JPH0243367A - Glow discharge decomposing device - Google Patents

Glow discharge decomposing device

Info

Publication number
JPH0243367A
JPH0243367A JP19113588A JP19113588A JPH0243367A JP H0243367 A JPH0243367 A JP H0243367A JP 19113588 A JP19113588 A JP 19113588A JP 19113588 A JP19113588 A JP 19113588A JP H0243367 A JPH0243367 A JP H0243367A
Authority
JP
Japan
Prior art keywords
glow discharge
substrate
amorphous
sih4
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19113588A
Other languages
Japanese (ja)
Inventor
Atsushi Watanabe
渡辺 敦司
Daigoro Okubo
大五郎 大久保
Kazumasa Okawa
大川 和昌
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP19113588A priority Critical patent/JPH0243367A/en
Publication of JPH0243367A publication Critical patent/JPH0243367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin film of amorphous Si at a high rate on a substrate to be treated with good efficiency of utilizing gaseous SiH4 by applying a magnetic field to a glow discharge generating region at the time of decomposing the gaseous SiH4 by glow discharge and forming the thin film of amorphous Si on the substrate. CONSTITUTION:A cylindrical electrode 2 made of Al for glow discharge is provided in a cylindrical reaction vessel 1 made of metal and gaseous SiH4 ejection ports 9 are bored over the entire surface thereof. The cylindrical substrate 4 mounted to a cylindrical substrate support 3 is disposed to the inner central part thereof. The gaseous SiH4 is introduced into the vessel 1 from a gas introducing port 8 and is blown from the ejection ports 9 to the surface of the substrate 4 which is heated by a heater 6 and is rotated by a motor 7. The glow discharge is simultaneously generated by the vessel 1 by a high-frequency power source 1 to decompose the SiH4 and to form the thin film of the amorphous Si on the surface of the substrate 4. Many magnet parts consisting of permanent magnets 13a and ferromagnetic materials 13b such as Ni are provided to the outer peripheral surface of an electrode plate 2 for glow discharge on both sides of the gas ejection ports 9, by which the magnetic fields of the glow discharge region are increased and the thin film of the amorphous Si is formed at the high rate on the substrate 2 with the good efficiency of the gaseous raw materials.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコン膜などを形成できるグロ
ー放電分解装置に関し、特にグロー放電発生領域に磁界
を加えて成膜速度を高めることができたグロー放電分解
装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a glow discharge decomposition device capable of forming an amorphous silicon film, etc., and in particular to a glow discharge decomposition device capable of increasing the film formation rate by applying a magnetic field to the glow discharge generation region. This invention relates to a discharge decomposition device.

〔従来技術及びその問題点〕[Prior art and its problems]

グロー放電分解法によって製造したアモルファスシリコ
ン感光体ドラムが既に実用化されているが、このアモル
ファスシリコン膜(以下、アモルファスシリコンをa−
3iと略す)の厚みは一般的に約20〜40μmであり
、その大きな厚みによって1本の感光体ドラムの製造所
要時間が約5〜10時間にもなっている。
Amorphous silicon photoreceptor drums manufactured by the glow discharge decomposition method have already been put into practical use.
The thickness of the photoreceptor drum (abbreviated as 3i) is generally about 20 to 40 μm, and the time required to manufacture one photoreceptor drum is about 5 to 10 hours due to the large thickness.

従って本発明は叙上に鑑みて案出されたものであり、そ
の目的は成膜速度を高めて製造所要時間を短縮し、これ
によって製造効率及び製造コストが改善できたグロー放
電分解装置を提供することにある。
Therefore, the present invention has been devised in view of the above, and its purpose is to provide a glow discharge decomposition device that can increase the film formation rate and shorten the required manufacturing time, thereby improving manufacturing efficiency and manufacturing cost. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、成膜用ガスが導入される反応室の内部
に電極部、成膜用基体並びにグロー放電発生領域に磁界
を加える磁石部から成るグロー放電分解装置において、
前記磁石部が永久磁石と、該永久磁石を支持する強磁性
体とから成ることを特徴とするグロー放電分解装置が提
供される。
According to the present invention, in a glow discharge decomposition device that includes an electrode section inside a reaction chamber into which a film forming gas is introduced, a film forming substrate, and a magnet section that applies a magnetic field to a glow discharge generation area,
There is provided a glow discharge decomposition device characterized in that the magnet portion includes a permanent magnet and a ferromagnetic material supporting the permanent magnet.

〔実施例〕〔Example〕

以下、本発明をグロー放電分解装置によりa−3i悪感
光ドラムを製作する場合を例にとって詳細に説明する。
Hereinafter, the present invention will be described in detail using an example in which an A-3I photosensitive drum is manufactured using a glow discharge decomposition apparatus.

第1図は本例グロー放電分解装置の正面概略図であり、
第2図は第1図中の切断面線X−Xによる概略図であり
、また、第3図は前記磁石部の外観を示し、第4図は磁
界の発生状況を示す。
FIG. 1 is a schematic front view of the glow discharge decomposition apparatus of this example,
FIG. 2 is a schematic diagram taken along the section line XX in FIG. 1, FIG. 3 shows the external appearance of the magnet section, and FIG. 4 shows the state of magnetic field generation.

先ず、第1図及び第2図において、1は金属から成る円
筒状の反応容器であり、この反応容器1の内部にはAI
など非磁性金属から成る円筒状グロー放重用電極板2が
設置され、更に電極板2の内部には円筒状の基板支持体
3、基板支持体3に装着した円筒状の基板4が設置され
ている。5は反応容器1の底部であり、この底部5には
細管状のヒータ一部6が接続され、ヒータ一部6が基板
支持体3を加熱し、同時に基板4も加熱する。また、反
応容器1の上部にはモータ一部7が設置され、このモー
タ一部7は基板支持耐3と接続されており、そして、モ
ータ一部7により基板支持体3とともに基板4が回転す
る。
First, in FIGS. 1 and 2, 1 is a cylindrical reaction vessel made of metal, and inside this reaction vessel 1 is an AI.
A cylindrical glow release electrode plate 2 made of a non-magnetic metal such as the like is installed, and a cylindrical substrate support 3 and a cylindrical substrate 4 attached to the substrate support 3 are installed inside the electrode plate 2. There is. Reference numeral 5 designates the bottom of the reaction vessel 1, and a tubular heater portion 6 is connected to the bottom portion 5, and the heater portion 6 heats the substrate support 3 and also heats the substrate 4 at the same time. Further, a motor part 7 is installed in the upper part of the reaction container 1, and this motor part 7 is connected to the substrate support 3, and the substrate 4 is rotated together with the substrate support 3 by the motor part 7. .

8はガス導入部、9は電極板2に多数個形成されたガス
噴出口であり、a−5t成膜用ガスはガス導入部8より
導入され、ガス噴出口9を介して基板4の周面上に吹き
付けられ、グロー放電に供される。そして、その放電に
伴う残余ガスはガス排出部10より排出される。
Reference numeral 8 indicates a gas inlet, and 9 indicates a plurality of gas outlets formed on the electrode plate 2. The a-5T film forming gas is introduced from the gas inlet 8, and is distributed around the substrate 4 through the gas outlet 9. It is sprayed onto a surface and subjected to a glow discharge. Then, the residual gas accompanying the discharge is discharged from the gas discharge section 10.

また、11は高周波電源であり、その一方の出力端子は
アース側に設置され、他方の出力端子は反応容器1の周
壁に接続され、そして、この周壁と電気的に導通された
電極板2にグロー放電用電力が印加される。
Further, 11 is a high frequency power source, one output terminal of which is installed on the ground side, the other output terminal is connected to the peripheral wall of the reaction vessel 1, and the electrode plate 2 is electrically connected to this peripheral wall. Glow discharge power is applied.

なお、図中の矢印はガス流の方向を示し、また、12は
絶縁性のリング体である。
Note that the arrow in the figure indicates the direction of gas flow, and 12 is an insulating ring body.

上記構成のグロー放電分解装置において、不発明者等は
電極板2の外周面に複数個の磁石部13を設置した。
In the glow discharge decomposition apparatus having the above configuration, the inventors installed a plurality of magnet parts 13 on the outer peripheral surface of the electrode plate 2.

この磁石部13は第2図及び第3図に示す通り、永久磁
石13a(例えば希土類、アルニコなどから成る)と、
強磁性体13b(Fe、Niなどから成る)により構成
されている。
As shown in FIGS. 2 and 3, this magnet portion 13 includes a permanent magnet 13a (for example, made of rare earth metal, alnico, etc.),
It is composed of a ferromagnetic material 13b (made of Fe, Ni, etc.).

即ち、一定寸法の永久磁石13aを電極板2の外周面に
縦列状に埋設し、そして、磁石13aがつくる各々の列
に対して、各々の列を支持するように長尺状の強磁性体
13bを配設する。また、このように磁石部13を形成
するに当たっては、隣り合う強磁性体13bの間にガス
噴出口9を配置する。
That is, permanent magnets 13a of a certain size are embedded in the outer circumferential surface of the electrode plate 2 in a vertical line, and a long ferromagnetic material is embedded in each row of the magnets 13a to support each row. 13b is arranged. Moreover, in forming the magnet part 13 in this way, the gas jet port 9 is arranged between the adjacent ferromagnetic bodies 13b.

そして、上記磁石部13を形成した場合、第4図に示す
通り磁石13aが発生する磁界のうちS極側の磁界が強
磁性体13bによりN極側に回り、これにより、N極側
の磁界強度が増大し、これにより、グロー放電発生領域
に加わる磁界が一層大きくなる。
When the magnet portion 13 is formed, as shown in FIG. 4, the magnetic field on the south pole side of the magnetic field generated by the magnet 13a is rotated to the north pole side by the ferromagnetic material 13b, thereby causing the magnetic field on the north pole side. The intensity increases, which results in a larger magnetic field being applied to the glow discharge generation region.

かくして、本例のグロー放電分解装置によれば、a−8
i成膜用ガスはガス噴出口9より吹き出されると同時に
、そのガスに大きな磁界が加わり、しかも、基板4が2
00〜300℃の温度に設定されるとともに回転し、基
板4と電極板2の間でグロー放電が発生する。そのため
、発生したプラズマの内部に電子のサイクロトロン回転
運動が生じ、これにより、ガスの分解効率が高くなり、
ガスの成膜に寄与する利用効率が高くなり、その結果、
成膜速度を一層高めることができた。
Thus, according to the glow discharge decomposition apparatus of this example, a-8
i The film-forming gas is blown out from the gas outlet 9, and at the same time a large magnetic field is applied to the gas, and the substrate 4 is
While being set at a temperature of 00 to 300°C, it rotates, and glow discharge occurs between the substrate 4 and the electrode plate 2. Therefore, a cyclotron rotational movement of electrons occurs inside the generated plasma, which increases the gas decomposition efficiency.
The utilization efficiency of gas that contributes to film formation is increased, and as a result,
We were able to further increase the film deposition rate.

また本発明によれば、上記構成のグロー放電分解装置に
おいて、永久磁石13aのなかで最も近づいている2個
の磁石をそれぞれ対向する側の磁極が相互にS極−N極
の関係になるように設置するとよく、これにより、その
磁石間で強力な磁場が生じ、更にガスの分解効率が一層
高くなり、その結果、成膜速度を一段と高めることがで
きる。また、隣り合う強磁性体13bの間をできるだけ
小さくした場合には、それに応じて磁場も大きくなり、
これによっても成膜速度を一段と高めることができる。
Further, according to the present invention, in the glow discharge decomposition apparatus having the above configuration, the magnetic poles of the two closest magnets among the permanent magnets 13a on the opposing sides are in an S-pole-N-pole relationship with each other. As a result, a strong magnetic field is generated between the magnets, further increasing the gas decomposition efficiency, and as a result, the film forming rate can be further increased. Furthermore, if the distance between adjacent ferromagnetic bodies 13b is made as small as possible, the magnetic field will increase accordingly,
This also allows the film formation rate to be further increased.

(実験例1) 上記グロー放電分解装置において、5i)I、ガスを2
00secmの流量で導入し、基板温度を26090に
設定し、そして、グロー放電用高周波電力を幾通りにも
変えながらa−5t膜の成膜速度を測定したところ、第
5図に示す通りの結果が得られた。
(Experimental Example 1) In the above glow discharge decomposition apparatus, 5i)I, gas was
The deposition rate of the a-5t film was measured while introducing the a-5t film at a flow rate of 0.000sec, setting the substrate temperature at 26090, and changing the high-frequency power for glow discharge in many ways, and the results are shown in Figure 5. was gotten.

同図中、横軸は高周波電力量であり、縦軸は成膜速度で
あり、また、○印は本例の測定プロットである。
In the figure, the horizontal axis is the high-frequency power amount, the vertical axis is the film formation rate, and the circle mark is the measurement plot of this example.

本発明者等は比較例として永久磁石13aをそのまま配
置するが、強磁性体13bを配置せず、その他の成膜条
件を同じに設定した場合の成膜速度も測定した。この測
定プロットはΔ印で示す。
As a comparative example, the present inventors placed the permanent magnet 13a as it is, but also measured the film formation speed when the ferromagnetic material 13b was not placed and other film formation conditions were set to be the same. This measurement plot is marked with a Δ symbol.

第5図に示す結果より明らかな通り、本発明のグロー放
電分解装置によれば、高周波電力量が大きくなるに伴っ
て成膜速度が太き(なり、しかも、その成膜速度は比較
例に比べて顕著に大きくなっている。
As is clear from the results shown in FIG. 5, according to the glow discharge decomposition apparatus of the present invention, as the amount of high-frequency power increases, the film-forming speed increases (and the film-forming speed becomes faster than that of the comparative example). It is noticeably larger than that.

(実験例2) 本例においては、高周波電力を600wに設定し、基板
温度を260°Cに設定し、そして、SiH4ガスの流
量を幾通りにも変えながらa−5i膜の成膜速度を測定
したところ、第6図に示す通りの結果が得られた。
(Experiment Example 2) In this example, the high frequency power was set to 600W, the substrate temperature was set to 260°C, and the deposition rate of the a-5i film was varied while changing the flow rate of SiH4 gas in many ways. As a result of the measurement, the results shown in FIG. 6 were obtained.

同図中、横軸は51g4ガス流量であり、縦軸は成膜速
度であり、また、○印は本例の測定プロットである。ま
た、永久磁石13aはそのまま配置するが、強磁性体1
3bを配置しないで成膜した比較例については、Δ印で
示す。
In the figure, the horizontal axis is the 51g4 gas flow rate, the vertical axis is the film formation rate, and the circle marks are measurement plots of this example. In addition, although the permanent magnet 13a is placed as is, the ferromagnetic material 1
Comparative examples in which the film was formed without 3b are indicated by Δ.

第6図に示す結果より明らかな通り、本発明のグロー放
電分解装置によれば、SiH,ガス流量が大きくなるに
伴って成膜速度が大きくなり、しがも、その成膜速度が
従来に比べて著しく大きくなっていることが判る。
As is clear from the results shown in FIG. 6, according to the glow discharge decomposition apparatus of the present invention, the film formation rate increases as the SiH gas flow rate increases, but the film formation rate is lower than that of the conventional one. It can be seen that it is significantly larger.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明のグロー放電分解装置によれば、磁
界が大きくなるために成膜用ガスの分解効率が大きくな
り、これに伴ってガスの成膜に供与する割合が大きくな
り、これにより、ガスの利用効率が大きくなり、しかも
、成膜速度が高くなり、その結果、製造効率及び製造コ
ストが改善される。
As described above, according to the glow discharge decomposition apparatus of the present invention, the decomposition efficiency of the film-forming gas increases due to the increase in the magnetic field, and accordingly, the ratio of the gas provided for film-forming increases. , the gas utilization efficiency is increased, and the film formation rate is also increased, resulting in improved manufacturing efficiency and manufacturing cost.

なお、本発明は上記実施例に限定されるものではなく、
本発明の要旨を逸脱しない範囲において、種々の変更、
改善は何等差支えなく、また、aSi成膜用ガス以外の
種々のガスを用いてもよい。
Note that the present invention is not limited to the above embodiments,
Various modifications may be made without departing from the gist of the present invention.
There is no problem with improvement, and various gases other than the aSi film forming gas may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明グロー放電分解装置の正面概略図、第2
図は第1図中の切断面線X−Xによる概略図、第3図は
磁石部の外観図、第4図は磁石部の磁界発生状況を示す
図、第5図は高周波電力と成膜速度の関係を示す線図、
第6図はSiH4ガス流量と成膜速度の関係を示す線図
である。 1・・・反応容器 2・・・グロー放電用電極板 4・・・基板 9・・・ガス噴出口 I3・・・磁石部 13a  ・・永久磁石 13b  ・・強磁性体 特許出願人 (663)京セラ株式会社代表者安城欽寿
Fig. 1 is a schematic front view of the glow discharge decomposition apparatus of the present invention;
The figure is a schematic diagram taken along the section line X-X in Figure 1, Figure 3 is an external view of the magnet section, Figure 4 is a diagram showing the state of magnetic field generation in the magnet section, and Figure 5 is high-frequency power and film formation. A diagram showing the relationship between speeds,
FIG. 6 is a diagram showing the relationship between SiH4 gas flow rate and film formation rate. 1... Reaction vessel 2... Electrode plate for glow discharge 4... Substrate 9... Gas outlet I3... Magnet part 13a... Permanent magnet 13b... Ferromagnetic material patent applicant (663) Kinju Anjo, Representative of Kyocera Corporation

Claims (5)

【特許請求の範囲】[Claims] (1)成膜用ガスが導入される反応室の内部に電極部、
成膜用基体並びにグロー放電発生領域に磁界を加える磁
石部から成るグロー放電分解装置において、前記磁石部
が永久磁石と、該永久磁石を支持する強磁性体とから成
ることを特徴とするグロー放電分解装置。
(1) An electrode section inside the reaction chamber into which the film-forming gas is introduced;
A glow discharge decomposition device comprising a film-forming substrate and a magnet section that applies a magnetic field to a glow discharge generation region, wherein the magnet section comprises a permanent magnet and a ferromagnetic material supporting the permanent magnet. Decomposition equipment.
(2)電極部が円筒状である請求項(1)記載のグロー
放電分解装置。
(2) The glow discharge decomposition device according to claim (1), wherein the electrode portion is cylindrical.
(3)電極部の内側に円筒状基板が設置されている請求
項(2)記載のグロー放電分解装置。
(3) The glow discharge decomposition device according to claim (2), wherein a cylindrical substrate is installed inside the electrode section.
(4)電極部に形成した複数個のガス噴出口より成膜用
ガスが吹き出される請求項(2)または(3)記載のグ
ロー放電分解装置。
(4) The glow discharge decomposition device according to claim (2) or (3), wherein the film-forming gas is blown out from a plurality of gas jet ports formed in the electrode portion.
(5)磁石部が電極部に配置されている請求項(1)、
(2)、(3)または(4)記載のグロー放電分解装置
(5) Claim (1), wherein the magnet part is arranged in the electrode part;
The glow discharge decomposition device according to (2), (3) or (4).
JP19113588A 1988-07-29 1988-07-29 Glow discharge decomposing device Pending JPH0243367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19113588A JPH0243367A (en) 1988-07-29 1988-07-29 Glow discharge decomposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19113588A JPH0243367A (en) 1988-07-29 1988-07-29 Glow discharge decomposing device

Publications (1)

Publication Number Publication Date
JPH0243367A true JPH0243367A (en) 1990-02-13

Family

ID=16269465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19113588A Pending JPH0243367A (en) 1988-07-29 1988-07-29 Glow discharge decomposing device

Country Status (1)

Country Link
JP (1) JPH0243367A (en)

Similar Documents

Publication Publication Date Title
US4612207A (en) Apparatus and process for the fabrication of large area thin film multilayers
KR101410515B1 (en) Surface processing apparatus
US5016564A (en) Plasma apparatus
US6468387B1 (en) Apparatus for generating a plasma from an electromagnetic field having a lissajous pattern
US7972469B2 (en) Plasma processing apparatus
KR19990087693A (en) Bulk material vacuum coating device
JP3327391B2 (en) Thin film manufacturing apparatus and manufacturing method
JPH0243367A (en) Glow discharge decomposing device
US5580384A (en) Method and apparatus for chemical coating on opposite surfaces of workpieces
JPS62222076A (en) Improved apparatus for amorphous silicon film
JPH04324631A (en) Surface treatment equipment
JPH0211771A (en) Glow discharge cracking device
JPH01316464A (en) Glow discharge cracker
JPS62167877A (en) Plasma transfer type magnetron sputtering apparatus
JPS5889943A (en) Plasma cvd device
JPS56121629A (en) Film forming method
JPH04280430A (en) Plasma treatment device
JP5982678B2 (en) Plasma CVD apparatus and method for manufacturing magnetic recording medium
CN210469840U (en) Airflow curtain insulation structure suitable for plasma generating device
JPH10330935A (en) Sputtering device
JPS59139629A (en) Plasma dry treating device
JP2000277294A (en) Method and apparatus for plasma treatment
JPH02250975A (en) Glow-discharge decomposing device
JPS60162777A (en) Plasma cvd apparatus
JPH0472378B2 (en)