 601−1976に従
つて測定した。 実施例 1 エチレンを6モル%ランダム共重合したエチレ
ン・プロピレン共重合体(極限粘度〔η〕0.8
dl/g、融点129℃)を、ホツトメルトコーター
に供給し、窒素シール下で260℃に加熱後、加圧
し、スリツト間隙0.4mmの口金から押出し、厚さ
30μmの電気絶縁クラフト紙(比重0.90g/cm3
表面粗さRmax=18μm)の片面上に厚さ3μmに
なるようにホツトメルトコートし、巻取つた。 一方、極限粘度1.85dl/g、重量平均分子量
Mwと数平均分子量Mnとの比Mw/Mn=4.0、
アイソタクチツクインデツクスII99%のポリプロ
ピレンを250℃で溶融し、この溶融体を口金から
シート状に押し出し、常法により50℃に冷却され
たキヤステイングドラム上にキヤストし、冷却固
化させた。 該冷却固化シートを146℃に加熱した後、長手
方向に6倍延伸し、つづいて160℃に加熱された
ステンター内に送り込み、幅方向に10倍延伸し、
更に165℃で4秒間幅方向に5%のリラツクスを
許しながら熱処理して、厚さ90μmの二軸配向ポ
リプロピレンフイルムを作つた。 かくして得られたフイルムの〔η〕は1.80dl/
g、Mw/Mnは3.9、IIは99%、複屈折は0.016で
あつた。 次に絶縁紙にコーテイングしたエチレン・プロ
ピレン共重合体面が上記二軸配向ポリプロピレン
フイルムの両面に重なり合うようにしたのち、
190℃に加熱された外径250mmφのクロムメツキロ
ール間に送り込み、線圧300Kg/cmで0.1秒間押圧
して絶縁紙/二軸配向ポリプロピレンフイルム/
絶縁紙からなる厚さ156μmの3層の絶縁材料を
得た。かくして得られた絶縁材料の二軸配向ポリ
プロピレンフイルムの厚み分率は57%であつた。 続いて該絶縁材料をドデシルベンゼン油に侵漬
させて物性を測定した。 膨潤率:3% 誘電率:2.5(20℃)、2.5(100℃) tanδ:0.04%(20℃)、0.05%(100℃) 接着力:120g/cm 以上のように、本発明絶縁材料は優れた電気的
性質のみならず、接着力、耐膨潤性にもすぐれて
いるため、油浸ケーブル用絶縁材料として優れた
特性を示すことがわかる。 比較例 1 実施例1で電気絶縁クラフト紙にエチレン・プ
ロピレン共重合体をホツトメルトコーターで塗布
する代わりに、次の溶液型熱硬化性接着剤を用い
て電気絶縁紙を二軸配向ポリプロピレンフイルム
の両面に常法により貼り合わせた。なお、この場
合、接着性を向上さすために二軸配向ポリプロピ
レンフイルムの両表面を、3600J/m2の電気エネ
ルギーでコロナ放電処理をした。接着剤厚さは、
それぞれ3μmであつた。 〔接着剤溶液の組成〕 飽和ポリエステル共重合体※:15重量部 テリレンジイソシアネート:3.5重量部 メチルエチルケトン:81.5重量部 ※ 酸成分として、テレフタル酸72モル%、セ
バシン酸28モル%、ジオール成分として、エ
チレングリコール35モル%、ネオベンチルグ
リコール65モル%からなる飽和ポリエステル
共重合体、粘度平均分子量約18000 かくして得られた電気絶縁紙/二軸配向ポリプ
ロピレンフイルム/電気絶縁紙からなる厚さ
156μmの絶縁材料を実施例1と同様にして諸物
性を測定し、表1に結果をまとめて示した。表1
から明らかなように、接着剤として極性基を有し
た化合物を用いると電気的tanδが大きくなり、超
高圧ケーブル用絶縁材料としては用いられないこ
とがわかる。 比較例 2 実施例1で用いた電気絶縁クラフト紙と、実施
例1と同様にして製膜した厚さ66μmの二軸配向
ポリプロピレンフイルムとを、実施例1で用いた
エチレン・プロピレンランダム共重合体を接着剤
として用いて、紙とフイルムとを260℃で溶融押
出しラミネートして、紙/ランダム共重合体/フ
イルム/ランダム共重合体/紙からなる厚さ
156μmの絶縁材料を得た。ここでランダム共重
合体層の厚さは、それぞれ15μmであり、二軸配
向ポリプロピレンフイルムの厚み分率は42%であ
つた。 かくして得られた絶縁材料を実施例と同様にし
て諸物性を測定し、表1に結果をまとめて示し
た。 表1から明らかなように、絶縁材料の構成は実
施例1と同じであるが、構成厚さが異なるために
誘電率、tanδが大きいのみならず、膨潤度も大き
く、油浸ケーブル材料としては用いられないこと
がわかる。
[Technical Field of the Invention] The present invention relates to an insulating material for oil-immersed cables, which is made by bonding and laminating electrically insulating paper made of improved natural or synthetic fibers and biaxially oriented polypropylene film. [Prior Art] The present inventors previously developed a biaxially oriented polypropylene film on both sides as an insulating material for oil-immersed cables.
We have proposed an insulating material that is made by laminating electrical insulating papers made of natural or synthetic fibers, such as cellulose fibers, plastic synthetic paper, and mixed paper of plastic fibers and natural fibers, by laminating them using thermosetting adhesives. . (For example, Japanese Patent Application No. 57-36509, etc.) However, since this insulating material uses a thermosetting adhesive, not only does it increase manufacturing costs, but the polar groups of the adhesive make it difficult to use dielectric materials as an insulating material. This has the disadvantage that the loss and tan δ become large, and, for example, ultra-high voltage cables of 500,000 V or more generate too much heat and cannot be used. Furthermore, in order to improve the adhesion between the thermosetting adhesive and the biaxially oriented polypropylene film, a surface activation treatment such as corona discharge treatment is applied to the biaxially oriented polypropylene film, which prevents stains caused by ionic components. Perhaps because of this, not only did the tan δ increase, but the withstand voltage also decreased, which was a quality defect. On the other hand, it is also known that thermoplastic polypropylene is used instead of thermosetting adhesive, that is, insulating paper is made by bonding fiber paper and biaxially oriented polypropylene film with unstretched polypropylene extruded from an extruder as an adhesive. (For example, Special Publick No. 54-10712)
number, etc.). However, since this adhesive uses a melt extruded directly from an extruder, the thickness of this adhesive cannot be made thinner than 15 μm, and therefore, when the insulating paper is immersed in electrical insulation oil, Since the insulating paper swells with oil, when used as an oil-immersed cable, the insulating layer becomes tightly wound, which causes insulation defects. Furthermore, since molten propylene homopolymer is used as an adhesive, the rate of crystallization during the cooling process is very fast. As a result, when used for cables, the insulating paper peels off when the cable is mechanically bent, resulting in electrical There were some shortcomings that resulted in certain flaws. [Object of the Invention] The present invention was achieved in order to solve the above-mentioned conventional problems such as swelling of insulating materials due to oil immersion, deterioration of tan δ, and decrease in interlayer adhesion, and the accompanying drawbacks. The purpose of this invention is to provide a highly economical insulating material for oil-immersed cables that minimizes the degree of swelling during oil immersion, has excellent electrical properties such as tan δ, and has strong interlayer adhesion. [Structure of the Invention] The insulating material for oil-immersed cables of the present invention is an insulating material in which electrical insulating paper made of natural or synthetic fibers is laminated on both sides of a biaxially oriented polypropylene film. It is characterized in that a polyolefin having a melting point of 100 to 150° C. is used for adhesion to the insulating paper, and the thickness of the polyolefin layer is 0.5 to 8 μm. The intrinsic viscosity [η] of the biaxially oriented polypropylene film in the present invention is preferably 1.2 to 2.8 dl/g, preferably 1.3 to 2.2 dl/g. When the value of [η] is less than 1.2, preferably less than 1.3, the resulting film is brittle and prone to cracks, and cannot be used as an electrical insulating material. In addition, when the value of [η] exceeds 2.8, the degree of swelling by oil of the resulting film is hardly improved compared to conventional polypropylene films, and the swelling value is large, that is, the degree of swelling exceeds 3%. Unfavorable for showing. Further, the ratio Mw/Mn between the weight average molecular weight Mw and the number average molecular weight Mn is preferably 3 or more. If the Mw/Mn ratio is smaller than the above value, the degree of swelling due to oil will increase and the insulation properties will also decrease, which is not preferable. Moreover, not only the film frequently breaks during film formation, but also the thickness becomes more uneven. In the case of the biaxially oriented polypropylene film of the present invention, the degree of isotacticity is preferably 93% or more, preferably 96% or more, and more preferably 98% or more, since the degree of swelling by oil is small. The polypropylene film also contains antistatic agents, slipping agents, heat stabilizers, antiblocking agents,
It is important not to contain additives such as nucleating agents and viscosity modifiers. The thickness of polypropylene film is 10~1000μ
It is preferably in the range of m. In the present invention, the electrically insulating paper (hereinafter referred to as paper) to be laminated on the biaxially oriented polypropylene film is natural fiber paper mainly composed of cellulose as defined in JIS C2301 to 2308, or natural fiber paper such as cellulose. The paper may be a mixed paper made of fibers and plastic fibrils, or a synthetic paper made only of plastic, but particularly suitable for the present invention is a natural fiber paper containing cellulose as a main component. The maximum surface roughness Rmax of electrical insulating paper is 5~
25μm, apparent density 0.6~1.2g/cm, thickness 15~
Thicknesses in the 150 μm range are often used due to their excellent electrical properties and oil permeability. In the case of the present invention, the electrically insulating paper is preferably paper whose surface has been smoothed by calendering or the like because it has high voltage resistance and interlayer adhesive strength. Polyolefin used as an adhesive between layers is a propylene copolymer containing 50 mol% or more of propylene, such as a binary or ternary copolymer (random, graft, block) consisting of ethylene, propylene, putene, hexene, etc. is a typical example, but is not necessarily limited to this. As the polyolefin used in the present invention, ethylene/propylene (ethylene content: 1 to 10 mol%) random copolymer and ethylene/propylene (ethylene content: 10 to 50 mol%) block copolymer are particularly preferred. The melting point of the polyolefin should be 100-150°C, preferably 110-145°C. If this melting point is less than 100℃, preferably less than 100℃, the electrical tan δ will be large, and the degree of swelling in oil immersion will be large, resulting in electrical defects, so it is not used as an insulating material for oil-immersed cables. Can not. Further, when the melting point exceeds 150°C, preferably 145°C, the adhesiveness between the electrically insulating paper and the biaxially oriented polypropylene film is poor, the paper peels off during oil immersion, and it is not possible to laminate at an economical speed. The intrinsic viscosity [η] of the polyolefin is 0.4 to
2.5, preferably 0.6 to 1.8, more preferably 0.7 to
It has a low viscosity of 1.4 (dl/g), suppressing swelling during oil immersion and improving interlayer adhesion. Furthermore, the thickness of the polyolefin layer is 0.5 to 8 μm,
Preferably it should be between 0.8 and 3.0 μm. When the thickness of the layer is less than 0.5 μm, preferably less than 0.8 μm, the adhesion between the electrically insulating paper and the biaxially oriented polypropylene film is poor;
When it exceeds m, preferably exceeds 3 μm, the electrical tan δ becomes large and the degree of swelling in oil immersion becomes large, resulting in electrical defects. Further, it is preferable that the polyolefin layer has oriented molecular chains rather than non-oriented from the viewpoint of swelling properties with insulating oil, mechanical properties, and electrical properties. The degree of orientation is determined by subtracting the refractive index Nzd in the thickness direction from the arithmetic mean value (Nmd+Ntd)/2 of the refractive index in the longitudinal direction and width direction (indicated by Nmd and Ntd, respectively) of the polyolefin layer, which is 0.01. It is preferable that there be more than one. [Manufacturing Method] Next, a method for manufacturing an insulating material according to the present invention will be described. [Method] The method for producing the raw material for biaxially oriented polypropylene film used in the present invention is not particularly limited, but
A preferred example is a bulk polymerization method using propylene itself as a solvent using a catalyst system consisting of a titanium tetrachloride catalyst supported on various known magnesium chlorides, an organoaluminum compound, and a third component such as an ester compound. Polymerize propylene with
It is then obtained by removing the polypropylene, which is soluble in propylene and has low stereoregularity, with a low boiling point hydrocarbon such as propylene. 10% of ethylene is added to the polypropylene polymer raw material (A) and polyolefin as an adhesive polymer.
~40% block copolymerized ethylene/propylene block copolymer (B) is supplied to a sheet extruder, and a three-layer molten material called BAB is discharged from a die and cast onto a cooling drum. After preheating this sheet by external heating method,
Stretched 4 to 8 times at 120 to 150℃, and further stretched to 120 degrees in the width direction.
Stretch 6 to 12 times at ~170℃, and stretch to 100~100% as necessary.
Heat treatment is performed at 170° C. for 2 to 10 seconds to obtain a biaxially stretched polypropylene film having three layers. The total thickness of the three-layer laminated polypropylene film thus obtained was 40 to 250 μm, of which the surface of the ethylene-propylene block copolymer layer was roughened, and the thickness was adjusted to 0.5 to 8 μm. do. The reason for roughening the surface is to improve slipperiness and anti-blocking properties. Electrical insulating paper is superimposed on both surfaces of this three-layer laminated film, and
It is pressed for a short time between hot press rolls heated to 220°C at a linear pressure of 0.1 to 1 t/cm to obtain an insulating material consisting of insulating paper/three-layer laminated film/insulating paper. [Method] Another manufacturing method is to apply polyolefin as an adhesive, such as ethylene, on top of insulating paper.
A propylene random copolymer is uniformly coated to a thickness of 0.5 to 8 μm using a hot melt coating method. A single film of biaxially oriented polypropylene film is wrapped between the two coated insulating papers and pressed between hot press rolls in the same manner as above. Obtain an insulating material. In the case of the insulating material of the invention, the production method is particularly preferred in that the polyolefin layer as adhesive polymer has an orientation. [Effects of the Invention] The insulating material of the present invention comprises electrically insulating kraft paper,
Since it has a structure in which a biaxially oriented polypropylene film is laminated with a specific polyolefin at a specific thickness as an adhesive, the following effects can be achieved. (1) Swelling due to oil is extremely small. (2) Excellent oil distribution. (3) Both dielectric constant and dielectric loss tangent are small, and dielectric breakdown voltage is extremely high. (4) The mechanical properties of the insulating material are excellent. (5) Since the amount dissolved in oil is small, the degree of contamination of oil is extremely small. (6) The manufacturing cost is low and it is highly economical. Therefore, the insulating material for oil-immersed cables of the present invention is extremely useful as an insulating layer for oil-immersed cables. Next, the measurement methods used in the present invention are summarized below. (1) Isotacticity Cut the sample film into approximately 1 cm square pieces, place them in a Soxhlet extractor, and extract with boiling methyl alcohol for 6 hours. The extracted sample is vacuum dried at 60°C for 6 hours. A sample weighing W (mg) is taken from this, placed again in the Soxhlet extractor, and extracted with boiling N-heptane for 6 hours. Next, this sample is taken out, thoroughly washed with acetone, dried under vacuum at 60°C for 6 hours, and then weighed. If its weight is W' (mg), the degree of isotacticity is calculated by the following formula. Isotacticity (%) = 100 x W'/W (2) Birefringence Using Atsube's refractometer, calculate the refractive index in the longitudinal direction (Ny) and the refractive index in the width direction (Nx) of the film.
is measured, and the absolute value of the difference between Ny and Nx is taken as the birefringence of the film. Note that sodium D ray is used as the light source during the measurement, and methyl salicylate is used as the mounting liquid. (3) Swelling degree due to electrical insulating oil Cut a 100mm square sample, dry it in a constant temperature bath at 120℃ for 20 hours, and immediately measure its thickness.
Let it be D (μm). This sample is immersed in dodecylbenzene oil at 100°C and left for 24 hours, then taken out and the thickness of the sample is immediately measured, and this is defined as D' (μm). The degree of swelling is determined by the following formula. Swelling degree (%) = 100 x (D'-D)/D (4) Adhesive strength between paper and film after oil immersion The laminated material was immersed in dodecylbenzene at 110°C for 30 minutes.
After being immersed for one day, it was taken out, thoroughly washed with acetone, and then left at room temperature of 20°C for one day. Using this sample as a sample, the peel strength of the bond between the paper and the film was measured according to the T-peel test method for flexible materials with each other as described in JIS K 6854-1973, and this was taken as the adhesive strength. (5) The method for measuring weight average molecular weight Mw and number average molecular weight Mn is as follows. Equipment: Gel permeation chromatograph GPC-150C Column: Shodex A80M Solvent: o-dichlorobenzene (0.1% ionol added) Rate: 1 ml/min Temperature: 135°C Sample concentration: 0.1 (wt/vol)% Filtration: 0.1 μm calcination Injection amount of filter: 0.4ml Detector: Differential refractive index detector Molecular calibration: Polystyrene standard (6) Intrinsic viscosity [η] is measured according to ASTM D1601 and is measured in tetralin at 135°C. Unit: dl/g. (7) Breakdown voltage (BDV) was measured according to ASTM D149 (20°C). (8) Electrical tanδ is the frequency according to ASTM D150.
50Hz, temperature 100℃, insulated paper measurement electrode MEP-C
The measurement was performed using a mold (manufactured by Nissin Electric Co., Ltd.). (9) The melting point Tm is the equilibrium temperature associated with the melting point of the crystal determined by a scanning calorimeter (DSC), and is called the endothermic peak. If there are two or more endothermic peak temperatures, the one with the highest endothermic peak height is used, but if they are almost the same, the average temperature of these numbers is used. The DSC measurement conditions are a sample weight of 5 mg, a heating rate of 20°C/min, and a nitrogen flow. (10) Surface roughness Rmax was measured according to JIS B0 601-1976. Example 1 Ethylene/propylene copolymer obtained by randomly copolymerizing 6 mol% ethylene (intrinsic viscosity [η] 0.8
dl/g, melting point 129°C) was supplied to a hot melt coater, heated to 260°C under a nitrogen seal, pressurized, extruded through a die with a slit gap of 0.4 mm, and the thickness was
30μm electrically insulating kraft paper (specific gravity 0.90g/ cm3 ,
A hot-melt coating was applied to one side (surface roughness Rmax=18 μm) to a thickness of 3 μm, and the film was wound up. On the other hand, the intrinsic viscosity is 1.85 dl/g, the weight average molecular weight
Ratio of Mw to number average molecular weight Mn Mw/Mn = 4.0,
Isotactic Index II 99% polypropylene was melted at 250°C, this melt was extruded into a sheet from a die, cast on a casting drum cooled to 50°C by a conventional method, and solidified by cooling. After heating the cooled and solidified sheet to 146°C, it was stretched 6 times in the longitudinal direction, then fed into a stenter heated to 160°C, and stretched 10 times in the width direction,
Further, the film was heat treated at 165° C. for 4 seconds while allowing 5% relaxation in the width direction to produce a biaxially oriented polypropylene film with a thickness of 90 μm. [η] of the film thus obtained was 1.80 dl/
g, Mw/Mn were 3.9, II was 99%, and birefringence was 0.016. Next, the ethylene-propylene copolymer surface coated on the insulating paper was made to overlap both sides of the biaxially oriented polypropylene film, and then
Insulating paper/biaxially oriented polypropylene film/
A three-layer insulating material made of insulating paper and having a thickness of 156 μm was obtained. The thickness fraction of the biaxially oriented polypropylene film of the insulating material thus obtained was 57%. Subsequently, the insulating material was immersed in dodecylbenzene oil and its physical properties were measured. Swelling rate: 3% Dielectric constant: 2.5 (20℃), 2.5 (100℃) Tanδ: 0.04% (20℃), 0.05% (100℃) Adhesive strength: 120g/cm As described above, the insulating material of the present invention It can be seen that it exhibits excellent properties as an insulating material for oil-immersed cables, as it has not only excellent electrical properties but also excellent adhesive strength and swelling resistance. Comparative Example 1 Instead of applying the ethylene-propylene copolymer to the electrically insulating kraft paper using a hot melt coater in Example 1, the following solution-type thermosetting adhesive was used to coat the electrically insulating paper with a biaxially oriented polypropylene film. Both sides were pasted together using a conventional method. In this case, both surfaces of the biaxially oriented polypropylene film were subjected to corona discharge treatment with an electrical energy of 3600 J/m 2 in order to improve adhesion. The adhesive thickness is
Each was 3 μm. [Composition of adhesive solution] Saturated polyester copolymer*: 15 parts by weight Terylene diisocyanate: 3.5 parts by weight Methyl ethyl ketone: 81.5 parts by weight *As acid components, 72 mol% of terephthalic acid, 28 mol% of sebacic acid, as diol components, Saturated polyester copolymer consisting of 35 mol% ethylene glycol and 65 mol% neobentyl glycol, viscosity average molecular weight approximately 18,000 Thickness of electrically insulating paper/biaxially oriented polypropylene film/electrically insulating paper thus obtained
Various physical properties of the 156 μm insulating material were measured in the same manner as in Example 1, and the results are summarized in Table 1. Table 1
As is clear from the above, when a compound having a polar group is used as an adhesive, the electrical tan δ becomes large, and it can be seen that it cannot be used as an insulating material for ultra-high voltage cables. Comparative Example 2 The electrically insulating kraft paper used in Example 1 and the 66 μm thick biaxially oriented polypropylene film produced in the same manner as in Example 1 were combined with the ethylene-propylene random copolymer used in Example 1. Using as an adhesive, paper and film are melt-extruded and laminated at 260°C to create a thickness of paper/random copolymer/film/random copolymer/paper.
A 156 μm insulating material was obtained. Here, the thickness of each random copolymer layer was 15 μm, and the thickness fraction of the biaxially oriented polypropylene film was 42%. Various physical properties of the thus obtained insulating material were measured in the same manner as in the examples, and the results are summarized in Table 1. As is clear from Table 1, the composition of the insulating material is the same as in Example 1, but because the composition thickness is different, not only the dielectric constant and tan δ are large, but also the degree of swelling is large, making it suitable as an oil-immersed cable material. It turns out that it is not used.

【表】 実施例 2 ポリプロピレンとして、〔η〕=2.0、アイソタ
クチツクインデツクスII=98%のチツプと、エチ
レンを20モル%ブロツクに共重合させたエチレ
ン・プロピレンブロツク共重合体(〔η〕=1.4、
DSCによる融解ピーク温度は118℃、147℃、160
℃に出るが融点としては前2者の平均として133
℃)とを、それぞれ別の口金に導入し、ブロツク
共重合体層/ポリプロピレン層/共重合体層から
なる3層積層シートを口金から押出した。このシ
ートを45℃に保たれた冷却ドラムに、エアー圧で
密着させ冷却固化させ、続いて145℃に加熱され
た熱風オーブン中で加熱し、長手方向に5倍延伸
し、直ちに15℃の冷却ロールに接着させて冷却し
た。このシートを160℃に加熱されたステンター
式幅出機に送り込み、幅方向に10倍延伸し、次い
で幅方向に7%のリラツクスを許しながら2秒間
熱処理し、厚さ90μmの3層積層ポリプロピレン
フイルムを得た。ここでブロツク共重合体層の厚
さは、それぞれ2μmづつであり、ポリプロピレ
ン層の厚さは86μm、Mw/Mn=4.2であつた。
この3層積層ポリプロピレンフイルムには、すべ
り剤、ブロツキング防止剤などの添加剤を加えて
いないにもかかわらず、特定のポリマーを用いた
ため、摩擦係数が0.6とすぐれた易滑性を示して
いた。この3層積層ポリプロピレンフイルムの両
面に、厚さ25μmの電気絶縁クラフト紙(比重
0.92g/cm3、表面粗さRmax=15μm)を重ね合
わせ、実施例1と同一の加熱プレスロールを用い
て200℃で線圧400Kg/cmで0.1秒間押圧してラミ
ネートし、クラフト紙/3層積層ポリプロピレン
フイルム/クラフト紙からなる厚さ140μmの電
気絶縁材料を得た。二軸配向ポリプロピレンフイ
ルムの厚み分率は61%であつた。 かくして得られた絶縁材料の20℃でのドデシル
ベンゼン中での特性を示すと、 誘電率:2.5 tanδ:0.04(%) 膨油率:4(%) 絶縁破壊電圧:66(KV/mm) 層間接着力:140(g/cm) 油流通性:良好 長手方向の破断強さ:35(Kg/15mm巾) 長手方向の破断のび:150(%) このように油浸超高圧ケーブル絶縁材料として
は、優れた特性として用いることがわかる。 実施例3および比較例3 下記に示す表2の仕様で図に示すケーブル構造
の実施例3および比較例3として、実施例2およ
び比較例2の絶縁材料を用いた電力ケーブルを製
造し、諸特性を調べた。 なお、図において、1は銅を素材とした6分割
導体、2は油通路、3は例えばステンレステーブ
とカーボン紙とを合せ巻きして形成した導体バイ
ンダー層、4は油浸絶縁層、5は金属化紙とアル
ミニウムテープを合せ巻きしてなる金属遮蔽層、
6は例えば銅線織込布テープなどの巻回によるコ
アバインダー層、7は鉛被シース、そして8は塩
化ビニル被膜シースである。 各々のケーブルについて得られた諸特性を表3
に示す。
[Table] Example 2 As polypropylene, [η] = 2.0, isotactic index II = 98% chips and ethylene were copolymerized to form a 20 mol% block of ethylene/propylene block copolymer ([η] =1.4,
Melting peak temperature by DSC is 118℃, 147℃, 160℃
℃, but the melting point is 133 as the average of the first two.
C) were introduced into separate nozzles, and a three-layer laminate sheet consisting of block copolymer layer/polypropylene layer/copolymer layer was extruded from the nozzles. This sheet was brought into close contact with a cooling drum maintained at 45°C using air pressure, cooled and solidified, then heated in a hot air oven heated to 145°C, stretched 5 times in the longitudinal direction, and immediately cooled to 15°C. It was adhered to a roll and cooled. This sheet is fed into a stenter type tenter heated to 160℃, stretched 10 times in the width direction, and then heat treated for 2 seconds while allowing 7% relaxation in the width direction, resulting in a 3-layer laminated polypropylene film with a thickness of 90μm. I got it. Here, the thickness of each block copolymer layer was 2 μm, and the thickness of the polypropylene layer was 86 μm, Mw/Mn=4.2.
Although this three-layer laminated polypropylene film did not contain any additives such as slip agents or anti-blocking agents, it exhibited excellent slipperiness with a coefficient of friction of 0.6 due to the use of a specific polymer. On both sides of this three-layer laminated polypropylene film, electrically insulating kraft paper (specific gravity
0.92 g/cm 3 , surface roughness Rmax = 15 μm), and using the same hot press roll as in Example 1, press at 200°C and a linear pressure of 400 Kg/cm for 0.1 seconds to laminate. An electrically insulating material with a thickness of 140 μm consisting of laminated polypropylene film/kraft paper was obtained. The thickness fraction of the biaxially oriented polypropylene film was 61%. The properties of the thus obtained insulating material in dodecylbenzene at 20℃ are as follows: Dielectric constant: 2.5 tanδ: 0.04 (%) Oil swelling ratio: 4 (%) Breakdown voltage: 66 (KV/mm) Layer Adhesive strength: 140 (g/cm) Oil flowability: Good Longitudinal breaking strength: 35 (Kg/15mm width) Longitudinal breaking elongation: 150 (%) In this way, as an oil-immersed ultra-high voltage cable insulation material, , it can be seen that it is used as an excellent property. Example 3 and Comparative Example 3 As Example 3 and Comparative Example 3 of the cable structure shown in the figure with the specifications shown in Table 2 below, power cables using the insulating materials of Example 2 and Comparative Example 2 were manufactured, and various We investigated the characteristics. In the figure, 1 is a six-part conductor made of copper, 2 is an oil passage, 3 is a conductor binder layer formed by winding together, for example, stainless steel tape and carbon paper, 4 is an oil-immersed insulating layer, and 5 is an oil-immersed insulating layer. A metal shielding layer made by wrapping metallized paper and aluminum tape together,
6 is a core binder layer formed by winding, for example, a copper wire woven cloth tape, 7 is a lead-covered sheath, and 8 is a vinyl chloride-covered sheath. Table 3 shows the characteristics obtained for each cable.
Shown below.

【表】【table】

【表】【table】

【表】 表2および表3の結果によれば、比較例2の絶
縁材料を用いたOFケーブルに比べ、本発明にな
る絶縁材料を用いたOFケーブルでは、低静電容
量、高破壊ストレスが実現できていることが判
る。すなわち、従来より薄い絶縁層で従来以上の
電気絶縁特性を実現できることが判る。
[Table] According to the results in Tables 2 and 3, compared to the OF cable using the insulating material of Comparative Example 2, the OF cable using the insulating material of the present invention has lower capacitance and higher breakdown stress. It is clear that this has been achieved. In other words, it can be seen that electrical insulation characteristics better than that of the conventional one can be achieved with an insulating layer that is thinner than that of the conventional one.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の絶縁材料を用いたケーブルの実施
例を示す断面図である。 1……導体、2……油通路、4……油浸絶縁
層、5……金属遮蔽層、6……コアバインダー
層、7……鉛被シース、8……塩ビシース。
The figure is a sectional view showing an example of a cable using the insulating material of the present invention. DESCRIPTION OF SYMBOLS 1... Conductor, 2... Oil passage, 4... Oil-immersed insulating layer, 5... Metal shielding layer, 6... Core binder layer, 7... Lead sheath, 8... PVC sheath.

Claims (1)

【特許請求の範囲】[Claims] 1 二軸配向ポリプロピレンフイルムの両面に、
天然または合成繊維を用いてなる電気絶縁紙を貼
り合せ積層した絶縁材料において、該ポリプロピ
レンフイルムと該電気絶縁紙との接着に、融点
100〜150℃のポリオレフインを用い、しかも該ポ
リオレフイン層の厚さを0.5〜8μmにしたことを
特徴とする油浸ケーブル用絶縁材料。
1. On both sides of the biaxially oriented polypropylene film,
In an insulating material made by bonding and laminating electrically insulating papers made of natural or synthetic fibers, the adhesion between the polypropylene film and the electrically insulating paper depends on the melting point.
An insulating material for oil-immersed cables, characterized in that polyolefin having a temperature of 100 to 150°C is used, and the thickness of the polyolefin layer is 0.5 to 8 μm.
JP22539683A 1983-12-01 1983-12-01 Insulating material for oil-immersed cable Granted JPS60119018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22539683A JPS60119018A (en) 1983-12-01 1983-12-01 Insulating material for oil-immersed cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22539683A JPS60119018A (en) 1983-12-01 1983-12-01 Insulating material for oil-immersed cable

Publications (2)

Publication Number Publication Date
JPS60119018A JPS60119018A (en) 1985-06-26
JPH0244085B2 true JPH0244085B2 (en) 1990-10-02

Family

ID=16828700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22539683A Granted JPS60119018A (en) 1983-12-01 1983-12-01 Insulating material for oil-immersed cable

Country Status (1)

Country Link
JP (1) JPS60119018A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133279A (en) * 1974-07-15 1976-03-22 Caterpillar Tractor Co
JPS575218A (en) * 1980-06-10 1982-01-12 Furukawa Electric Co Ltd Composite electric insulating sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133279A (en) * 1974-07-15 1976-03-22 Caterpillar Tractor Co
JPS575218A (en) * 1980-06-10 1982-01-12 Furukawa Electric Co Ltd Composite electric insulating sheet

Also Published As

Publication number Publication date
JPS60119018A (en) 1985-06-26

Similar Documents

Publication Publication Date Title
KR19990064089A (en) Polypropylene Film and Capacitor Using It as Dielectric
CN108699265A (en) Biaxially oriented polypropylene film, metallic diaphragm laminate film and thin film capacitor
JP2008127460A (en) Biaxially oriented polypropylene film for capacitor, and metallized film and capacitor by using the same
JP4742398B2 (en) Biaxially oriented polypropylene film
JP7318187B2 (en) Polypropylene film, metal film laminated film and film capacitor
JPH0244085B2 (en)
JPH0244086B2 (en)
JPH04163042A (en) Polypropylene film for electric article
JP2001048998A (en) Biaxially oriented polypropylene film
JPH0461453B2 (en)
JPS61185816A (en) Insulating material for oil-filled cable
JPH10156938A (en) Polypropylene film and capacitor using the same as dielectric
JPH04216829A (en) Polypropylene film for double-side metallizing
JPS60143521A (en) Insulating material for oil-immersed cable
JPS61176013A (en) Insulating material for oil-filled cable
JPS62198111A (en) Metal evaporated film and capacitor
JPS6146925B2 (en)
JPS6131236A (en) Manufacture of superthin film
JPS6355170B2 (en)
JPH0831287B2 (en) Insulation material for oil-immersed cable
JPH074899B2 (en) Oil-immersed polypropylene film for electrical insulation and method for producing the same
JPH0797539B2 (en) Polypropylene film for double-sided vapor deposition
JPH0745230B2 (en) Polypropylene embossed film
JPS59163705A (en) Oil-immersed electrically insulating polypropylene film
JPS6224886B2 (en)