JPH0243255B2 - - Google Patents

Info

Publication number
JPH0243255B2
JPH0243255B2 JP13213580A JP13213580A JPH0243255B2 JP H0243255 B2 JPH0243255 B2 JP H0243255B2 JP 13213580 A JP13213580 A JP 13213580A JP 13213580 A JP13213580 A JP 13213580A JP H0243255 B2 JPH0243255 B2 JP H0243255B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
paint
recording
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13213580A
Other languages
Japanese (ja)
Other versions
JPS5758243A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13213580A priority Critical patent/JPS5758243A/en
Publication of JPS5758243A publication Critical patent/JPS5758243A/en
Publication of JPH0243255B2 publication Critical patent/JPH0243255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/842Coating a support with a liquid magnetic dispersion
    • G11B5/845Coating a support with a liquid magnetic dispersion in a magnetic field

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、垂直磁気記録媒体の製造方法に係
り、特に基体上に磁性微粒子を含んだ塗料を塗布
することによつて記録媒体を製造する方法の改良
に関する。 磁気記録は、一般に記録媒体の面内長手方向の
磁化を用いる方式によつている。しかし、この面
内長手方向の磁化を用いる記録方式にあつては、
記録の高密度化を図ろうとすると、記録媒体内の
減磁界が増加するため、記録密度をそれ程向上さ
せることはできない。 そこで、このような不具合を解消するために、
近年、記録媒体の表面と垂直な方向の磁化を用い
る垂直磁化記録方式が提案されている。この垂直
磁化記録方式では、記録密度が高まる程、記録媒
体中の減磁界が減少するので、本質的に高密度記
録に適した記録方式と云える。 しかして、このような垂直磁化記録方式を採用
するには、表面とは垂直な方向に磁化容易軸を有
する磁気記録媒体を必要とする。このような要望
を満す記録媒体として、従来、記録膜をCo−Cr
スパツタ膜で形成するものや記録膜を磁性微粒子
の塗布層で形成するものが提案されている。 ところで、記録膜を磁性微粒子の塗布層で形成
するものにあつては、次のような製造方法が考え
られる。すなわち、磁性微粒子として、たとえば
BaFe12O19等の六方晶系フエライトを用いる。六
方晶系フエライトを用いる理由は、このフエライ
トは平板状をなしており、しかも磁化容易軸が板
面に垂直であるため、磁場配向処理もしくは機械
的処理によつて容易に垂直配向を行ない得るから
である。このような六方晶系フエライトの磁性微
粒子とバインダとを混合し、これを非磁性テープ
の表面に塗布した後、この塗布層を磁場中にその
表面が磁界の方向と直交するように通過させるこ
とによつて各磁性微粒子の磁化容易軸を磁界の方
向に一致させて配列させた後、塗布を乾燥させれ
ば、垂直磁気記録に適した記録媒体を得ることが
できる。 しかし、磁性微粒子として六方晶系フエライト
の微粒子を用い、上述したいわゆる塗布法によつ
て垂直磁気記録媒体を製造する場合には、次のよ
うな点を考慮する必要がある。すなわち、従来の
面内磁化記録方式に較べて垂直磁化記録方式の利
点を明らかにするには、記録最少単位をサブミク
ロンのオーダにする必要があり、そのためには、
サブミクロン以下の磁性粉である平均粒子が0.3
ミクロンないし0.01ミクロンの磁性微粒子を用い
る必要がある。このような微小寸法の磁性微粒子
は、単磁区構造、すなわち微小な磁石となるた
め、互いに磁気的に結合し易い。したがつて、バ
インダ内で均一に分散するよう注意を払う必要が
ある。 また、均一な分散がなされた所望の磁性塗料が
得られた場合であつても、このような磁性塗料を
基体上に塗布して磁場配向器によつて垂直配向さ
せる場合によつて下記の如き現象が往々にして起
こり易い。すなわち、NS極を対向配置させた磁
場配向器の磁極間に磁性塗料を塗布した基体をそ
の表面が磁界と直交するように配置すると、塗料
中の磁性微粒子は磁化容易軸が磁界の方向と一致
するように回転して配向する。このように磁界内
で前記磁性微粒子が回転して配向を終了するには
塗料の粘度あるいは組成によつて数ミリ秒から数
百ミリ秒の時間が必要であるが、回転が終了した
磁性微粒子にそのまま前述した垂直磁界が印加さ
れつづけると磁性微粒子同志の磁気的凝集が起こ
り、この結果塗膜面に凹凸が生じる。この凹凸は
塗膜の乾燥後にカレンダー処理を施してもなくす
ことはできない。このように、凹凸が発生する
と、たとえ配向率が高い場合であつても再生出力
特性が阻害される。したがつて、何らかの方法で
磁気的凝集の発生を防止する必要がある。このよ
うなことから、配向工程時において、少なくとも
80%以上の高配向率が得られるとともに面粗さ
0.1μm以下の塗膜面が得られる製造方法の出現が
強く望まれているのが実情である。 本発明は、上記の問題点に鑑みてなされたもの
で、その目的とするところは、磁性微粒子として
粒径がサブミクロンのオーダーの六方晶系フエラ
イト微粒子を用い、塗布法によつて垂直磁気記録
媒体を製造するに当つて、高垂直配向率でしかも
表面粗れの少ない記録膜が得られる垂直磁気記録
媒体の製造方法を提供することにある。 すなわち本発明は、平均粒径が0.3ミクロンな
いし0.01ミクロンの範囲にある六方晶系フエライ
ト微粒子を含む塗料を基体面に塗布した後、上記
基体面に垂直な方向に磁界を印加して上記磁性微
粒子を配向させるに際し、前記磁界内に入る前の
前記基体上の前記塗布の粘度を2000cp(センチポ
イズ)以上に設定するとともに前記磁界の強さを
2000Oe以上に設定することによつて前記目的を
達成したものである。 基体上に上述した粘度の塗料を塗布する手段と
しては種々採用できる。たとえば通常のリバ−ス
ロールコーター、グラビアコータを用いた時の適
正粘度は高々1000cp程度であるが、これらにお
いても塗布ロールへの塗料の供給方式に若干の工
夫を施せば、粘度20000cp程度まで十分に塗布可
能である。また、エクストル−ジヨン式の塗布方
式を用いれば20000cp以上の粘度の塗料を塗布す
ることができる。 基体上の塗料に垂直方向から磁界を与える手段
としては、塗布面に対しN.S両磁極面を平行に配
置させることにより実現できる。また、連続塗布
方式を採用した場合においては走行している塗布
ウエブが上記磁極面間を平行状態を保ちながら通
過するようにすればよい。また、粘度のチエツク
は、たとえばブルツクフイールド粘度計で容易に
行なえる。 本発明者らは、上記した方法を用いることによ
つて塗料中のサブミクロンのオーダーの六方晶系
フエライト微粒子の垂直配向性が高く、しかも表
面粗れの殆どない垂直磁気記録媒体を得ることが
できた。以下に具体例をもつて本発明を説明す
る。 実施例 1 まず、バリウム塩、鉄塩、コバルト塩、チタン
塩を含む水容液にアルカリを滴下し、共沈物を得
た後、アルカリ除去を行い、加熱して、Co−Ti
置換のバリウムフエライト微粒子を得た。これら
は結晶粒径0.1μm以下で板状性をもち、又この粉
体の磁気特性は飽和磁化60emu/g、抗磁力1000
(Oe)であつた。 次にこの磁性粉80重量部をステンレス製ボール
ミルポツトに入れ、これにVAGH(塩ビ酢ビ共重
合体)20重量部をメチルイソブチルケトン−トル
エンの1:1混合液120重量部に溶解して得た溶
液、レジチン4重量部、ステアリン酸ブチル0.5
重量部、カーボンブラツク1重量部を加えたのち
50時間ボールミルした。得られた塗料の粘度は
4000cpであつた。この塗料をナイフエツヂコー
タにて基体としてのポリエステルフイルム上に膜
厚25μmに塗布したのち、垂直磁界内を通過せし
めつつ乾燥させ垂直磁気記録媒体を得た。なお垂
直磁界は1000、2000、3000、5000Oeと可変させ
た。 次に上記ボールミルにて得られた塗料にメチル
エチルケトン−トルエンの1:1混合溶媒を加え
て再びボールミルを行い、塗料粘度2000cp、
1000cpの塗料をそれぞれ作成し、上記と同様に
して垂直磁気記録媒体を作成した。 作成した全塗布試料をカレンダーロールに通し
て表面を平滑化させたのち、接針式表面粗さ計に
て表面粗さを測定し、VSM法にて垂直配向度を
求めた。なお垂直配向度は得られた塗布媒体面を
測定磁場に対して垂直になるようにとりつけて得
た磁化曲線から反磁界補正して求めた残留磁化
Mrの飽和磁化Msに対する比率Mr/Msから計算
した。その結果を表1に示す。
The present invention relates to a method for manufacturing a perpendicular magnetic recording medium, and more particularly to an improvement in a method for manufacturing a recording medium by applying a paint containing magnetic fine particles onto a substrate. Magnetic recording generally relies on a method that uses magnetization in the in-plane longitudinal direction of a recording medium. However, in a recording method that uses magnetization in the in-plane longitudinal direction,
If an attempt is made to increase the recording density, the demagnetizing field within the recording medium will increase, so the recording density cannot be improved that much. Therefore, in order to eliminate such problems,
In recent years, a perpendicular magnetization recording method that uses magnetization in a direction perpendicular to the surface of a recording medium has been proposed. In this perpendicular magnetization recording method, the demagnetizing field in the recording medium decreases as the recording density increases, so it can be said to be a recording method essentially suitable for high-density recording. However, in order to employ such a perpendicular magnetization recording method, a magnetic recording medium having an axis of easy magnetization in a direction perpendicular to the surface is required. Conventionally, as a recording medium that satisfies these demands, the recording film was made of Co-Cr.
There have been proposed methods in which the recording film is formed from a sputtered film and a recording film formed from a coated layer of magnetic fine particles. By the way, in the case where the recording film is formed by a coating layer of magnetic fine particles, the following manufacturing method can be considered. That is, as magnetic fine particles, for example
A hexagonal ferrite such as BaFe 12 O 19 is used. The reason for using hexagonal ferrite is that this ferrite has a flat plate shape and the axis of easy magnetization is perpendicular to the plate surface, so it can be easily vertically aligned by magnetic field alignment treatment or mechanical treatment. It is. After mixing such magnetic fine particles of hexagonal ferrite and a binder and coating the mixture on the surface of a non-magnetic tape, the coating layer is passed through a magnetic field so that the surface is perpendicular to the direction of the magnetic field. By arranging the easy axis of magnetization of each magnetic fine particle to match the direction of the magnetic field, and then drying the coating, a recording medium suitable for perpendicular magnetic recording can be obtained. However, when manufacturing a perpendicular magnetic recording medium using hexagonal ferrite fine particles as magnetic fine particles by the so-called coating method described above, the following points need to be taken into consideration. In other words, in order to clarify the advantages of perpendicular magnetization recording method over conventional in-plane magnetization recording method, it is necessary to make the minimum recording unit on the order of submicron.
The average particle size of submicron magnetic powder is 0.3
It is necessary to use magnetic fine particles of micron to 0.01 micron. Such minute magnetic particles have a single-domain structure, that is, become minute magnets, and therefore are likely to be magnetically coupled to each other. Therefore, care must be taken to ensure uniform distribution within the binder. Furthermore, even if a desired magnetic paint with uniform dispersion is obtained, if such a magnetic paint is applied onto a substrate and vertically oriented using a magnetic field orientator, the following method may occur. Phenomena often occur. In other words, when a substrate coated with magnetic paint is placed between the magnetic poles of a magnetic field orientator with NS poles facing each other, and its surface is placed perpendicular to the magnetic field, the axis of easy magnetization of the magnetic fine particles in the paint coincides with the direction of the magnetic field. Rotate and orient as shown. In this way, it takes several milliseconds to several hundred milliseconds for the magnetic particles to rotate and complete their orientation in the magnetic field, depending on the viscosity or composition of the paint. If the above-mentioned perpendicular magnetic field continues to be applied, magnetic fine particles will magnetically aggregate, resulting in unevenness on the coating surface. These irregularities cannot be removed by calendering the coating after drying. In this way, when unevenness occurs, even when the orientation rate is high, the reproduction output characteristics are impaired. Therefore, it is necessary to somehow prevent the occurrence of magnetic aggregation. For this reason, during the alignment process, at least
High orientation rate of 80% or more can be obtained and surface roughness is improved.
The reality is that there is a strong desire for a manufacturing method that can provide a coating surface with a thickness of 0.1 μm or less. The present invention has been made in view of the above-mentioned problems, and its purpose is to use hexagonal ferrite fine particles with a particle size of submicron order as magnetic fine particles to perform perpendicular magnetic recording by a coating method. An object of the present invention is to provide a method for manufacturing a perpendicular magnetic recording medium, which allows a recording film with a high perpendicular orientation rate and less surface roughness to be obtained in manufacturing the medium. That is, the present invention applies a paint containing hexagonal ferrite fine particles with an average particle size in the range of 0.3 microns to 0.01 microns to a substrate surface, and then applies a magnetic field in a direction perpendicular to the substrate surface to remove the magnetic fine particles. When orienting, the viscosity of the coating on the substrate before entering the magnetic field is set to 2000 cp (centipoise) or more, and the strength of the magnetic field is adjusted.
The above objective was achieved by setting the power to 2000 Oe or more. Various methods can be used to apply the paint having the above-mentioned viscosity onto the substrate. For example, when using a normal reverse roll coater or gravure coater, the appropriate viscosity is about 1000 cp at most, but even with these, if you make some changes to the method of supplying the paint to the coating roll, you can easily reach a viscosity of about 20000 cp. Can be applied. Furthermore, if an extrusion coating method is used, it is possible to coat a paint with a viscosity of 20,000 cp or more. A means for applying a magnetic field to the paint on the substrate from the perpendicular direction can be realized by arranging both the NS magnetic pole surfaces parallel to the coating surface. Furthermore, when a continuous coating method is adopted, the running coating web may pass between the magnetic pole surfaces while maintaining a parallel state. Further, the viscosity can be easily checked using, for example, a Brookfield viscometer. By using the above-described method, the present inventors were able to obtain a perpendicular magnetic recording medium in which submicron-order hexagonal ferrite fine particles in the paint have high vertical orientation and have almost no surface roughness. did it. The present invention will be explained below using specific examples. Example 1 First, an alkali was added dropwise to an aqueous solution containing barium salt, iron salt, cobalt salt, and titanium salt to obtain a coprecipitate. After that, the alkali was removed and Co-Ti was heated.
Substituted barium ferrite fine particles were obtained. These have a crystal grain size of 0.1 μm or less and plate-like properties, and the magnetic properties of this powder are a saturation magnetization of 60 emu/g and a coercive force of 1000.
It was (Oe). Next, 80 parts by weight of this magnetic powder was placed in a stainless steel ball mill pot, and 20 parts by weight of VAGH (vinyl chloride-vinyl acetate copolymer) was dissolved in 120 parts by weight of a 1:1 mixture of methyl isobutyl ketone and toluene. solution, 4 parts by weight of resistin, 0.5 parts of butyl stearate
After adding parts by weight and 1 part by weight of carbon black.
Ball milled for 50 hours. The viscosity of the resulting paint is
It was 4000 cp. This paint was coated on a polyester film as a substrate to a thickness of 25 μm using a knife edge coater, and then dried while passing through a perpendicular magnetic field to obtain a perpendicular magnetic recording medium. The vertical magnetic field was varied to 1000, 2000, 3000, and 5000 Oe. Next, a 1:1 mixed solvent of methyl ethyl ketone and toluene was added to the paint obtained using the ball mill, and the ball mill was again applied to obtain a paint viscosity of 2000 cp.
A 1000 cp paint was prepared, and a perpendicular magnetic recording medium was prepared in the same manner as above. After passing all the prepared coated samples through a calender roll to smooth the surface, the surface roughness was measured using a contact type surface roughness meter, and the degree of vertical orientation was determined using the VSM method. The degree of perpendicular orientation is the residual magnetization obtained by correcting the demagnetizing field from the magnetization curve obtained by mounting the surface of the coating medium perpendicular to the measuring magnetic field.
It was calculated from the ratio Mr/Ms of Mr to the saturation magnetization Ms. The results are shown in Table 1.

【表】 この表1から、低磁場では殆んど配向しないこ
と、面粗さが0.2μmを越えると出力(C)が低下する
だけでなくノイズ(N)が増大する為、その
(C/N)が低下すること、つまり面粗さが
(C/N)に著しい影響を及ぼすことが判る。更
には粘度の低い塗料を用いた場合、その面粗さが
大きくなることが判る。但し、上記(C/N)は
記録波長が0.6μmのときの記録再生特性である。 表1から判るように2000cp以上の磁性塗料を
2000Oe以上の高磁場下で垂直配向させ本発明方
法によつて得られた記録媒体は、その垂直配向度
が80%以上と高く、しかも面粗さが0.1μm以下と
小さい。したがつて、この方法によつて製造すれ
ば高い粘度によつて凝集現象が抑制され、高磁場
によつて配向が促進されるので高記録密度特性と
高再生出力特性を発揮するのが得られる。 実施例 2 実施例1で用いた粘度1000cpの磁性塗料をポ
リエステルフイル上に塗布したのち、垂直磁界内
を通過させる前に10秒および20秒開放状態で静置
し、塗布面上の溶剤の若干量を蒸発せしめたのち
それぞれの塗布膜の固形分を測定し、予め求めて
おいた固形分−粘度曲線から塗膜粘度を求めたと
ころ3200cp及び5000cpであつた。 次いでこれらの塗布膜を4000Oeの垂直磁界内
を通過せしめつつ乾燥しカレンダー処理して垂直
磁気記録媒体を得た。 得られた垂直磁気記録媒体の垂直配向率はそれ
ぞれ93%、91%でありまた面粗さはいずれも
0.05μm以下と良好なものであり、本発明方法の
有効性を再確認することができた。 なお、上記各実施例は磁性塗料をフレキシブル
なポリエステルフイルム上に塗布した例で示した
が、フレキシビリテイーが全くない基体上の塗布
膜についても全く同様であり、例えば厚み0.7mm
のAl円板上に実施例2に手法を用いて作成した
記録膜においても同様に高い配向率と面精度を得
ることができた。
[Table] From Table 1, it can be seen that there is almost no orientation in a low magnetic field, and that when the surface roughness exceeds 0.2 μm, not only the output (C) decreases but also the noise (N) increases. It can be seen that N) decreases, that is, surface roughness has a significant effect on (C/N). Furthermore, it can be seen that when a paint with low viscosity is used, the surface roughness increases. However, the above (C/N) is the recording/reproducing characteristic when the recording wavelength is 0.6 μm. As you can see from Table 1, use magnetic paint of 2000 cp or more.
The recording medium obtained by the method of the present invention, which is vertically aligned under a high magnetic field of 2000 Oe or more, has a high degree of vertical alignment of 80% or more and a small surface roughness of 0.1 μm or less. Therefore, if manufactured using this method, the agglomeration phenomenon will be suppressed by the high viscosity, and the orientation will be promoted by the high magnetic field, resulting in high recording density characteristics and high reproduction output characteristics. . Example 2 After applying the magnetic paint with a viscosity of 1000 cp used in Example 1 onto a polyester film, it was allowed to stand still in an open state for 10 and 20 seconds before being passed through a vertical magnetic field to remove some of the solvent on the coated surface. After evaporation, the solid content of each coated film was measured, and the viscosity of the coated film was determined from the previously determined solid content-viscosity curve to be 3200 cp and 5000 cp. These coated films were then dried while passing through a perpendicular magnetic field of 4000 Oe and calendered to obtain a perpendicular magnetic recording medium. The perpendicular orientation rates of the obtained perpendicular magnetic recording media were 93% and 91%, respectively, and the surface roughness was
The diameter was good, at 0.05 μm or less, and the effectiveness of the method of the present invention could be reconfirmed. In addition, although each of the above examples shows an example in which the magnetic paint is coated on a flexible polyester film, the same applies to a coated film on a substrate that has no flexibility; for example, a coated film with a thickness of 0.7 mm.
A similarly high orientation rate and surface precision could be obtained in the recording film prepared on the Al disk using the method described in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径が0.3ミクロンないし0.01ミクロン
の範囲にある六方晶系フエライト微粒子を磁性微
粒子として用い、この磁性微粒子を含む塗料を基
体面に塗布した後上記基体面に垂直な方向の磁界
を印加して上記磁性微粒子を配向させるようにし
た垂直磁気記録媒体の製造方法において、前記磁
界内に入る前の前記基体上の前記塗料の粘度を
2000cp以上に設定するとともに前記磁界の強さ
を2000Oe以上に設定するようにしたことを特徴
とする垂直磁気記録媒体の製造方法。
1. Hexagonal ferrite fine particles with an average particle size in the range of 0.3 microns to 0.01 microns are used as magnetic fine particles, and after applying a paint containing these magnetic fine particles to a substrate surface, a magnetic field is applied in a direction perpendicular to the substrate surface. In the method for manufacturing a perpendicular magnetic recording medium, the viscosity of the paint on the substrate before entering the magnetic field is
A method for manufacturing a perpendicular magnetic recording medium, characterized in that the strength of the magnetic field is set to 2000 cp or more and the strength of the magnetic field is set to 2000 Oe or more.
JP13213580A 1980-09-22 1980-09-22 Manufacture of vertical magnetic recording medium Granted JPS5758243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13213580A JPS5758243A (en) 1980-09-22 1980-09-22 Manufacture of vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13213580A JPS5758243A (en) 1980-09-22 1980-09-22 Manufacture of vertical magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5758243A JPS5758243A (en) 1982-04-07
JPH0243255B2 true JPH0243255B2 (en) 1990-09-27

Family

ID=15074186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13213580A Granted JPS5758243A (en) 1980-09-22 1980-09-22 Manufacture of vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5758243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329417A (en) * 1992-03-28 1993-12-14 Sony Corp Coating device and applying method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329417A (en) * 1992-03-28 1993-12-14 Sony Corp Coating device and applying method

Also Published As

Publication number Publication date
JPS5758243A (en) 1982-04-07

Similar Documents

Publication Publication Date Title
KR860000310B1 (en) Magnetic recording media
JPH01300419A (en) Magnetic recording medium
JPH0127487B2 (en)
JPS6343811B2 (en)
JPH0243255B2 (en)
JPS586526A (en) Magnetic recording medium
JP2611965B2 (en) Magnetic recording media
JPH0221050B2 (en)
JP2004303408A (en) Magnetic recording medium having increased high density broadband signal-to-noise ratio
JPS6250888B2 (en)
JPS6341133B2 (en)
JPS62219321A (en) Magnetic recording medium
JPS5968826A (en) Manufacture of vertical magnetic recording medium
JPS6066321A (en) Magnetic recording medium
JPH0619829B2 (en) Magnetic recording medium
JPH076348A (en) Magnetic recording medium
JPH0370854B2 (en)
JPS6146893B2 (en)
JPS61110332A (en) Magnetic recording medium
JPS59218628A (en) Magnetic recording medium
JPH0338653B2 (en)
JPH04302819A (en) Magnetic recording medium
JPH01102728A (en) Magnetic recording medium
JPH08106622A (en) Magnetic recording medium and its production
JPH01213829A (en) Magnetic recording medium