JPH0242399A - Multilayered film reflecting mirror for soft x ray - Google Patents

Multilayered film reflecting mirror for soft x ray

Info

Publication number
JPH0242399A
JPH0242399A JP19215888A JP19215888A JPH0242399A JP H0242399 A JPH0242399 A JP H0242399A JP 19215888 A JP19215888 A JP 19215888A JP 19215888 A JP19215888 A JP 19215888A JP H0242399 A JPH0242399 A JP H0242399A
Authority
JP
Japan
Prior art keywords
lithium
refractive index
soft
rays
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19215888A
Other languages
Japanese (ja)
Other versions
JPH0587800B2 (en
Inventor
Izumi Kataoka
泉 潟岡
Kazuyuki Eto
江藤 和幸
Kazuhiko Ito
和彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19215888A priority Critical patent/JPH0242399A/en
Publication of JPH0242399A publication Critical patent/JPH0242399A/en
Publication of JPH0587800B2 publication Critical patent/JPH0587800B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To realize a high reflection factor in the wavelength range of soft X rays by using a material which contains lithium as its base for a layer with a high refractive index and using nickel for a layer with a low refractive index, and combining them and constituting a multilayered film. CONSTITUTION:Materials which differ in refractive index to X rays are laminated alternately and the thickness of the respective layers is so adjusted that reflected waves in their borders increase their intensity mutually, thus obtaining the X-ray reflecting mirror with the high reflection factor. Here, nickel 2 is used for the low-refractive-index layer on a substrate 1 and the material 4 which contains lithium as its base is used for the high-refractive-index layer to form the multilayered film; and a protection film 5 is formed at the outermost part. Then when lithium 4', lithium hydride 4'', or lithium oxide 4''' is used as the material 4, the multilayered film reflecting film for an optical element which has a large reflection factor in the wavelength range of soft X rays is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はX線の中で特に軟X線領域における光学素子
用多層膜反射鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multilayer film reflecting mirror for an optical element in the soft X-ray region among X-rays.

(従来の技術) 従来、軟X線領域では多層膜反射鏡として第6図に示す
ように基板1の上に低屈折率層としてニッケル2、高屈
折率層としてベリリウム3を用いる組合せのものが広く
知られていた。
(Prior art) Conventionally, in the soft X-ray region, a combination of a multilayer reflector using nickel 2 as a low refractive index layer and beryllium 3 as a high refractive index layer on a substrate 1, as shown in FIG. It was widely known.

(発明が解決しようとする課題) 説明するまでもなく、ベリリウムの蒸気、塵埃等は有毒
であり、薄膜化のだめの真空蒸着等を行う際には排気処
理を含めその環境作シの配慮および経費が問題となって
いた。
(Problem to be Solved by the Invention) Needless to say, beryllium vapor, dust, etc. are toxic, and when performing vacuum evaporation to reduce the thickness of the film, consideration must be given to environmental protection, including exhaust treatment, and costs. was a problem.

この発明は上述のような特別な作業環境を設ける要のな
い材料を用い、かつ従来品に比して性能的に遜色のない
もしくはそれ以上の反射率を有する多層膜反射鏡を提供
することを目的としてなされたものである。
The present invention aims to provide a multilayer reflector that uses materials that do not require the special working environment described above and has a reflectance comparable to or higher than conventional products in terms of performance. It was done for a purpose.

(課題を解決するだめの手段・作用) 周知の如く、軟X線領域では全ての物質の屈折率が1に
近く、有効な光学系を形成するのが極めて難しい。そこ
でごく僅かに屈折率の異なる物質を多数重ねて、その境
界で起こるほんの僅かの反射波の位相をうまくコントロ
ールして比較的効率のよい光学系を得ようとしている。
(Means and actions to solve the problem) As is well known, in the soft X-ray region, the refractive index of all materials is close to 1, and it is extremely difficult to form an effective optical system. Therefore, we are trying to create a relatively efficient optical system by layering many materials with slightly different refractive indexes and skillfully controlling the phase of the tiny amount of reflected waves that occur at the boundaries.

従ってこの分野ではいかに効率の良い物質の組合せを見
出すかが重要な要素の一つであり、本発明も従来この分
野で最も高効率の反射が得られるとされているBe/N
iの組合せを超える効率をもたらす組合せを得ようとす
るものである。
Therefore, one of the important factors in this field is how to find a combination of materials with high efficiency, and the present invention also applies to Be/N, which is said to provide the most efficient reflection in this field.
The aim is to obtain a combination that provides an efficiency greater than the combination of i.

各々の屈折率には波長依存性があり、各組合せについて
反射率をコンピュータシミュレーションによシ確認し、
膜厚、および層数等共々決定される。
Each refractive index has wavelength dependence, and the reflectance of each combination was confirmed by computer simulation.
The film thickness, number of layers, etc. are determined.

本願において提供する多層膜反射鏡は低屈折率物質とし
てニッケル、高屈折率物質としてリチウムをペースとし
た物質との組合せを挙げ、実施例において、上記高屈折
率物質にリチウム、水素化リチウムおよび酸化リチウム
を用いた場合の反射率の線図を示した。特に生体顕微鏡
光学素子(波長域2.33〜4.4 nm )用の酸化
リチウムとニッケルとの組合せにつき説明を補足する。
The multilayer reflector provided in this application includes a combination of nickel as a low refractive index material and a lithium-based material as a high refractive index material. A diagram of reflectance when lithium is used is shown. In particular, a supplementary explanation will be provided regarding the combination of lithium oxide and nickel for biological microscope optical elements (wavelength range 2.33 to 4.4 nm).

第5図は軟X線領域の中の3nm前後のX線に対する各
物質の透過率を示したものであるが、図からも明らかな
通シ、この領域では水とたん白質のX線に対する吸収が
他に比較して1桁程度異なる。
Figure 5 shows the transmittance of each substance to X-rays of around 3 nm in the soft X-ray region, and it is clear from the figure that water and protein absorb X-rays in this region. differs by about one order of magnitude compared to the others.

その為、たん白質等による生体の構造を水の吸収に邪魔
されることなく、像の濃淡としてとらえることができる
。これは水分子を構成する酸素の光学吸収端(2,37
nm)の近傍の長波長側で酸素によるX線の吸収が小さ
くなる為である。すなわち水の様に何らかの酸化物を多
層の高屈折率層に用いる事により吸収の少ない多層反射
膜を形成できる可能性が有る。そこで様々な酸化物につ
いて原子散乱因子を用いたシミュレーションを繰シ返し
た結果得られた組合せが酸化リチウムとニッケルである
Therefore, biological structures such as proteins can be seen as shading images without being hindered by water absorption. This is the optical absorption edge (2,37
This is because the absorption of X-rays by oxygen becomes smaller on the long wavelength side near 100 nm). That is, by using some kind of oxide such as water in a multilayer high refractive index layer, it is possible to form a multilayer reflective film with low absorption. After repeated simulations using atomic scattering factors for various oxides, the combination of lithium oxide and nickel was obtained.

(実施例) 第1図に本発明を平面ミラーに適用した例を示す。従来
例(第6図)と同様な構成で基板1、低屈折率層として
のニッケル2−!では全く同じで、高屈折率層としての
ベリリウム3の代りにリチウムをペースとした物質4を
用い、最外部に8102等の保護膜5を形成したもので
ある。
(Example) FIG. 1 shows an example in which the present invention is applied to a plane mirror. It has the same structure as the conventional example (FIG. 6), with the substrate 1 and the nickel 2-! as a low refractive index layer. The structure is exactly the same, except that a lithium-based material 4 is used instead of beryllium 3 as a high refractive index layer, and a protective film 5 such as 8102 is formed on the outermost layer.

第2.3.4図は、高屈折率層にリチウム4′、水素化
リチウム4″および酸化リチウム4″′を用いた多層膜
反射鏡の波長に対する反射率を、従来のベリリウム・ニ
ッケルの組合せのものとの比較の形で各々示したもので
ある。なお、設定条件としては従来例も含めて入射角7
0’、積層数199層とした。
Figure 2.3.4 shows the reflectance for wavelength of a multilayer reflector using lithium 4', lithium hydride 4'', and lithium oxide 4'' as the high refractive index layer compared to the conventional beryllium-nickel combination. Each of these is shown in the form of a comparison with that of . The setting conditions include the incident angle of 7, including the conventional example.
0', and the number of laminated layers was 199.

第2図のリチウム/ニッケル(実線)とベリリウム/ニ
ッケル(−点鎖線)では前者が後者より反射率が20〜
30%、第3図の水素化リチウム/ニッケル(実線)ト
ベリリウム/ニッケル(−点鎖線)では前者が後者より
約15〜25%、第4図の酸化リチウム/ニッケルとベ
リリウム(実線)/ニッケル(−点鎖線)では、生体顕
微鏡で問題にしている酸素の吸収端(2,37nm )
より長波長側において約10%それぞれ上まわっている
ことが示されている。
In Figure 2, between lithium/nickel (solid line) and beryllium/nickel (-dot-dashed line), the former has a reflectance of 20~20% higher than the latter.
30%, the former is about 15-25% more than the latter for lithium/nickel hydride (solid line) and toberyllium/nickel (-dot-dashed line) in Figure 3, and lithium/nickel oxide and beryllium (solid line)/nickel in Figure 4. (-dotted chain line) shows the oxygen absorption edge (2.37 nm), which is the problem in biological microscopy.
It is shown that the difference is about 10% higher on the longer wavelength side.

(発明の効果) 以上説明したように、軟X線の波長領域における光学素
子用多層膜反射鏡の高屈折率物質として、リチウムをペ
ースとした物質を低屈折率物質であるニッケルと組合せ
ることによシ、従来のベリリウムとニッケルの組合せよ
り反射率において大巾に上まわり、かつその作業過程に
おける毒性等の環境問題も改善され得られる効果は犬で
ある。
(Effects of the Invention) As explained above, a lithium-based material is combined with nickel, a low refractive index material, as a high refractive index material for a multilayer reflector for optical elements in the soft X-ray wavelength region. Furthermore, the reflectance is much higher than the conventional combination of beryllium and nickel, and environmental problems such as toxicity during the working process are also improved, so the effects obtained are positive.

【図面の簡単な説明】 第1図は本発明の多層膜反射鏡の断面図、第2図から第
4図までは本発明の多層膜反射鏡と従来例の反射鏡との
波長に対する反射率の線図で、第2図は高屈折率物質と
してリチウム、第3図は水素化リチウム、第4図は酸化
リチウムを各々用いたもの、第5図は波長3nm前後の
X線に対する各物質の吸収率を示したもの、第6図は従
来例多層脱灰射鏡の断面図である。 1・・・ペース、2・・・低屈折率物質にッケル)、3
・・・高屈折率物質(ぺ171Jウム)、4・・・高屈
折率物質(リチウムをベースとした物質)、4′・・・
リチウム、4″・・・水素化リチウム、4″′・・・酸
化リチウム。 工業技術院長 飯 塚 幸 □L1/旧 第 図 −LiH/Nl −・−Be/N 波長(nm) 第3図 LizO/N −−−Ba/N 波長(nm) 第 図
[Brief Description of the Drawings] Fig. 1 is a cross-sectional view of the multilayer film reflector of the present invention, and Figs. 2 to 4 show the reflectance of the multilayer film reflector of the present invention and the conventional reflector with respect to wavelength. Figure 2 is a diagram using lithium as a high refractive index material, Figure 3 is using lithium hydride, Figure 4 is using lithium oxide, and Figure 5 is a diagram showing the results of using each material for X-rays with a wavelength of around 3 nm. FIG. 6, which shows the absorption rate, is a sectional view of a conventional multilayer deashing mirror. 1...Pace, 2...Low refractive index material), 3
...High refractive index material (P171Jum), 4...High refractive index material (lithium-based material), 4'...
Lithium, 4''...lithium hydride, 4'''...lithium oxide. Director of the Agency of Industrial Science and Technology Yuki Iizuka L1/Old diagram - LiH/Nl ---Be/N wavelength (nm) Figure 3 LizO/N ---Ba/N wavelength (nm) Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)X線に対する屈折率の異なる物質を交互に積層し
、その境界における反射波が互いに強めあうようにそれ
ぞれの層の厚さを調整して高反射率を得るように構成さ
れたX線反射鏡において、高屈折率層(軽原素系)にリ
チウムをベースとした物質を用いたことを特徴とする軟
X線用多層膜反射鏡。
(1) An X-ray device configured to obtain high reflectance by alternately laminating materials with different refractive indexes for X-rays and adjusting the thickness of each layer so that the reflected waves at the boundaries mutually strengthen each other. A multilayer reflective mirror for soft X-rays, characterized in that a lithium-based material is used in the high refractive index layer (light element type).
(2)前記高屈折率層に用いられた物質がリチウムその
ものであることを特徴とする特許請求の範囲第(1)項
記載の軟X線用多層膜反射鏡。
(2) The multilayer reflective mirror for soft X-rays according to claim (1), wherein the material used for the high refractive index layer is lithium itself.
(3)前記高屈折率層に用いられた物質が水素化リチウ
ムであることを特徴とする特許請求の範囲第(1)項記
載の軟X線用多層膜反射鏡。
(3) The multilayer reflective mirror for soft X-rays according to claim (1), wherein the material used for the high refractive index layer is lithium hydride.
(4)前記高屈折率層に用いられた物質が酸化リチウム
であることを特徴とする特許請求の範囲第(1)項記載
の軟X線用多層膜反射鏡。
(4) The multilayer reflective mirror for soft X-rays according to claim (1), wherein the material used for the high refractive index layer is lithium oxide.
JP19215888A 1988-08-02 1988-08-02 Multilayered film reflecting mirror for soft x ray Granted JPH0242399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19215888A JPH0242399A (en) 1988-08-02 1988-08-02 Multilayered film reflecting mirror for soft x ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19215888A JPH0242399A (en) 1988-08-02 1988-08-02 Multilayered film reflecting mirror for soft x ray

Publications (2)

Publication Number Publication Date
JPH0242399A true JPH0242399A (en) 1990-02-13
JPH0587800B2 JPH0587800B2 (en) 1993-12-17

Family

ID=16286661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19215888A Granted JPH0242399A (en) 1988-08-02 1988-08-02 Multilayered film reflecting mirror for soft x ray

Country Status (1)

Country Link
JP (1) JPH0242399A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434400A (en) * 1990-05-31 1992-02-05 Japan Aviation Electron Ind Ltd Soft x-rays multilayer film reflecting mirror
JPH08199342A (en) * 1995-01-19 1996-08-06 Rikagaku Kenkyusho Multilayered film structure for soft x-ray optical device
NL1018139C2 (en) * 2001-05-23 2002-11-26 Stichting Fund Ond Material Multi-layer mirror for radiation in the XUV wavelength region and method for the manufacture thereof.
DE10134267A1 (en) * 2001-07-18 2003-02-06 Geesthacht Gkss Forschung X-ray reflection device
KR100545427B1 (en) * 1997-09-01 2006-07-25 신-에쓰 한도타이 가부시키가이샤 A shipping container

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273099A (en) * 1987-04-30 1988-11-10 Nec Corp Spectroscopic element
JPS6481911A (en) * 1987-09-24 1989-03-28 Nec Corp Spectral element
JPS6481909A (en) * 1987-09-24 1989-03-28 Nec Corp Spectral element
JPS6481907A (en) * 1987-09-24 1989-03-28 Nec Corp Spectral element
JPS6481908A (en) * 1987-09-24 1989-03-28 Nec Corp Spectral element
JPS6481910A (en) * 1987-09-24 1989-03-28 Nec Corp Spectral element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273099A (en) * 1987-04-30 1988-11-10 Nec Corp Spectroscopic element
JPS6481911A (en) * 1987-09-24 1989-03-28 Nec Corp Spectral element
JPS6481909A (en) * 1987-09-24 1989-03-28 Nec Corp Spectral element
JPS6481907A (en) * 1987-09-24 1989-03-28 Nec Corp Spectral element
JPS6481908A (en) * 1987-09-24 1989-03-28 Nec Corp Spectral element
JPS6481910A (en) * 1987-09-24 1989-03-28 Nec Corp Spectral element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434400A (en) * 1990-05-31 1992-02-05 Japan Aviation Electron Ind Ltd Soft x-rays multilayer film reflecting mirror
JPH08199342A (en) * 1995-01-19 1996-08-06 Rikagaku Kenkyusho Multilayered film structure for soft x-ray optical device
EP1091360A2 (en) * 1995-01-19 2001-04-11 Rikagaku Kenkyusho Multilayer film structure for soft X-ray optical elements
EP1091360A3 (en) * 1995-01-19 2003-05-07 Rikagaku Kenkyusho Multilayer film structure for soft X-ray optical elements
KR100545427B1 (en) * 1997-09-01 2006-07-25 신-에쓰 한도타이 가부시키가이샤 A shipping container
NL1018139C2 (en) * 2001-05-23 2002-11-26 Stichting Fund Ond Material Multi-layer mirror for radiation in the XUV wavelength region and method for the manufacture thereof.
WO2002095771A1 (en) * 2001-05-23 2002-11-28 Stichting Voor Fundamenteel Onderzoek Der Materie Multi-layer mirror for radiation in the xuv wavelenght range and method for manufacture thereof
DE10134267A1 (en) * 2001-07-18 2003-02-06 Geesthacht Gkss Forschung X-ray reflection device
DE10134267B4 (en) * 2001-07-18 2007-03-01 Gkss-Forschungszentrum Geesthacht Gmbh Device for the reflection of X-rays

Also Published As

Publication number Publication date
JPH0587800B2 (en) 1993-12-17

Similar Documents

Publication Publication Date Title
US4818045A (en) Holographic optical element having periphery with gradually decreasing diffraction efficiency and method of construction
EP0518111B1 (en) Projection image display system
Lee X-ray diffraction in multilayers
US5351151A (en) Optical filter using microlens arrays
US5119232A (en) Infrared-transmissive optical window
JPS57181503A (en) Heat ray reflecting film
CN109901257A (en) A kind of visible light Meta Materials polarization converter
JPH0242399A (en) Multilayered film reflecting mirror for soft x ray
JPH0593811A (en) Light absorptive film
JP2000321558A (en) Low reflection touch panel
JPH0545498A (en) Multilayer film reflector
US5619382A (en) Reflection type imaging optical system
JPS645930A (en) Solar control glass having high transmissivity
JPS6137601B2 (en)
JP2634661B2 (en) X-ray multilayer mirror
JPS6028601A (en) Prism type beam splitter
JPH01296200A (en) Soft x-ray multilayered film reflecting mirror
JPS59107304A (en) Semi-transmitting mirror
JPH01502056A (en) Device that integrates phase coupling mirrors
JPS6239801A (en) Semi-transparent mirror
JPH03206999A (en) Multi-layered-film reflecting mirror for soft x-ray
JPH0375600A (en) Multi layered film reflecting mirror
JPH08122497A (en) Multilayer film reflector
JPS6236604A (en) Antireflection film
JP2022141467A (en) Optical apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term