JPS6224886B2 - - Google Patents
Info
- Publication number
- JPS6224886B2 JPS6224886B2 JP55038062A JP3806280A JPS6224886B2 JP S6224886 B2 JPS6224886 B2 JP S6224886B2 JP 55038062 A JP55038062 A JP 55038062A JP 3806280 A JP3806280 A JP 3806280A JP S6224886 B2 JPS6224886 B2 JP S6224886B2
- Authority
- JP
- Japan
- Prior art keywords
- polypropylene
- paper
- thickness
- insulating oil
- film layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004743 Polypropylene Substances 0.000 claims description 66
- -1 polypropylene Polymers 0.000 claims description 66
- 229920001155 polypropylene Polymers 0.000 claims description 66
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 39
- 238000009835 boiling Methods 0.000 claims description 20
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 12
- 239000008096 xylene Substances 0.000 claims description 12
- 239000000835 fiber Substances 0.000 claims description 11
- 238000010292 electrical insulation Methods 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 7
- 239000000123 paper Substances 0.000 description 31
- 239000003921 oil Substances 0.000 description 29
- 230000008961 swelling Effects 0.000 description 10
- 239000002655 kraft paper Substances 0.000 description 9
- 150000004996 alkyl benzenes Chemical class 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000002522 swelling effect Effects 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000012994 industrial processing Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Organic Insulating Materials (AREA)
- Insulating Bodies (AREA)
Description
本発明は耐絶縁油性を改良した電気絶縁用のポ
リプロピレンラミネート紙に関するものである。
繊維紙同志または繊維紙と延伸もしくは無延伸
ポリプロピレンフイルムを貼り合せた、いわゆる
電気絶縁用ポリプロピレンラミネート紙は、油浸
状態におけるイソパルス耐電圧が高く、またすぐ
れた誘電特性を有するため起高圧電力ケーブルな
ど電気機器の絶縁材料としてその実用化が活発に
すすめられている。しかしながらこのポリプロピ
レンラミネート紙の実用化における最大の問題
は、このポリプロピレンラミネート紙の構成要素
であるポリプロピレンフイルム層、すなわち、貼
に合せ時ポリプロピレンの溶融押出しによつて形
成されるポリプロピレンフイルム層(接着剤層)
またはあらかじめ作成された延伸もしくは無延伸
ポリプロピレンフイルム層またはそれらの複合層
が、電気機器内に通常用いられる鉱油、アルキル
ベンゼン、アルギルナフタレン、ジアリルエタン
のような炭化水素系絶縁油によつて膨潤を起して
厚さの増加を来し、次のような重大な問題をひき
おこすことである。
その一つは、ポリプロピレンフイルム層の厚さ
増加によつて、電気機器の温度変化に伴う絶縁油
の膨張、収縮を補償するために必要な電気機器絶
縁層内の絶縁油の流通性が低下することである。
従来のクラフト紙絶縁電気機器では、クラフト紙
が多孔質の材料であるため、絶縁油は、クラフト
紙を厚み方向に貫通して流通することができる
が、ポリプロピレンラミネート紙では、ポリプロ
ピレンフイルム層があるため、絶縁油は厚み方向
に貫通して流れることができず、クラフト紙表面
の凹凸によつて生じる空隙、あるいはクラフト紙
内部の繊維間の空隙を通して流れざるを得ず、ポ
リプロピレンフイルム層の厚さ増加がない状態で
も絶縁油の流通性は本質的に劣る。しかし、比較
的低密度のクラフト紙を使えば、通常電気機器に
要求される程度の流通性は十分に確保できる。と
ころが、ポリプロピレンフイルム層が厚さ増加を
起こすと、クラフト紙層が圧縮されて、空隙が減
少し、絶縁油の流通性はさらに低下し、ついには
必要な絶縁油の流通性が確保できなくなるのであ
る。
第2の問題も、同様にクラフト紙層が圧縮され
ることによつてひきおこされる。
すなわち、クラフト紙の圧縮は必然的に相接す
るテープ間の面圧を増大させるが、これはテープ
相互のすべりを困難にし、ケーブル等のように布
設時等に曲げを加えられたときに、テープにしわ
を生じせしめる。
これらの現象は、ポリプロピレンフイルム層の
厚さ増加の割合が大きいほど、またポリプロピレ
ンラミネート紙の全厚さに占めるポリプロピレン
フイルム層の厚さの割合が大きいほど顕著にな
る。これは言いかえれば、ポリプロピレンフイル
ム層の厚さ増加の割合が大きいほど、ポリプロピ
レンラミネート紙の全厚さに占めるポリプロピレ
ンフイルム層の割合を小さくする必要があるとい
うことである。ところが、ポリプロピレンラミネ
ート紙の電気的特性の点からは、ポリプロピレン
フイルム層の割合は大きいほうがよく、従つて性
能の優れた電気機器を得るためには、ポリプロピ
レンフイルム層の膨潤を極力小さくすることが重
要である。
さらに膨潤のみでなくポリプロピレンフイルム
層には絶縁油中に溶出する比較的低分子量のポリ
プロピレンが含有されており、これによつて絶縁
油の粘度上昇を招き絶縁層内の絶縁油の流通性を
悪化させる。このため絶縁油の粘度上昇を抑える
ことも重要な問題である。
このようなことから電気絶縁用ポリプロピレン
ラミネート紙の耐絶縁油性を改良する提案がいく
つかなされており、例えば電力ケーブルの場合に
はテープ捲きをした後でポリプロピレンの融点以
下の温度で加熱処理を行なう方法やポリプロピレ
ンフイルム層にし、その層の間に厚さ増加を吸収
できるような新たな層を挿入させ、ラミネート紙
全体の見掛けの厚さ増加を減少させる方法などで
ある。しかしこれらの方法はいずれもポリプロピ
レンフイルム層の膨潤およびそれに伴なう厚さ増
加の不可避を前提としたものであり、膨潤抑制に
はそれなりの効果を有するものの絶縁油の粘度上
昇は避けがたく、また工程的かつ経済的に必ずし
も好ましいものとはいえない。
本発明者らは上述した従来法の問題点に鑑み鋭
意検討を重ねたところ、特に限定された構造のポ
リプロピレンを用いることにより、絶縁油に対す
る膨潤性や粘度変化の少ないポリプロピレンラミ
ネート紙の得られることを見出し、本発明に到達
した。
すなわち、本発明は繊維紙層とポリプロピレン
フイルム層からなる電気絶縁用ポリプロピレンラ
ミネート紙において、前記ポリプロピレンフイル
ム層に下記(1)〜(3)の要件からなるポリプロピレン
樹脂を用いることを特徴とする電気絶縁用ポリプ
ロピレンラミネート紙にある。
(1) 沸騰ヘプタン不溶部のアイソタクチツク・ペ
ンタツド分率が0.955以上
(2) 沸騰ヘプタン可溶部の含有量が2.0〜9.0重量
%
(3) 20℃のキシレンに可溶な重合体の極限粘度が
1.0dl/g以下。
このポリプロピレンラミネート紙を用いること
により、絶縁油によるポリプロピレンの膨潤およ
びそれに伴うポリプロピレン層の厚み増加が少な
く、さらに絶縁油の粘度上昇が少ない電気機器が
得られる。またこのポリプロピレンラミネート紙
は、繊維紙にラミネート加工する際やポリプロピ
レンフイルムの製膜時およびシートの押出時の加
工性が良好であり、また二軸延伸フイルム製造時
の延伸性もすぐれている。
本発明で言う沸騰ヘプタン不溶部のアイソタク
チツク・ペンタツド分率、沸騰ヘプタン可溶部の
含有量および20℃のキシレンに可溶な重合体の極
限粘度は、次のように決定される。
ポリプロピレン5gを沸騰キシレン500mlに完
全に溶解させた後、20℃に降温し4時間放置す
る。その後これをろ別し、20℃キシレン不溶部を
分離する。ろ液を濃縮、乾固してキシレンを蒸発
させ、さらに減圧下60℃で乾燥して、20℃のキシ
レンに可溶な重合体を得る。これを135℃のテト
ラリン中で測定した極限粘度が、20℃のキシレン
に可溶な重合体の極限粘度である。20℃キシレン
不溶部は乾燥された後、沸騰n−ヘプタンで8時
間ソツクスレー抽出される。この油出残渣を沸騰
ヘプタン不溶部と称し、この乾燥重量を5gから
減じた値を5gで除した値を百分率で表現したも
のが、沸騰ヘプタン可溶部の含有量である。
アイソタクチツク・ペンタツド分率とは、A.
ZambelliらによつてMacromolecules6、925
(1973)に発表されている方法、すなわち13C−
NMRを使用して測定されるポリプロピレン分子
鎖中のペンタツド単位でのアイソタクチツク連
鎖、換言すればプロピレンモノマー単位が5回連
続してメソ結合した連鎖中にあるプロピレンモノ
マー単位の分率である。ただし、NMR吸収ピー
クの帰属に関しては、その後発刊された
Macromolecules8、687(1975)に基づいて行う
ものである。
本発明において、沸騰ヘプタン不溶部のアイソ
タクチツク・ペンタツド分率は0.955以上でなけ
ればならない。これが0.955に満たないポリプロ
ピレンは、従来市販されてきたポリプロピレンと
同様膨潤性が劣り、沸騰ヘプタン可溶部が2.0〜
9.0重量%であつても本発明の効果は達成できな
い。このように、本発明において沸騰ヘプタン不
溶部のアイソタクチツク・ペンタツド分率は極め
て重要な要因である。従つて好ましくは、沸騰ヘ
プタン不溶部のアイソタクチツク・ペンタツド分
率は0.96以上である。
また、本発明において沸騰ヘプタン可溶部の含
有量は2.0〜2.0重量%でなければならない。すな
わち、沸騰ヘプタン不溶部のアイソタクチツク・
ペンタツド分率が0.955以上であつても、沸騰ヘ
プタン可溶部の含有部が9.0重量%を越えるポリ
プロピレンでは、膨潤性および絶縁油の粘度上昇
がともに大きく、本発明の目的と効果が達成でき
ない。また、沸騰ヘプタン可溶部の含有量が2.0
重量%未満のポリプロピレンでは、繊維紙へのラ
ミネート、フイルム製膜、シート押出等における
加工法または二軸延伸フイルム製造時の延伸性等
が不良であり、工業的に一般に採られている加工
法によつては良好な厚み分布を持つたポリプロピ
レン層あるいはポリプロピレンフイルムが得られ
ない。均一な厚みが時に要求される電機器用途で
はこれは重要な問題である。従つて好ましくは、
沸騰ヘプタン可溶部の含有量は3.5〜8.0重量%で
ある。
さらに、本発明において20℃のキシレンに可溶
な重合体の極限粘度は1.0dl/g以下でなければ
ならない。これが1.0dl/gを越えるポリプロピ
レンでは、従来市販されてきたポリプロピレンと
同様に絶縁油の粘度上昇が大巾であり、性能のよ
い電気機器が得られない。従つて好ましくは、20
℃のキシレンに可溶な重合体の極限粘度は0.5
dl/g以下である。
本発明の電気絶縁用ポリプロピレンラミネート
紙は、種々の電気機器に広く使用することができ
るが、とりわけ絶縁油を含浸するケーブルやコン
デンサーに適用されれば、その性能を十分に発揮
することができる。すなわちこれら電気機器には
絶縁油として通常鉱油あるいはアルキルベンゼ
ン、アルキルナフタレン、ジアリルエタンなどの
合成油が使用されるが、本発明のポリプロピレン
ラミネート紙はこれら絶縁油に対してすぐれた耐
油性を有している。
本発明のポリプロピレンラミネート紙は、通常
の加工方法によつて作成することができる。例え
ば繊維紙同志または繊維紙と前記ポリプロピレン
によつてあらかじめ作成した延伸もしくは無延伸
ポリプロピレンフイルムを前記ポリプロピレンを
溶融押出ししながら、これを接着剤として貼り合
せるかあるいは直接熱圧着する方法等を用いるこ
とができ、とこに前者の溶融押出しによる場合は
加熱による繊維紙えの悪影響をほとんど考慮する
必要がない。またポリプロピレンフイルムとして
は、前記本発明におけるポリプロピレン(樹脂)
のメルトフローレイト(JIS K−7210に基づき試
験温度230℃、試験荷重2.16Kgで測定)は、ラミ
ネートフイルム、未延伸フイルムおよび延伸フイ
ルム分野で用いられる任意のものでよいが、一般
には0.2〜100の範囲が好ましく、さらに好ましく
は0.5〜50の範囲である。
以下、実施例を挙げて本発明を更に具体的に説
明するが、本発明はこれらに限定されるものでは
ない。また以下の実施例中の膨潤率、溶解量は次
の方法で測定した。
(1) 膨潤率
試料を10枚重ねて金属板2枚の間に挿入し、
1Kg/cm2の荷重を加えて、100℃で4時間乾燥
後厚さを測定し、それをT1とする。その後あ
らかじめ、100℃で保温しておいたハード型ア
ルキルベンゼンを含浸し、100℃に保つたま
ま、24時間放置し、厚さを再び測定し、その厚
さをT2とする。膨潤率は上記アルキルベンゼ
ン含浸後の厚さ変化率、即わち、次式から与え
られる。
膨潤率=T2−T1/T1×100(%)
(2) 溶解量
樹脂をTダイにより溶解押出しし、厚さ約数
十μmのフイルムを作成する。そのフイルムを
適当量採取し、重量を精密に測定し、これを
W1(g)とする。このフイルムサンプルを試
験管に入れ過剰のハード型アルキルベンゼンを
加えて真空中100℃で加熱し、7日間放置す
る。その後、フイルムサンプルを取出し、適当
な溶剤(アセトン)でソツクスレー型抽出装置
によりフイルム表面および内部のハード型アル
キルベンゼンを洗い流す。しかる後にフイルム
を真空乾燥してその重量を精密に測定し、これ
をW2(g)とする。溶解量は上記ハード型ア
ルキルベンゼン含浸前後のフイルムの重量変化
率、即わち、次式から与えられる。
溶解量=W1−W2/W1×100(%)
実施例
メルトフローレイトが50、沸騰ヘプタン不溶部
のアイソタクチツク・ペンタツド分率が0.970、
沸騰ヘプタン可溶部の含有量が5.0、20℃キシレ
ン可溶部の極限粘度が0.25dl/gの本発明にかか
るポリプロピレンを用いて、これをTダイによ
り、43μmの厚さのコンデンサ用絶縁紙2枚の間
に押出し、厚さ125μmのポリプロピレンラミネ
ート紙を作成した。また、市販の住友ノーブレン
Y−101を用い、上記と同じ方法により同一構成
の125μmのポリプロピレンラミネート紙を作成
しこれを比較例とした。これら2個の試料につい
て耐油性および電気特性を試験し、第1表に示す
結果を得た。
The present invention relates to polypropylene laminated paper for electrical insulation with improved resistance to insulating oil. Polypropylene laminate paper for electrical insulation, which is made by laminating fiber paper to fiber paper or fiber paper and stretched or unstretched polypropylene film, has a high isopulse withstand voltage when immersed in oil and has excellent dielectric properties, so it is used in high-voltage power cables, etc. Its practical use as an insulating material for electrical equipment is being actively promoted. However, the biggest problem in the practical application of this polypropylene laminated paper is the polypropylene film layer, which is a component of this polypropylene laminated paper. )
Alternatively, a pre-prepared stretched or unstretched polypropylene film layer or a composite layer thereof may be swollen by a hydrocarbon insulating oil such as mineral oil, alkylbenzene, argylnaphthalene, or diallylethane commonly used in electrical equipment. This results in an increase in thickness, which causes the following serious problems. One of them is that due to the increase in the thickness of the polypropylene film layer, the flowability of the insulating oil within the electrical equipment insulation layer, which is necessary to compensate for the expansion and contraction of the insulating oil due to temperature changes in the electrical equipment, decreases. That's true.
In traditional kraft paper insulated electrical equipment, since kraft paper is a porous material, the insulating oil can penetrate through the kraft paper in the thickness direction, but in polypropylene laminated paper, there is a polypropylene film layer. Therefore, the insulating oil cannot penetrate through the thickness direction, and has no choice but to flow through the voids caused by the unevenness of the kraft paper surface or the voids between the fibers inside the kraft paper. Even when there is no increase, the flowability of insulating oil is essentially poor. However, if relatively low-density kraft paper is used, it is possible to sufficiently secure the degree of distribution normally required for electrical equipment. However, when the thickness of the polypropylene film layer increases, the kraft paper layer is compressed, the voids are reduced, and the flow of insulating oil further decreases, eventually making it impossible to secure the required flow of insulating oil. be. A second problem is also caused by the kraft paper layer being compressed. In other words, compression of kraft paper inevitably increases the surface pressure between adjacent tapes, but this makes it difficult for the tapes to slide against each other, and when bent during installation, such as in cables, etc. This causes wrinkles in the tape. These phenomena become more pronounced as the rate of increase in the thickness of the polypropylene film layer increases and as the proportion of the thickness of the polypropylene film layer to the total thickness of the polypropylene laminated paper increases. In other words, the greater the rate of increase in the thickness of the polypropylene film layer, the smaller the proportion of the polypropylene film layer in the total thickness of the polypropylene laminated paper needs to be. However, from the point of view of the electrical properties of polypropylene laminated paper, the proportion of the polypropylene film layer should be large, and therefore, in order to obtain electrical equipment with excellent performance, it is important to minimize the swelling of the polypropylene film layer. It is. Furthermore, in addition to swelling, the polypropylene film layer contains relatively low molecular weight polypropylene that dissolves into the insulating oil, which increases the viscosity of the insulating oil and deteriorates the flowability of the insulating oil within the insulating layer. let Therefore, suppressing the increase in viscosity of the insulating oil is also an important issue. For this reason, several proposals have been made to improve the insulating oil resistance of polypropylene laminated paper for electrical insulation.For example, in the case of power cables, heat treatment is performed at a temperature below the melting point of polypropylene after winding the tape. For example, the apparent thickness increase of the entire laminated paper can be reduced by forming a polypropylene film layer and inserting a new layer between the layers to absorb the increase in thickness. However, all of these methods are based on the premise that swelling of the polypropylene film layer and the resulting increase in thickness are inevitable, and although they have some effect in suppressing swelling, an increase in the viscosity of the insulating oil is unavoidable. Moreover, it is not necessarily preferable from a process and economic point of view. The inventors of the present invention have conducted intensive studies in view of the problems of the conventional method described above, and have found that by using polypropylene with a particularly limited structure, it is possible to obtain polypropylene laminated paper with little swelling property and viscosity change in insulating oil. They discovered this and arrived at the present invention. That is, the present invention provides a polypropylene laminated paper for electrical insulation consisting of a fiber paper layer and a polypropylene film layer, characterized in that the polypropylene film layer is made of a polypropylene resin that meets the following requirements (1) to (3). Polypropylene laminated paper for use. (1) The isotactic pentad fraction of the boiling heptane insoluble part is 0.955 or more. (2) The content of the boiling heptane soluble part is 2.0 to 9.0% by weight. (3) The intrinsic viscosity of the polymer soluble in xylene at 20°C is
1.0dl/g or less. By using this polypropylene laminated paper, it is possible to obtain an electrical device in which the swelling of polypropylene caused by insulating oil and the resulting increase in the thickness of the polypropylene layer is small, and furthermore, the viscosity of the insulating oil is less increased. Further, this polypropylene laminated paper has good processability when laminating fiber paper, forming a polypropylene film, and extruding a sheet, and also has excellent stretchability when producing a biaxially stretched film. The isotactic pentad fraction of the boiling heptane insoluble portion, the content of the boiling heptane soluble portion and the intrinsic viscosity of the polymer soluble in xylene at 20° C. in the present invention are determined as follows. After completely dissolving 5 g of polypropylene in 500 ml of boiling xylene, the temperature was lowered to 20°C and left for 4 hours. Thereafter, this is filtered to separate the xylene insoluble portion at 20°C. The filtrate is concentrated to dryness to evaporate the xylene, and further dried under reduced pressure at 60°C to obtain a polymer soluble in xylene at 20°C. The intrinsic viscosity measured in tetralin at 135°C is the intrinsic viscosity of a polymer soluble in xylene at 20°C. The xylene insoluble portion at 20° C. is dried and then Soxhlet extracted with boiling n-heptane for 8 hours. This oil residue is referred to as boiling heptane insoluble portion, and the value obtained by subtracting this dry weight from 5 g divided by 5 g is the content of the boiling heptane soluble portion expressed as a percentage. What is isotactic pentad fraction?A.
Macromolecules 6 , 925 by Zambelli et al.
(1973), i.e. 13 C−
It is the fraction of propylene monomer units in an isotactic chain of pentad units in a polypropylene molecular chain measured using NMR, in other words, a chain in which propylene monomer units are meso-bonded five times in succession. However, regarding the attribution of NMR absorption peaks, the
Macromolecules 8 , 687 (1975). In the present invention, the isotactic pentad fraction of the boiling heptane insoluble portion must be 0.955 or more. Polypropylene with a value less than 0.955 has poor swelling properties, similar to conventionally commercially available polypropylene, and has a boiling heptane soluble area of 2.0~
Even at 9.0% by weight, the effects of the present invention cannot be achieved. Thus, in the present invention, the isotactic pentad fraction of the boiling heptane insoluble portion is an extremely important factor. Therefore, preferably, the isotactic pentad fraction of the boiling heptane insoluble portion is 0.96 or more. Further, in the present invention, the content of the boiling heptane soluble portion must be 2.0 to 2.0% by weight. In other words, the isotactic
Even if the pentad fraction is 0.955 or more, polypropylene in which the content of boiling heptane soluble parts exceeds 9.0% by weight increases both the swelling property and the viscosity of the insulating oil, making it impossible to achieve the objects and effects of the present invention. In addition, the content of boiling heptane soluble part is 2.0
If the amount of polypropylene is less than % by weight, processing methods such as lamination to fiber paper, film production, sheet extrusion, etc., or stretchability during biaxially stretched film production, etc. will be poor, and it will not be possible to use commonly used industrial processing methods. Consequently, a polypropylene layer or polypropylene film with a good thickness distribution cannot be obtained. This is an important issue in electrical applications where uniform thickness is sometimes required. Therefore, preferably,
The content of boiling heptane soluble portion is 3.5-8.0% by weight. Furthermore, in the present invention, the intrinsic viscosity of the polymer soluble in xylene at 20°C must be 1.0 dl/g or less. If this exceeds 1.0 dl/g, the viscosity of the insulating oil will increase significantly, similar to conventionally commercially available polypropylene, and electrical equipment with good performance cannot be obtained. Therefore, preferably 20
The intrinsic viscosity of a polymer soluble in xylene at °C is 0.5
dl/g or less. The polypropylene laminated paper for electrical insulation of the present invention can be widely used in various electrical devices, but it can fully demonstrate its performance especially when applied to cables and capacitors impregnated with insulating oil. That is, mineral oil or synthetic oil such as alkylbenzene, alkylnaphthalene, diallylethane, etc. is normally used as insulating oil in these electrical devices, but the polypropylene laminated paper of the present invention has excellent oil resistance against these insulating oils. There is. The polypropylene laminated paper of the present invention can be made by conventional processing methods. For example, a method may be used in which a stretched or unstretched polypropylene film made in advance of fiber paper or fiber paper and the polypropylene is pasted together as an adhesive while the polypropylene is melt-extruded, or the film is directly thermocompressed. However, in the former case of melt extrusion, there is almost no need to consider the adverse effects of heating on the fiber paper stock. Further, as the polypropylene film, the polypropylene (resin) in the present invention is
The melt flow rate (measured based on JIS K-7210 at a test temperature of 230°C and a test load of 2.16 kg) may be any value used in the fields of laminated films, unstretched films, and stretched films, but is generally 0.2 to 100. The range is preferably 0.5 to 50, more preferably 0.5 to 50. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. In addition, the swelling ratio and dissolution amount in the following examples were measured by the following method. (1) Swelling rate 10 samples are stacked and inserted between two metal plates,
After drying at 100° C. for 4 hours under a load of 1 Kg/cm 2 , the thickness is measured and defined as T 1 . Thereafter, it is impregnated with hard alkylbenzene that has been kept at 100℃ in advance, left at 100℃ for 24 hours, the thickness is measured again, and the thickness is defined as T 2 . The swelling rate is given by the rate of change in thickness after impregnating with the alkylbenzene, ie, from the following equation. Swelling rate = T 2 −T 1 /T 1 ×100 (%) (2) Dissolution amount The resin is melted and extruded using a T-die to create a film with a thickness of about several tens of μm. Take an appropriate amount of the film, accurately measure its weight, and
Let W 1 (g). This film sample is placed in a test tube, an excess of hard alkylbenzene is added, and the tube is heated at 100° C. in vacuo and left for 7 days. Thereafter, the film sample is taken out, and the hard alkylbenzene on the surface and inside of the film is washed away with a suitable solvent (acetone) using a Soxhlet extraction device. Thereafter, the film is vacuum dried and its weight is precisely measured, which is defined as W 2 (g). The amount of dissolution is given by the weight change rate of the film before and after impregnation with the hard type alkylbenzene, that is, from the following equation. Dissolution amount = W 1 - W 2 / W 1 × 100 (%) Example Melt flow rate is 50, isotactic pentad fraction of boiling heptane insoluble part is 0.970,
Using the polypropylene of the present invention, which has a boiling heptane soluble content of 5.0 and a xylene soluble content of 0.25 dl/g at 20°C, it is made into a capacitor insulating paper with a thickness of 43 μm using a T-die. A polypropylene laminated paper having a thickness of 125 μm was produced by extrusion between two sheets. In addition, a 125 μm polypropylene laminate paper having the same structure was prepared using commercially available Sumitomo Noblen Y-101 in the same manner as above, and this was used as a comparative example. These two samples were tested for oil resistance and electrical properties, and the results shown in Table 1 were obtained.
【表】
第1表の通り、本発明における限定された特性
を有するポリプロピレンを使用した場合には、絶
縁油によるポリプロピレンラミネート紙の膨潤率
および溶解量が、従来のポリプロピレンの場合に
比較して顕著に少ない。また、これによつて電気
特性に何等の悪影響も与えない。[Table] As shown in Table 1, when polypropylene with the limited characteristics of the present invention is used, the swelling rate and dissolution amount of polypropylene laminated paper due to insulating oil are remarkable compared to the case of conventional polypropylene. There are few. Moreover, this does not have any adverse effect on the electrical characteristics.
Claims (1)
る電気絶縁用ポリプロピレンラミネート紙におい
て、前記ポリプロピレンフイルム層に下記(1)〜(3)
の要件からなるポリプロピレンを用いることを特
徴とする電気絶縁用ポリプロピレンラミネート
紙、 (1) 沸騰ヘプタン不溶部のアイソタクチツク・ペ
ンタツド分率が0.955以上 (2) 沸騰ヘプタン可溶部の含有量が2.0〜9.0重量
% (3) 20℃のキシレンに可溶な重合体の極限粘度が
1.0dl/g以下。[Scope of Claims] 1. In a polypropylene laminated paper for electrical insulation consisting of a fiber paper layer and a polypropylene film layer, the polypropylene film layer has the following (1) to (3).
A polypropylene laminate paper for electrical insulation, characterized in that it uses polypropylene that meets the following requirements: (1) The isotactic pentad fraction of the boiling heptane insoluble part is 0.955 or more; (2) The content of the boiling heptane soluble part is 2.0 to 9.0. Weight% (3) The intrinsic viscosity of a polymer soluble in xylene at 20℃ is
1.0dl/g or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3806280A JPS56134408A (en) | 1980-03-24 | 1980-03-24 | Polypropylene laminated sheet for electric insulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3806280A JPS56134408A (en) | 1980-03-24 | 1980-03-24 | Polypropylene laminated sheet for electric insulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56134408A JPS56134408A (en) | 1981-10-21 |
JPS6224886B2 true JPS6224886B2 (en) | 1987-05-30 |
Family
ID=12515003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3806280A Granted JPS56134408A (en) | 1980-03-24 | 1980-03-24 | Polypropylene laminated sheet for electric insulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56134408A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08206304A (en) * | 1995-11-08 | 1996-08-13 | Sankyo Kk | Pachinko game machine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59115620U (en) * | 1983-01-25 | 1984-08-04 | 日新電機株式会社 | Induction electrical equipment strip coils |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5026100A (en) * | 1973-07-09 | 1975-03-18 | ||
JPS5147105A (en) * | 1974-10-17 | 1976-04-22 | Hitachi Cable | GOSEIZE TSUENSHI |
JPS5333289A (en) * | 1976-09-08 | 1978-03-29 | Sumitomo Chem Co Ltd | Preparation of highly crystalline olefin polymer |
JPS6214564A (en) * | 1985-07-11 | 1987-01-23 | Nec Corp | Originating call control system |
-
1980
- 1980-03-24 JP JP3806280A patent/JPS56134408A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5026100A (en) * | 1973-07-09 | 1975-03-18 | ||
JPS5147105A (en) * | 1974-10-17 | 1976-04-22 | Hitachi Cable | GOSEIZE TSUENSHI |
JPS5333289A (en) * | 1976-09-08 | 1978-03-29 | Sumitomo Chem Co Ltd | Preparation of highly crystalline olefin polymer |
JPS6214564A (en) * | 1985-07-11 | 1987-01-23 | Nec Corp | Originating call control system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08206304A (en) * | 1995-11-08 | 1996-08-13 | Sankyo Kk | Pachinko game machine |
Also Published As
Publication number | Publication date |
---|---|
JPS56134408A (en) | 1981-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69714022T2 (en) | POLYPROPYLENE FILM AND CAPACITOR MADE BY USING IT AS A DIELECTRIC | |
CN108699265A (en) | Biaxially oriented polypropylene film, metallic diaphragm laminate film and thin film capacitor | |
US3775549A (en) | Electrically insulating polyproplyene laminate paper and oil-impregnated electric power cable using said laminate paper | |
US2935668A (en) | Electrical capacitors | |
US4975329A (en) | Coextruded, biaxially oriented multilayer film | |
US4467010A (en) | Oil-impregnated polyolefin film for electric insulation and manufacturing method for the same | |
CA1158412A (en) | Molded products of polypropylene | |
JPS6224886B2 (en) | ||
JPS6214564B2 (en) | ||
US4353107A (en) | Electrical capacitor | |
KR100836575B1 (en) | Manufacturing method using micro-porous synthetic resin separator for aluminum polymer capacitor | |
JP2638111B2 (en) | Oil immersion insulating material | |
JPH074899B2 (en) | Oil-immersed polypropylene film for electrical insulation and method for producing the same | |
JPS587002B2 (en) | Yushin Plastics | |
JP2505054B2 (en) | Oil-filled condenser | |
EP0221450B1 (en) | Process for making a long-life electrical capacitor | |
JPS6115536B2 (en) | ||
JPS5935318A (en) | Method of producing oil-immersed power cable | |
JPS631735B2 (en) | ||
JPS60143521A (en) | Insulating material for oil-immersed cable | |
JPH0244085B2 (en) | ||
JPS6142116A (en) | Oil-immersed capacitor | |
JP2505055B2 (en) | Oil-filled condenser | |
JPS631734B2 (en) | ||
JPH0241131B2 (en) | OFKEEBURU |