JPH0375600A - Multi layered film reflecting mirror - Google Patents
Multi layered film reflecting mirrorInfo
- Publication number
- JPH0375600A JPH0375600A JP1211491A JP21149189A JPH0375600A JP H0375600 A JPH0375600 A JP H0375600A JP 1211491 A JP1211491 A JP 1211491A JP 21149189 A JP21149189 A JP 21149189A JP H0375600 A JPH0375600 A JP H0375600A
- Authority
- JP
- Japan
- Prior art keywords
- reflectance
- layer
- thickness
- oxide
- angstrom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 7
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims abstract description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 5
- 229910001935 vanadium oxide Inorganic materials 0.000 claims abstract description 5
- 239000011241 protective layer Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 15
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 9
- 239000000377 silicon dioxide Substances 0.000 abstract description 9
- 238000007254 oxidation reaction Methods 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 4
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 239000010703 silicon Substances 0.000 abstract description 4
- 230000002265 prevention Effects 0.000 abstract description 2
- 230000000593 degrading effect Effects 0.000 abstract 2
- 238000010438 heat treatment Methods 0.000 abstract 1
- 229910000480 nickel oxide Inorganic materials 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 14
- 239000010410 layer Substances 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 4
- 230000003064 anti-oxidating effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000001015 X-ray lithography Methods 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/702—Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70233—Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
[a業上の利用分野]
本発明はX線リソグラフィー X線望遠鏡、X線顕微鏡
、X線レーザ、各種X線分析装置等において、XM領領
域の反射光学系に用いられる多層膜反射鏡に関するもの
である。[Detailed Description of the Invention] [Field of Application in Industry A] The present invention is applicable to X-ray lithography, X-ray telescopes, X-ray microscopes, X-ray lasers, various X-ray analyzers, etc., and is used for reflective optical systems in the XM region. This invention relates to a multilayer film reflecting mirror.
[従来の技術]
X線領域での物質の屈折率は、
n翔1−δ−lβ(δ、β:正の実数)と表わされ、δ
、βともに1比べて非常に小さい、即ち、屈折率がほぼ
1に近いので、X線はほとんど屈折せず、可視光領域の
ような光の屈折を利用したレンズは使用できない。[Prior Art] The refractive index of a substance in the X-ray region is expressed as n-δ-lβ (δ, β: positive real numbers), and δ
, β are both very small compared to 1, that is, the refractive index is close to 1, so X-rays are hardly refracted, and lenses that utilize refraction of light such as those in the visible light region cannot be used.
そこで、反射を利用しに光学系が用いられるが、やはり
屈折率が1に近いためC反射率は非常に小さく、大部分
のX線は透過するかまたは吸収されてしまう、この問題
を解決するために、使用するX線の波長域で屈折率の差
のなるべく大きい複数の物質を何層も積層することによ
り、それらの界面である反射面を多数設け、それぞれの
界面からの反射波の位相が一致するように光学的干渉理
論に基づいて各層の厚さを調整した多層膜反射鏡が開発
された。このような多層膜反射鏡の代表的なものに、W
(タングステン)/C(炭素)多FIII!JやMo
(モリブデン)/SI (シリコン)多FJIIiな
どが知られており、スパッタリング、真空蒸着、CV
D (Chemical Vapor Deposit
ion 気相反応法)等の薄膜形成技術によって形成
されている。Therefore, an optical system is used to take advantage of reflection, but since the refractive index is close to 1, the C reflectance is very small, and most of the X-rays are transmitted or absorbed.We solve this problem. In order to achieve this, by stacking multiple layers of materials that have as large a difference in refractive index as possible in the wavelength range of the X-rays used, we create a large number of reflective surfaces that are interfaces between them, and the phase of the reflected wave from each interface can be adjusted. A multilayer reflector was developed in which the thickness of each layer was adjusted based on optical interference theory so that the A typical example of such a multilayer mirror is W.
(Tungsten)/C (Carbon) Multi FIII! J and Mo
(molybdenum)/SI (silicon) multi-FJIIi, etc. are known, and include sputtering, vacuum evaporation, CV
D (Chemical Vapor Deposit
ion gas phase reaction method).
ところで、上記のような多層膜反射鏡においては、その
構成物質のうち少なくとも一つは金属が用いられること
が多く、時間の経過とともに金属が酸化して多層構造が
破壊されるという問題がある。この金属の酸化反応は、
X線の吸収に伴う5層膜の温度上昇によって急激に加速
されるため、多層膜反射鏡は光学素子としての寿命が短
いという欠点を有している。By the way, in the above multilayer film reflecting mirror, at least one of its constituent materials is often metal, and there is a problem in that the metal oxidizes over time and the multilayer structure is destroyed. The oxidation reaction of this metal is
Since the temperature rise of the five-layer film due to absorption of X-rays rapidly accelerates the temperature rise, the multilayer film reflecting mirror has the disadvantage of having a short lifespan as an optical element.
この問題を解決するためには、多層膜の表面に酸化を防
止する保護層を形成することが提案されており、従来保
護層の材料としては炭素が用いられていた。具体的には
、表面に極く薄い炭素層を形成したり(例えば^、M、
Hawryluk etal、5PIE、Vol、68
8.P、81 (1986)参照)、炭素が多層膜の構
成物質の一つである場合には炭素が最上層となるように
する(例えば、E、Zieglar、etal、5PI
E、Vol、68B。In order to solve this problem, it has been proposed to form a protective layer on the surface of the multilayer film to prevent oxidation, and conventionally carbon has been used as the material for the protective layer. Specifically, forming an extremely thin carbon layer on the surface (for example, ^, M,
Hawryluk etal, 5PIE, Vol, 68
8. P. P., 81 (1986)), and if carbon is one of the constituents of the multilayer, carbon should be the top layer (e.g., E., Zieglar, etal, 5PI).
E, Vol, 68B.
PI!+3 (1g+18)参照)等の方法がとられて
いた。PI! +3 (see 1g+18)).
[発明が解決しようとする課題]
しかしながら、上記の如き従来の技術においては、以下
のような2つの問題点があった。[Problems to be Solved by the Invention] However, the above-mentioned conventional technology has the following two problems.
(1)一般に物質のX線吸収係数は、吸収端近傍を除い
て波長が長いほど大きくなる。そのため使用する波長C
よっては保護層によるX線の吸収が大きくなり、反射率
を低下させずに、酸化を防止するのに十分な厚さの保護
層を形成することが困難になる。(1) In general, the X-ray absorption coefficient of a substance increases as the wavelength becomes longer, except near the absorption edge. Therefore, the wavelength C used
Therefore, absorption of X-rays by the protective layer increases, making it difficult to form a protective layer with a sufficient thickness to prevent oxidation without reducing reflectance.
(2)炭素膜自体の耐熱性があまり高くなく、SOO℃
程度に加熱されると、酸素の存在する雰囲気中では炭素
膜が酸化して炭酸ガスになって消失してしまう、また、
CVD等の方法によって形成された炭素膜は水素を含ん
でおり、多層膜反射鏡の温度が上昇すると水素の離脱に
よってボイド(穴)が形成され、酸化防止効果は期待で
きなくなる。(2) The heat resistance of the carbon film itself is not very high, and SOO℃
When heated to a certain degree, the carbon film oxidizes to carbon dioxide gas and disappears in an atmosphere containing oxygen.
Carbon films formed by methods such as CVD contain hydrogen, and when the temperature of the multilayer mirror increases, voids (holes) are formed due to the elimination of hydrogen, and the antioxidation effect cannot be expected.
この発明は、かかる点に鑑みてなされたものであり、反
射率を低下させることなく多F!膜の酸化をほぼ完全に
防止することを可能(し、耐熱性・耐久性に優れた多層
膜反射鏡を提供することを目的とするものである。This invention was made in view of this point, and allows for multi-F! without reducing the reflectance! The purpose is to provide a multilayer film reflector that can almost completely prevent oxidation of the film (and has excellent heat resistance and durability).
[i!題を解決するための手段]
本発明では、使用するX線波長領域における屈折率の異
なる物質を交互に積層してなる多層膜反射鏡において、
表面に酸化ケイ素または酸化スズまたは酸化バナジウム
からなる保護層を設けたことによって、上記の課題を遠
戚している。[i! Means for Solving the Problem] In the present invention, in a multilayer film reflecting mirror formed by alternately laminating materials having different refractive indexes in the X-ray wavelength region used,
By providing a protective layer made of silicon oxide, tin oxide, or vanadium oxide on the surface, the above-mentioned problem can be solved in a distant manner.
[作 用] 本発明において保護層を構成する酸化ケイ素。[Work] Silicon oxide constituting the protective layer in the present invention.
酸化スズ、酸化バナジウムは、非常に安定した酸化物で
あり、XIsの照射によって多層膜反射鏡の温度が上昇
しても高い酸化防止性が維持される。Tin oxide and vanadium oxide are very stable oxides, and their high antioxidation properties are maintained even if the temperature of the multilayer mirror increases due to irradiation with XIs.
かかる保護層の厚さは、酸化防止性の点からはある程度
厚い方が好ましいが、厚くなりすぎると保護層における
X線の吸収が大きくなって多層膜反射鏡の反射率が低下
することになる。このため、保護層の厚さは酸化防止性
と反射率の両方を考慮して、10〜3000人、より好
ましくは100〜500人の範囲とすることが望ましい
[実施例]
第2図に二酸化ケイ素と炭素のXllの質量吸収系数を
示す6図から、X線の波長が長いほど吸収係数は大きく
なるが、吸収端のところで不連続になり、酸素のに吸収
端(波長23人)から炭素のに吸収端(波長44人)の
間の波長域では、二酸化ケイ素の吸収係数の方が小さく
なっていることがわかる。この波長域(23〜44入)
はタンパク賞と水のX線吸収係数の差が大きい領域であ
り、透過率の差によるコントラストにより像を得る生体
観察用X線顕微鏡C用いられる重要な領域(一般に酸素
の吸収端近傍の25λ付近の波長が好ましく使用される
)である、なお、上記波長領域より短波長側では二酸化
ケイ素のほうが若干吸収係数が大きくなっているが、波
長が短くなると吸収係数が十分小さくなるので、短波長
領域(例えば10Å以下)での吸収係数の僅かな差は実
質的e r′aff題とならない。It is preferable that the protective layer be thick to some extent from the viewpoint of anti-oxidation properties, but if it becomes too thick, the absorption of X-rays in the protective layer will increase and the reflectance of the multilayer mirror will decrease. . Therefore, it is desirable that the thickness of the protective layer be in the range of 10 to 3,000 layers, more preferably 100 to 500 layers, taking into consideration both antioxidant properties and reflectance. From Figure 6, which shows the Xll mass absorption coefficients of silicon and carbon, the longer the wavelength of the However, it can be seen that in the wavelength range between the absorption edge (wavelength 44), the absorption coefficient of silicon dioxide is smaller. This wavelength range (23-44 inputs)
This is the region where there is a large difference in the X-ray absorption coefficients of protein and water, and is an important region used in biological observation X-ray microscopes that obtain images by contrast due to the difference in transmittance (generally around 25λ near the oxygen absorption edge). The absorption coefficient of silicon dioxide is slightly larger on the shorter wavelength side than the above wavelength range, but as the wavelength becomes shorter, the absorption coefficient becomes sufficiently small. Slight differences in absorption coefficients (for example, less than 10 Å) do not pose a substantial problem.
次C第1図は、本実施例で作製した多層膜反射鏡の構造
を示す断面図である0本実施例では、鏡面研摩されたシ
リコン基板3上に、マグネトロンスパッタリング法定よ
り、10人の厚さのニッケルと20人の厚さの五酸化バ
ナジウムを交互に積層して200対の多層膜2を形成し
た後、多層膜表面に酸化防止保護層として二酸化ケイ素
層1を形成して多層膜反射鏡を作製した。また、比較の
ために同様にして形成した多層膜上に保護層として炭素
層を形成した多層膜反射鏡を作製した。この際、保護層
の厚さはO(保護層なし)〜3000Åの間で変動させ
た。Figure 1 is a cross-sectional view showing the structure of the multilayer reflector manufactured in this example. After forming 200 pairs of multilayer film 2 by alternately laminating nickel of 300 nm thick and vanadium pentoxide of 20 mm thickness, a silicon dioxide layer 1 is formed as an oxidation-preventing protective layer on the surface of the multilayer film to improve the reflection of the multilayer film. I made a mirror. In addition, for comparison, a multilayer film reflecting mirror was prepared in which a carbon layer was formed as a protective layer on a multilayer film formed in the same manner. At this time, the thickness of the protective layer was varied between O (no protective layer) and 3000 Å.
第3図は、上記のようにして作製した多層膜反射鏡につ
いて、波長25人のX線を用いて反射率(!次回折ピー
ク強度の入射X線強度に対する比率)を測定した結果を
示すグラフである0図に明らかなようじ、二酸化ケイ素
を用いた場合は保護層の厚さを100人にしても反射率
の低下はほとんどないが、炭素を用いた場合には、反射
率の低下が大きい、保護層の厚さが厚くなる程二酸化ケ
イ素を用いた場合と炭素を用いた場合の反射率の差は拡
大している。FIG. 3 is a graph showing the results of measuring the reflectance (ratio of !order diffraction peak intensity to incident X-ray intensity) using X-rays of 25 wavelengths for the multilayer reflector manufactured as described above. It is clear from Figure 0 that when silicon dioxide is used, there is almost no decrease in reflectance even if the thickness of the protective layer is increased to 100 mm, but when carbon is used, the decrease in reflectance is large. As the thickness of the protective layer increases, the difference in reflectance between silicon dioxide and carbon increases.
そして、反射率の測定後、多層膜反射鏡をそれぞれ大気
中で500℃の温度で1時間熱処理し、再度反射率を測
定した。その結果、保護層のないもの及び炭素を保護層
に用いたものはすべてX線を全く反射せず、多Fl膜の
構造が破壊されていた。After measuring the reflectance, each multilayer reflector was heat-treated in the atmosphere at a temperature of 500° C. for 1 hour, and the reflectance was measured again. As a result, both those without a protective layer and those using carbon as a protective layer did not reflect any X-rays, and the structure of the multi-Fl film was destroyed.
一方、二酸化ケイ素を保護層に用いたものでは、保護層
の厚さ10人のものでX線を反射しなくなり、30人の
ものは反射率が約1/2に低下したが、100Å以上の
ものは反射率の変化が全く認められなかった。これらの
結果は、本実施例の多層膜反射鏡は保護層の厚さを適切
に設定することにより、従来対応できなかったような過
酷な条件での使用が可能であることを示している。On the other hand, for those using silicon dioxide as a protective layer, X-rays no longer reflected when the protective layer was thicker than 10 people, and when the thickness of the protective layer was 30 people, the reflectance decreased to about 1/2. No change in reflectance was observed. These results show that the multilayer film reflector of this example can be used under harsh conditions that could not be handled conventionally by appropriately setting the thickness of the protective layer.
なお、上記の実施例においては保護層を酸化ケイ素で構
成した場合について説明したが、保護層を酸化スズ又は
酸化バナジウムで構成しても同様な酸化防止効果が得ら
れるものである。In the above embodiments, the protective layer is made of silicon oxide, but the same oxidation prevention effect can be obtained even if the protective layer is made of tin oxide or vanadium oxide.
[発明の効果]
以上の′ように、本発明においては、多層膜表面に特定
の安定した酸化物からなる保護層を設けているので、酸
化によって多層膜の構造が破壊されてしまうことをほぼ
完全に防ぐことができ、多層膜反射鏡の耐熱性・耐久性
を向上させることができる。[Effects of the Invention] As described above, in the present invention, since a protective layer made of a specific stable oxide is provided on the surface of the multilayer film, destruction of the structure of the multilayer film due to oxidation is almost prevented. It can be completely prevented and the heat resistance and durability of the multilayer reflective mirror can be improved.
即ち、本発明によれば、酸素の存在する雰囲気中で高強
度のX線か照射されても反射率が低下することがなくな
り、従来は使用できなかった苛酷な条件下での多層膜反
射鏡の使用が可能になる。That is, according to the present invention, the reflectance does not decrease even when irradiated with high-intensity X-rays in an oxygen-containing atmosphere, and the multilayer film reflector can be used under harsh conditions that could not be used conventionally. becomes possible to use.
かかる多層膜反射鏡のうち、酸化ケイ素で保護層を構成
したものは生体観察用X線顕微鏡等に特に好ましく用い
られ、長期の使用に際しても高い反射率を維持すること
ができる。Among such multilayer film reflectors, those having a protective layer made of silicon oxide are particularly preferably used in X-ray microscopes for biological observation, and can maintain high reflectance even during long-term use.
第1図は本発明実施例にかかる多層膜反射鏡の構成を示
す断面図、
第2図は二酸化ケイ素と炭素のX線の吸収係数を示すグ
ラフ、
第3図は保iimの厚さと多層膜反射鏡の反射率の関係
を示すグラフである。
[主要部分の符号の説明]
1:二酸化ケイ素層(保護層)
2:多71111
3:シリコン基板Fig. 1 is a cross-sectional view showing the structure of a multilayer reflector according to an embodiment of the present invention, Fig. 2 is a graph showing the X-ray absorption coefficients of silicon dioxide and carbon, and Fig. 3 is a graph showing the thickness of IIM and the multilayer film. It is a graph which shows the relationship of the reflectance of a reflecting mirror. [Explanation of symbols of main parts] 1: Silicon dioxide layer (protective layer) 2: Poly71111 3: Silicon substrate
Claims (1)
互に積層してなる多層膜反射鏡において、 表面に酸化ケイ素または酸化スズまたは酸化バナジウム
からなる保護層を設けたことを特徴とする多層膜反射鏡
。[Scope of Claims] A multilayer reflector formed by alternately laminating materials having different refractive indexes in the wavelength range of X-rays used, provided with a protective layer made of silicon oxide, tin oxide, or vanadium oxide on the surface. A multilayer reflector featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1211491A JP2814595B2 (en) | 1989-08-18 | 1989-08-18 | Multilayer reflector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1211491A JP2814595B2 (en) | 1989-08-18 | 1989-08-18 | Multilayer reflector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0375600A true JPH0375600A (en) | 1991-03-29 |
JP2814595B2 JP2814595B2 (en) | 1998-10-22 |
Family
ID=16606832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1211491A Expired - Lifetime JP2814595B2 (en) | 1989-08-18 | 1989-08-18 | Multilayer reflector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2814595B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10134267A1 (en) * | 2001-07-18 | 2003-02-06 | Geesthacht Gkss Forschung | X-ray reflection device |
JP2012518270A (en) * | 2009-02-13 | 2012-08-09 | エーエスエムエル ネザーランズ ビー.ブイ. | Multilayer mirror and lithographic apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5782954A (en) * | 1980-11-11 | 1982-05-24 | Nec Corp | X-ray window |
JPS63161403A (en) * | 1986-12-25 | 1988-07-05 | Canon Inc | Multilayered film reflection mirror for x ray and vacuum ultraviolet ray |
JPS63192158A (en) * | 1987-02-04 | 1988-08-09 | Alps Electric Co Ltd | Kana/kanji converting method |
-
1989
- 1989-08-18 JP JP1211491A patent/JP2814595B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5782954A (en) * | 1980-11-11 | 1982-05-24 | Nec Corp | X-ray window |
JPS63161403A (en) * | 1986-12-25 | 1988-07-05 | Canon Inc | Multilayered film reflection mirror for x ray and vacuum ultraviolet ray |
JPS63192158A (en) * | 1987-02-04 | 1988-08-09 | Alps Electric Co Ltd | Kana/kanji converting method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10134267A1 (en) * | 2001-07-18 | 2003-02-06 | Geesthacht Gkss Forschung | X-ray reflection device |
DE10134267B4 (en) * | 2001-07-18 | 2007-03-01 | Gkss-Forschungszentrum Geesthacht Gmbh | Device for the reflection of X-rays |
JP2012518270A (en) * | 2009-02-13 | 2012-08-09 | エーエスエムエル ネザーランズ ビー.ブイ. | Multilayer mirror and lithographic apparatus |
US9082521B2 (en) | 2009-02-13 | 2015-07-14 | Asml Netherlands B.V. | EUV multilayer mirror with interlayer and lithographic apparatus using the mirror |
Also Published As
Publication number | Publication date |
---|---|
JP2814595B2 (en) | 1998-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5715103A (en) | Neutral density (ND) filter | |
Hass | Reflectance and preparation of front-surface mirrors for use at various angles of incidence from the ultraviolet to the far infrared | |
JPS62191801A (en) | Anti reflection film for plastic optical parts | |
JPH11231128A (en) | Light-absorbing coating part having high absorptivity | |
JPH0593811A (en) | Light absorptive film | |
JP2023181285A (en) | Polarizer, optical apparatus, and method for manufacturing polarizer | |
JP2691651B2 (en) | Reflector | |
JPH0375600A (en) | Multi layered film reflecting mirror | |
JP4461652B2 (en) | Multilayer film reflector and method for producing multilayer film mirror | |
JPS59202408A (en) | Thin film array | |
JP3315494B2 (en) | Reflective film | |
JP2004184703A (en) | Reflection mirror | |
EP0078604A2 (en) | Single layer absorptive anti-reflection coating for a laser-addressed liquid crystal light valve | |
JPS62143002A (en) | Dielectric multi-layer film nonreflective coating | |
JP2020019979A (en) | Method for forming thin film, and porous thin film | |
JP2993261B2 (en) | X-ray multilayer reflector | |
JPH03107104A (en) | Heat ray absorptive reflecting mirror | |
JP2928784B2 (en) | Multilayer reflector | |
JPH0240600A (en) | Multilayer film reflecting mirror | |
JP3560638B2 (en) | Reflective film | |
JPH07225316A (en) | Polarization beam splitter | |
JPH10232312A (en) | Optical branching filter | |
JPH0219800A (en) | Manufacture of multi-layer film reflecting mirror and multi-layer film reflecting mirror | |
JP2005345509A (en) | Surface coated mirror and its manufacturing method | |
JPH0720301A (en) | Anti-reflection film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070814 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100814 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100814 Year of fee payment: 12 |