JPH0242804B2 - - Google Patents

Info

Publication number
JPH0242804B2
JPH0242804B2 JP57122978A JP12297882A JPH0242804B2 JP H0242804 B2 JPH0242804 B2 JP H0242804B2 JP 57122978 A JP57122978 A JP 57122978A JP 12297882 A JP12297882 A JP 12297882A JP H0242804 B2 JPH0242804 B2 JP H0242804B2
Authority
JP
Japan
Prior art keywords
polyoxin
sprayed
agricultural
parts
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57122978A
Other languages
Japanese (ja)
Other versions
JPS5913703A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57122978A priority Critical patent/JPS5913703A/en
Publication of JPS5913703A publication Critical patent/JPS5913703A/en
Publication of JPH0242804B2 publication Critical patent/JPH0242804B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は相異つた作用持性を有する2種の殺菌
成分を配合してなる新規な農園芸用殺菌剤に関す
るものである。すなわち本発明は、後記の一般式
(1)で表わされるトリアゾール誘導体の少なくとも
1種とポリオキシン群抗生物質またはその塩類の
少なくとも1種とを配合してなることを特徴とす
る農園芸用殺菌剤を提供するものである。 一般式(1) (ただし式中、Xは2個までの同一もしくは、
相異なるハロゲン原子または低級ハロアルキル基
を示し、Yは2個までのハロゲン原子を示す。) 本発明の農園芸用殺菌剤の特徴は、相互に各薬
剤の有する殺菌効果を強めあい、かつ各薬剤の欠
点を相補いあうことによつて殺菌スペクトルを拡
大して、各種の有用植物の諸病害に対して極めて
高い病害防除効果を少量でしかも継続して発揮し
うるところにある。 これまで、農園芸用殺菌剤としてはIBP(0,
0−ジイソプロピルS−ベンジルチオホスフエー
ト)やEDDP(0−エチルS,S−ジフエニルジ
チオホスフエート)などの有機りん剤、ジネブ
(エチレンビスジチオカーバメート亜鉛塩)やマ
ンネブ(エチレンビスジチオカーバメートマンガ
ン塩)などのジチオカーバメート剤、PCP(ペン
タクロロフエノール)やTPN(テトラクロロイソ
フタロニトリル)などの有機塩素剤、ベノミル
〔メチル1−(n−ブチルカルバモイル)ベンズイ
ミダゾール−2−イルカーバメート〕、チオフア
ネートメチル〔1,2−ジ(3−メトキシカルボ
ニル−2−チオウレイド)ベンゼン〕など各種の
農園芸用殺菌剤が広く使用されてきた。しかしな
がら、これら公知殺菌剤のなかには、殺菌スペク
トラムが狭かつたりあるいは病害の発生に対して
予防的効果または治療的効果のいずれか一方の効
果のみ発現して双方の効果を同時に強く発現する
ものはない。さらに気象条件や病害の発生状況の
変化に対して常に安定した防除効果を発揮できる
ものもない。したがつて、これらの薬剤を使用す
る農家は安定した高い効果を得るために、著しく
高濃度の薬液を繰り返し散布するか、あるいは2
種またはそれ以上の薬剤を各薬剤の常用濃度で併
用するなど高薬量を使用しなければならなかつ
た。このような高濃度での多量の繰り返し散布は
人畜に対する毒性や、作物の残留さらには薬剤費
の増高などの問題点を有し、これらの点を克服で
きる新しい農薬の開発が強く望まれているのが実
情である。 本発明者らは、これらの欠点を改善し、かつ
個々の薬剤のもつ特質を共力的かつ相乗的に増強
させる組み合わせについて鋭意研究した。その結
果、前記ポリオキシン群抗生物質またはその塩類
と一般式(1)で示されるトリアゾール誘導体を配合
することにより目的とする新規で有用な農園芸用
殺菌剤を創製するに至つた。 本発明による農園芸用殺菌剤は、キユウリうど
んこ病をはじめ、メロン、イチゴ、ばら、きくな
どのうどんこ病、キユウリ炭疽病、キユウリ菌核
病、キユウリ灰色かび病、キユウリ黒星病、トマ
ト葉かび病、トマト輪紋病、ナシ黒斑病、ナシ赤
星病、リンゴ斑点落葉病など野菜、果樹の諸病害
に卓越した防除効果を示し、その効果は長時間持
続するものである。こうした本農園芸殺菌剤の示
す優れた効果は、各有効成分の単独使用の効果か
らは全く予期しえない顕著な相乗性をもつて発揮
される。 本発明の有効成分の1つであるポリオキシン
は、特公昭42−10941号公報、特公昭50−7131号
公報、「農薬ハンドブツク1981年版」(昭和56年7
月20日、社団法人日本植物防疫協会発行)の第
164〜166頁において農園芸用殺菌剤として公知で
ある。また、ポリオキシン群抗生物質に含まれる
ピオマイシンは、特公昭44−27919号公報、「農薬
ハンドブツク1976年版」(昭和51年10月18日同上
協会発行)の第171〜173頁において農園芸用殺菌
剤として既知である。そしてこれらのポリオキシ
ン群抗生物質またはその塩類は、比較的広い殺菌
スペクトルを有し高い治療効果を示すが、予防的
に散布した場合には、残効性、耐雨性が劣るため
十分な効果を発揮しえない憾みがある。さらに近
年、各種作物のうどんこ病、灰色かび病、リンゴ
斑点落葉病、ナシ黒斑病などにポリオキシン耐性
菌が出現し十分な効果が得られなくなり、その使
用を中止している地域が全国的に広まりつつあ
る。このような地域ではポリオキシン群抗生物質
を高濃度かつ多量に散布しても実用的防除効果は
ほとんどない。 また、一方の有効成分であるトリアゾール誘導
体は、特公昭60−26391号公報に農園芸用殺菌剤
として開示された化合物であり、キユウリ、メロ
ン、ナス、リンゴ、ブドウ、バラ、ムギ類のうど
んこ病やナス、リンゴ、ブドウ、ネギ、キクなど
の銹病に対しても比較的低薬量で高い効果を示
す。しかしこのトリアゾール誘導体は、キユウリ
炭疽病、キユウリ菌核病、キユウリ灰色かび病、
トマト輪紋病、ナシ黒斑病、リンゴ斑点落葉病な
どの病害に対しても防除活性を示すが、これらの
病害を防除するに要する薬量は、各種作物のうど
んこ病、銹病を防除する場合の10倍以上の多量の
薬剤を散布しなければならない欠点を有する。 そこで、このような欠点を有するポリオキシン
群抗生物質またはその塩類と一般式(1)で示される
トリアゾール誘導体を混合して散布することによ
つて、従来では耐性菌の発現によりほとんど防除
効果が認められなかつたナシ、リンゴ園や露地、
ハウス栽培の野菜での諸病害の防除においても十
分な効果を発揮することが認められた。さらに各
単剤では防除効果が低い病害に対しても実用上十
分な効果が認められた。つまりこれらの効果発現
は明らかに両薬剤の混合による共力および相乗作
用によるものであつて、従来の混合による共力お
よび相乗作用の既成概念を打ち破るものであり、
全く予期しえない新事実である。 本発明の農園芸用殺菌剤は、前述のような優れ
た作用を有するため、薬剤の使用量を各々の薬剤
の単独使用の場合の4分の1から10分の1に減ら
しても十分な防除効果が得られ、さらに人蓄など
に対する毒性や有用作物に対する薬害などの心配
もなく安心して使用できる。 本発明で使用できる置換トリアゾール誘導体の
代表的化合物を例示すると以下のとおりである。
なお、化合物No.は以下の実施例および試験例でも
参照される。 化合物 1 4−クロロベンジルN−(2,4−ジクロロフ
エニル)−2−(1,2,4−トリアゾール−1
−イル)エタンチオイミデート 化合物 2 3,4−ジクロロベンジルN−(2,4−ジク
ロロフエニル)−2−(1,2,4−トリアゾー
ル−1−イル)エタンチオイミデート 化合物 3 2,4−ジクロロベンジルN−(2,4−ジク
ロロフエニル)−2−(1,2,4−トリアゾー
ル−1−イル)エタンチオイミデート 化合物 4 2,4−ジクロロベンジルN−(4−クロロ−
2−トリフルオロメチルフエニル)−2−(1,
2,4−トリアゾール−1−イル)エタンチオ
イミデート 化合物 5 4−クロロベンジルN−(2−クロロ−4−フ
ルオロフエニル)−2−(1,2,4−トリアゾ
ール−1−イル)エタンチオイミデート また、本発明で使用されるポリオキシン群抗生
物質は、ストレプトミセス・カカオイ・アソエン
シスの生産するA〜Mまでの13成分およびストレ
プトミセス・ピオモゲヌスが生産する物質(ポリ
オキシンのL成分と同一)を含む。そしてこれら
の物質は各成分に単離して使用してもよく、また
複合体として使用してもよい。本発明を実施する
に際しては、有効成分化合物を担体で希釈して通
常使用される型態、例えば、水和剤、乳剤、粉
剤、DL(ドリフトレス)型粉剤、フローダスト用
粉剤、フロアブル剤(ゾル剤)、粒剤、微粒剤、
錠剤などに製剤して公知の方法に準じて使用すれ
ばよい。本発明で使用される担体としては慣用の
もの、例えば、クレー、タルク、ベントナイト、
カオリン、けいそう土、シリカなどの固体担体、
あるいはベンゼン、キシレン、トルエン、ケロシ
ン、アルコール類(メタノール、エタノール、イ
ソプロパノール、n−ブタノールなど)、ケトン
類(アセトン、メチルエチルケトン、シクロヘキ
サノンなど)などの液体担体が使用できる。これ
らに適当な界面活性剤、展着剤などを適量配合し
て製剤化して使用できる。本発明における有効成
分の配合割合は、重量比で、置換トリアゾール誘
導体1部に対してポリオキシン群抗生物質または
その塩を0.1〜10部配合するのが適当であるが、
施用時の条件や病害発生状況に応じて配合割合を
適宜変更して使用することができる。また本発明
の有効成分のほかにさらに他の殺菌剤、殺虫剤、
除草剤などを配合して使用することもできる。 本発明の農園芸用殺菌剤を施用する場合、通常
10アール当り有効成分量で10g〜100gの範囲で
よく、また有効成分の施用濃度は0.001〜0.2%の
範囲で使用することができる。しかしながら、施
用条件や被害状態に応じて有効成分の混合割合、
施用量、施用濃度などを変更することも可能であ
る。 次に本発明の農園芸用殺菌剤について実施例を
示すが、本発明に対する添加物の種類および混合
割合はこれのみに限定されることなく、広い範囲
で変更可能である。なお、実施例中の部は重量部
を示す。 実施例 1 水和剤 化合物1 5部、ポリオキシンBプレミツクス
(ポリオキシンBとして20%含む:以下同じ)5
部、ホワイトカーボン5部、ラウリルサルフエー
ト5部、リグニンスルホン酸ソーダ4部およびク
レー76部をリボンミキサーに入れよく混合した
後、アトマイザーで十分粉砕混合して再びリボン
ミキサーで混合して水和剤を得る。 実施例 2 水和剤 化合物2 10部、ピオマイシンプレミツクス
(ポリオキシンLとして20%含む)10部、ラウリ
ルサルフエート4部、リグニンスルホン酸ソーダ
5部およびクレー71部を実施例1と同様に混合粉
砕して水和剤を得る。 実施例 3 粉 剤 化合物3 1部、ポリオキシンBプレミツクス
2部、無水珪酸微粉末1部、ステアリン酸カルシ
ウム1部、クレー30部およびタルク65部を均一に
混合して粉剤を得る。 次に、本発明の農園芸用殺菌剤の殺菌効果を試
験例をあげて具体的に説明する。 試験例 1 キユウリうどんこ病防除効果試験(圃場) キユウリ苗(ときわ光3号P型)を常法により
畑地に株間35cm、畦巾60cmの1条植で定植した。
薬剤散布はキユウリうどんこ病の初発時から10日
おきに3回に亘つて第1表に示される有効成分を
含む水和剤の所定濃度希釈液を、1回につき10ア
ール当り250の割合で小型肩掛噴霧機で散布し
た。 発病調査は、最終散布の14日後に各区6株の親
づるの下位3葉を除くすべての葉について、1葉
あたりのキユウリうどんこ病病斑面積歩合(%)
を調査し、次式により除除価(%)を算出した。
また、キユウリに対する薬害を次の指標により調
査した。 本試験は、1薬剤濃度につき1区6株の3連制
で行い、平均防除価(%)を求めた。その結果
は、第1表のとおりである。 防除価(%)=(1−散布区の病斑面積歩合/無散
布区の病斑面積歩合)×100 薬害調査指標 5;激甚 4;甚 3;多 2;少 1;微少 0;なし
The present invention relates to a novel agricultural and horticultural fungicide containing two types of fungicidal components having different effects. That is, the present invention is based on the following general formula
The present invention provides an agricultural and horticultural fungicide characterized by blending at least one triazole derivative represented by (1) with at least one polyoxine group antibiotic or its salts. General formula (1) (However, in the formula, up to two Xs are the same or
They represent different halogen atoms or lower haloalkyl groups, and Y represents up to two halogen atoms. ) The characteristics of the agricultural and horticultural fungicide of the present invention are that the bactericidal effects of each drug are mutually enhanced and the drawbacks of each drug are compensated for, thereby expanding the bactericidal spectrum and making it possible to kill various useful plants. It is possible to exert extremely high disease control effects against various diseases in small amounts and continuously. Until now, IBP (0,
Organophosphorus agents such as 0-diisopropyl S-benzylthiophosphate) and EDDP (0-ethyl S,S-diphenyldithiophosphate), zineb (ethylene bisdithiocarbamate zinc salt) and maneb (ethylene bisdithiocarbamate manganese salt) ), organic chlorine agents such as PCP (pentachlorophenol) and TPN (tetrachloroisophthalonitrile), benomyl [methyl 1-(n-butylcarbamoyl)benzimidazol-2-ylcarbamate], thiofur Various agricultural and horticultural fungicides such as natemethyl [1,2-di(3-methoxycarbonyl-2-thioureido)benzene] have been widely used. However, some of these known fungicides have a narrow bactericidal spectrum, or only exhibit either preventive or therapeutic effects against disease outbreaks, and there is no one that strongly exhibits both effects at the same time. . Furthermore, there are no methods that can consistently exhibit a stable pesticidal effect against changes in weather conditions or disease occurrence. Therefore, in order to obtain stable and high efficacy, farmers using these chemicals have to repeatedly spray extremely highly concentrated chemicals, or
High doses had to be used, including combinations of one or more drugs at customary concentrations of each drug. Repeated spraying in large amounts at such high concentrations poses problems such as toxicity to humans and livestock, residue on crops, and increased chemical costs, and there is a strong desire for the development of new pesticides that can overcome these problems. The reality is that there are. The present inventors have conducted intensive research on combinations that can improve these drawbacks and synergistically and synergistically enhance the properties of individual drugs. As a result, by blending the above-mentioned polyoxin group antibiotic or its salt with the triazole derivative represented by the general formula (1), a new and useful agricultural and horticultural fungicide was created. The agricultural and horticultural fungicide according to the present invention can be used to treat powdery mildew of melons, strawberries, roses, yellowtail, etc., mildew of cucumber, anthracnose of cucumber, sclerotium of cucumber, gray mold of cucumber, scabosis of cucumber, and tomato leaves. It exhibits excellent control effects on various diseases of vegetables and fruit trees, such as mold, tomato ring spot, pear black spot, pear leaf spot, and apple leaf spot, and its effects last for a long time. The excellent effects of this agricultural and horticultural fungicide are exhibited in a remarkable synergistic manner that is completely unexpected from the effects of each active ingredient used alone. Polyoxin, which is one of the active ingredients of the present invention, is described in Japanese Patent Publication No. 42-10941, Japanese Patent Publication No. 7131-1982, and "Pesticide Handbook 1981 Edition" (1981).
Published by the Japan Plant Protection Association (Japan Plant Protection Association) on March 20th
It is known as an agricultural and horticultural fungicide on pages 164-166. In addition, piomycin, which is included in the polyoxin group antibiotics, is described as an agricultural and horticultural fungicide in Japanese Patent Publication No. 44-27919, pages 171-173 of "Pesticide Handbook 1976 Edition" (published by the same association on October 18, 1976). It is known as These polyoxin group antibiotics or their salts have a relatively broad bactericidal spectrum and exhibit high therapeutic efficacy, but when sprayed prophylactically, they are not sufficiently effective due to poor residual efficacy and rain resistance. I have unbearable regret. Furthermore, in recent years, polyoxin-resistant bacteria have appeared in various crops such as powdery mildew, gray mold, apple spot leaf spot, and pear black spot, making it no longer effective, and many areas nationwide have stopped using polyoxin. It is becoming widespread. In such areas, even if polyoxin group antibiotics are sprayed in large quantities at high concentrations, there is almost no practical control effect. In addition, one of the active ingredients, a triazole derivative, is a compound disclosed as a fungicide for agricultural and horticultural purposes in Japanese Patent Publication No. 60-26391. It is also highly effective against mildew on eggplants, apples, grapes, green onions, chrysanthemums, etc. with a relatively low dose. However, this triazole derivative is effective against cucumber anthracnose, cucumber sclerotia, and botrytis botrytis.
It also shows control activity against diseases such as tomato ring spot, pear black spot, and apple leaf spot, but the dosage required to control these diseases is higher than that required to control powdery mildew and mildew of various crops. The disadvantage is that more than 10 times more chemicals must be sprayed than in the case of conventional methods. Therefore, by spraying a mixture of polyoxin group antibiotics or their salts, which have these drawbacks, and the triazole derivative represented by the general formula (1), conventionally, almost no control effect was observed due to the development of resistant bacteria. Nakatsuta pears, apple orchards and open fields,
It was also found to be sufficiently effective in controlling various diseases in greenhouse-grown vegetables. Furthermore, sufficient practical effects were observed for diseases for which each single agent had low control effects. In other words, these effects are clearly due to the synergy and synergism of the mixture of both drugs, which breaks the conventional concept of synergism and synergism caused by mixing.
This is a completely unexpected new fact. Since the agricultural and horticultural fungicides of the present invention have the excellent effects described above, it is sufficient to reduce the amount of the fungicides used to one-fourth to one-tenth of the amount when each of the fungicides is used alone. It has a pesticidal effect and can be used with confidence without worrying about toxicity to human stock or chemical damage to useful crops. Representative examples of substituted triazole derivatives that can be used in the present invention are as follows.
In addition, compound No. is also referred to in the following examples and test examples. Compound 1 4-chlorobenzyl N-(2,4-dichlorophenyl)-2-(1,2,4-triazole-1
-yl) ethanethioimidate Compound 2 3,4-dichlorobenzyl N-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-yl)ethanethioimidate Compound 3 2,4-dichlorobenzyl N-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-yl)ethanethioimidate Compound 4 2,4-dichlorobenzyl N-(4-chloro-
2-trifluoromethylphenyl)-2-(1,
2,4-triazol-1-yl)ethanethioimidate Compound 5 4-chlorobenzyl N-(2-chloro-4-fluorophenyl)-2-(1,2,4-triazol-1-yl)ethanethioimidate Furthermore, the polyoxin group antibiotic used in the present invention includes 13 components A to M produced by Streptomyces cacao asoensis and a substance (same as the L component of polyoxin) produced by Streptomyces pyomogenus. These substances may be used in isolation as each component, or may be used as a complex. When carrying out the present invention, the active ingredient compound is diluted with a carrier and used in commonly used forms, such as wettable powders, emulsions, powders, DL (driftless) powders, flow dust powders, and flowable agents ( sol), granules, fine granules,
It may be formulated into tablets or the like and used according to known methods. Common carriers used in the present invention include clay, talc, bentonite,
Solid carriers such as kaolin, diatomaceous earth, and silica;
Alternatively, liquid carriers such as benzene, xylene, toluene, kerosene, alcohols (methanol, ethanol, isopropanol, n-butanol, etc.), ketones (acetone, methyl ethyl ketone, cyclohexanone, etc.) can be used. These can be used by blending appropriate amounts of suitable surfactants, spreading agents, etc. into formulations. The appropriate blending ratio of the active ingredients in the present invention is 0.1 to 10 parts by weight of the polyoxin group antibiotic or its salt per 1 part of the substituted triazole derivative.
The blending ratio can be changed as appropriate depending on the conditions at the time of application and the disease occurrence situation. In addition to the active ingredients of the present invention, other fungicides, insecticides,
It can also be used in combination with herbicides and the like. When applying the agricultural and horticultural fungicide of the present invention, usually
The amount of active ingredient may be in the range of 10g to 100g per 10 ares, and the concentration of the active ingredient may be in the range of 0.001 to 0.2%. However, the mixing ratio of the active ingredients depends on the application conditions and damage state.
It is also possible to change the application amount, application concentration, etc. Examples of the agricultural and horticultural fungicides of the present invention will be shown next, but the types and mixing ratios of additives for the present invention are not limited to these, and can be varied within a wide range. In addition, parts in Examples indicate parts by weight. Example 1 Wettable powder Compound 1 5 parts, polyoxin B premix (contains 20% as polyoxin B; the same applies hereinafter) 5
1, 5 parts of white carbon, 5 parts of lauryl sulfate, 4 parts of sodium lignin sulfonate, and 76 parts of clay were placed in a ribbon mixer and mixed well.Then, the mixture was thoroughly ground and mixed with an atomizer, and mixed again with the ribbon mixer to form a wettable powder. get. Example 2 Wettable powder 10 parts of compound 2, 10 parts of piomycin premix (containing 20% as polyoxin L), 4 parts of lauryl sulfate, 5 parts of sodium lignin sulfonate, and 71 parts of clay were mixed in the same manner as in example 1. Grind to obtain wettable powder. Example 3 Powder 1 part of Compound 3, 2 parts of Polyoxine B Premix, 1 part of silicic anhydride fine powder, 1 part of calcium stearate, 30 parts of clay, and 65 parts of talc are uniformly mixed to obtain a powder. Next, the bactericidal effect of the agricultural and horticultural fungicide of the present invention will be specifically explained using test examples. Test Example 1 Kiyu cucumber powdery mildew control effect test (field) Ki cucumber seedlings (Tokiwa Hikari No. 3 P type) were planted in a field in a single row with a spacing of 35 cm and a furrow width of 60 cm using a conventional method.
Chemical spraying is carried out three times every 10 days from the initial onset of powdery mildew on cucumbers. A dilute solution of a predetermined concentration of a wettable powder containing the active ingredients shown in Table 1 is sprayed at a rate of 250 per 10 ares each time. Sprayed with a small shoulder sprayer. The disease onset survey was conducted 14 days after the final spraying, on all leaves except the bottom three leaves of the six parent plants in each district, and the ratio of the area of powdery mildew spots per leaf (%).
was investigated, and the division value (%) was calculated using the following formula.
In addition, chemical damage to cucumbers was investigated using the following indicators. This test was conducted in triplicate with 6 plants per group per drug concentration, and the average control value (%) was determined. The results are shown in Table 1. Control value (%) = (1 - percentage of lesion area in sprayed area / percentage of lesion area in non-sprayed area) x 100 Chemical damage investigation index 5; Severe 4; Very 3; Large 2; Small 1; Slight 0; None

【表】【table】

【表】【table】

【表】 キノメチオネートは、6−メチルキノキサリン
−2,3−ジチオカーホネートを示し、かつこ内
の数値は、無散布区のキユウリうどんこ病発病面
積歩合(%)を示す。 試験例 2 トマト葉かび病防除効果試験(予防効果、治療
効果および残効性試験) 温室内で直径9cmの素焼鉢で土耕栽培した第6
本葉期のトマト苗(品種大型福寿)を用いた。薬
剤散布はトマト葉かび病苗の接種20日前散布(残
効的散布)、接種2日前散布(予防的散布)およ
び接種2日後散布(治療的散布)で検討するた
め、第2表に示される有効成分を含む水和剤の所
定濃度希釈液を2鉢あたり30mlの割合で散布し
た。なお、残効的散布をしたトマトは戸外で管理
した(降雨日数延4日、降雨量43.4mm)。病菌接
種は、予めトマト葉かび病罹病トマト葉上で胞子
形成させておいた本病菌(クラドスポリウムフル
ブム;Cladosporium fulvum)の分生胞子をツ
イーン20(ポリオキシエチレンソルビタンモノラ
ウレートの商品名)の50ppm添加イオン交換水中
に毛筆で洗い落とし、胞子濃度を顕微鏡150倍1
視野あたり50個前後となるように調整した。これ
を接種源として、薬剤散布したトマト葉上に噴霧
接種した。接種後は20℃の湿室内に24時間保つた
後、24℃で湿度85〜95%の制御温室に移して発病
を促した。 発病調査は、接種14日後に第2葉から第5葉の
1葉あたりのトマト葉かび病病斑面積歩合(%)
を調査し、次式により防除価(%)を算出した。 なお、試験は1区3ポツト制で実施し、平均防
除価(%)を求めた。 防除価=(1−散布区の病斑面積歩合/無散布区の
病斑面積歩合)×100 その結果は、第2表のとおりである。
[Table] Chinomethionate indicates 6-methylquinoxaline-2,3-dithiocarbonate, and the value in brackets indicates the ratio (%) of the area affected by cucumber powdery mildew in the unsprayed area. Test Example 2 Tomato leaf mold control effect test (preventive effect, therapeutic effect and residual effect test)
Tomato seedlings (cultivar Daigo Fukuju) in the true leaf stage were used. Chemical spraying is shown in Table 2 to investigate the application of tomato leaf mold diseased seedlings 20 days before inoculation (residual application), 2 days before inoculation (preventive application), and 2 days after inoculation (therapeutic application). A diluted solution of a hydrating powder containing an active ingredient at a predetermined concentration was sprayed at a rate of 30 ml per two pots. The tomatoes treated with residual spray were managed outdoors (total number of rainy days: 4 days, rainfall amount: 43.4 mm). To inoculate the disease, conidia of the disease fungus (Cladosporium fulvum), which has been spore-formed on tomato leaves infected with tomato leaf mold, are inoculated with Tween 20 (trade name of polyoxyethylene sorbitan monolaurate). ) in 50ppm ion-exchanged water with a brush and measure the spore concentration using a microscope (150x1).
Adjustments were made so that there were around 50 pieces per field of view. This was used as an inoculum to spray inoculate onto tomato leaves sprayed with chemicals. After inoculation, the plants were kept in a humid room at 20°C for 24 hours, and then transferred to a controlled greenhouse at 24°C and humidity of 85-95% to induce disease onset. Disease onset was investigated by measuring the percentage area of tomato leaf mold lesions per leaf from the 2nd to 5th leaves 14 days after inoculation.
was investigated, and the control value (%) was calculated using the following formula. The test was conducted using a 3-pot system per district, and the average control value (%) was determined. Control value = (1 - percentage of lesion area in sprayed area/percentage of lesion area in non-sprayed area) x 100 The results are shown in Table 2.

【表】【table】

【表】 チオフアネートメチルは、ジメチル4,4′−0
−フエニレンビス(3−チオアロフアネート)を
示し、かつこ内の数値は、無散布区の平均トマト
葉かび病病斑面積歩合(%)を示す。 試験例 3 ナシ黒斑病防除効果試験(ポリオキシン耐性菌
に対する効果) ナシ樹(品種二十世紀)の新展開葉8〜9枚を
含む新梢を切り取り、200ml容量のコルベンに水
さしして試験に供した。薬剤散布は、第3表に示
される有効成分を含む水和剤の所定濃度希釈液を
ガラス製ネブライザーを用いてナシ葉の葉裏面に
十分量散布した。病菌接種は、アンズ煎汁寒天培
地の平面上で24℃で10日間培養して得たナシ黒斑
病菌(Alternaria Kikuchiana;アルタナリア
キクチアナ)のポリオキシン耐性菌分生胞子とポ
リオキシン感受性菌分生胞子を7対3の割合でツ
イーン20〔花王アトラス(株)製のポリオキシエチレ
ンソルビタンモノラウレートの商品名〕の50ppm
溶液に分散させ、胞子濃度を顕微鏡150倍1視野
約20個に調整した。接種後のナシ切枝(200ml容
コンベンに水さし)は24℃の湿室に24時間保ち、
その後は24〜26℃で湿度85〜95%のグロースキヤ
ビネツトで管理した。病菌接種4日後に1葉あた
りの病斑面積歩合(%)を調査し、次式により防
除価(%)を算出した。 なお、試験は1区3枝制で実施し、平均防除価
(%)を求めた。 防除価(%)=(1−散布区の病斑面積歩合/無散
布区の病斑面積歩合)×100 その結果は、第3表のとおりである。
[Table] Thiophanatomethyl is dimethyl 4,4'-0
-phenylenebis(3-thioallophanate), and the value in brackets indicates the average percentage of tomato leaf mold lesion area percentage (%) in non-sprayed plots. Test Example 3 Pear black spot control effect test (effect against polyoxin-resistant bacteria) A new shoot containing 8 to 9 newly developed leaves of a pear tree (variety Nijusseiki) was cut, and water was poured into a 200 ml container for the test. provided. For chemical spraying, a sufficient amount of a dilute solution of a hydrating powder containing the active ingredients shown in Table 3 at a predetermined concentration was sprayed onto the underside of a pear leaf using a glass nebulizer. The inoculation was carried out using pear black spot fungus (Alternaria Kikuchiana;
50 ppm of Tween 20 [trade name of polyoxyethylene sorbitan monolaurate manufactured by Kao Atlas Co., Ltd.] in a ratio of 7:3 to polyoxin-resistant conidia and polyoxin-susceptible conidia of M. kicutiana).
The spores were dispersed in a solution and the spore concentration was adjusted to about 20 spores per field of view under a microscope at 150x magnification. After inoculation, pear cuttings (in a 200ml container) were kept in a humid room at 24°C for 24 hours.
After that, it was kept in a growth cabinet at 24-26°C and 85-95% humidity. Four days after inoculation with the pathogen, the percentage of lesion area (%) per leaf was investigated, and the control value (%) was calculated using the following formula. The test was conducted in one area with three branches, and the average control value (%) was determined. Control value (%) = (1 - percentage of lesion area in sprayed area/percentage of lesion area in non-sprayed area) x 100 The results are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】 ジネブは、エチレンビス(ジチオカルバミド
酸)亜鉛を示し、無散布区のかつこ内数値は、1
葉あたりの平均ナシ黒斑病病斑面積歩合(%)を
示す。
[Table] Zineb indicates zinc ethylenebis(dithiocarbamate), and the value in the box for the non-sprayed area is 1.
The average pear black spot lesion area ratio (%) per leaf is shown.

Claims (1)

【特許請求の範囲】 1 ポリオキシン群抗生物質またはその塩と一般
式; (式中、Xは2個までの同一もしくは相異なる
ハロゲン原子、または低級ハロアルキル基を示
し、Yは2個までのハロゲン原子を示す。)で示
されるトリアゾール誘導体とを配合してなること
を特徴とする農園芸用殺菌剤。
[Claims] 1. Polyoxin group antibiotic or its salt and general formula; (In the formula, X represents up to two identical or different halogen atoms or a lower haloalkyl group, and Y represents up to two halogen atoms.) A fungicide for agriculture and horticulture.
JP57122978A 1982-07-16 1982-07-16 Agricultural and horticulatural fungicide Granted JPS5913703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57122978A JPS5913703A (en) 1982-07-16 1982-07-16 Agricultural and horticulatural fungicide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57122978A JPS5913703A (en) 1982-07-16 1982-07-16 Agricultural and horticulatural fungicide

Publications (2)

Publication Number Publication Date
JPS5913703A JPS5913703A (en) 1984-01-24
JPH0242804B2 true JPH0242804B2 (en) 1990-09-26

Family

ID=14849279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57122978A Granted JPS5913703A (en) 1982-07-16 1982-07-16 Agricultural and horticulatural fungicide

Country Status (1)

Country Link
JP (1) JPS5913703A (en)

Also Published As

Publication number Publication date
JPS5913703A (en) 1984-01-24

Similar Documents

Publication Publication Date Title
KR910007358B1 (en) Fungicidal composition
JPS62212307A (en) Fungicidal composition and use
US5500437A (en) Microbicides
JP2832482B2 (en) Insecticidal fungicide composition
JPH0242804B2 (en)
HU206963B (en) Synergetic fungicidal composition comprising triazolylpentanol derivative and guanidated aliphatic polyamine
US4346098A (en) Fungicidal compositions and methods
JPH0251401B2 (en)
JPS6399005A (en) Agricultural and horticultural germicide
JPH05194129A (en) Bactericidal agent for agriculturaland gardening purposes
JPS6335604B2 (en)
JPH024205B2 (en)
JPH024568B2 (en)
JPH04261106A (en) Fungicide for agricultural and horticultural use
JPS5832804A (en) Agricultural and horticultural germicidal composition
JPS5841805A (en) Agricultural and horticultural germicidal composition
JPS5928529B2 (en) Composition for soil sterilization
JPS59106406A (en) Disinfectant for seed
JPH01197415A (en) Fungicide for agricultural and horticultural use
JPS59104302A (en) Disinfectant for seeds
JPH04193807A (en) Germicide for agriculture and horticulture
JPS597103A (en) Agricultural and horticultural germicide
JPH0251882B2 (en)
JPS6363524B2 (en)
JPS5810504A (en) Agricultural and horticultural fungicide