JPH0242124A - Two-cycle engine with scavenging pump - Google Patents

Two-cycle engine with scavenging pump

Info

Publication number
JPH0242124A
JPH0242124A JP19114988A JP19114988A JPH0242124A JP H0242124 A JPH0242124 A JP H0242124A JP 19114988 A JP19114988 A JP 19114988A JP 19114988 A JP19114988 A JP 19114988A JP H0242124 A JPH0242124 A JP H0242124A
Authority
JP
Japan
Prior art keywords
scavenging
port
pump
air
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19114988A
Other languages
Japanese (ja)
Inventor
Koji Morikawa
弘二 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP19114988A priority Critical patent/JPH0242124A/en
Publication of JPH0242124A publication Critical patent/JPH0242124A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To optimize scavenging at each load by providing the third scavenging port opened/closed according to load in the device in which two scavenging ports are formed to the right and left to the exhaust port of a cylinder, and each port is communicatedly connected to the discharge side of the scavenging pump. CONSTITUTION:The exhaust port 11 opened/closed at a given timing with a piston 3 is formed to the cylinder 2 of a two-cycle engine, and also first and second scavenging ports 16 and 16' similarly opened/closed with the piston 3 are formed to right and left positions slided nearly 90 deg. from the port 11. And a third scavenging port 30 is formed at the position having the same height as these ports 16 and 16' and at the opposite side to the port 11. And the discharge side of a scavenging pump 31 driven with an engine is connected to each port 16, 16', and 30 via scavenging tubes 34, 34', and 35. The space between the suction side of the pump 31 and the third scavenging tube 35 is connected with a bypass passage 37 having a control valve 36 which is controlled according to an accelerator opening.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、掃気ポンプを備えて強制給気する掃気ポンプ
付2サイクルエンジンに関し、詳しくは、各運転条件で
の掃気方法の変更に関する。
The present invention relates to a two-stroke engine equipped with a scavenging pump for forced air supply, and more particularly to changing the scavenging method under various operating conditions.

【従来の技術】[Conventional technology]

一般に2サイクルエンジンは、クランク軸の1回転で1
サイクルを終了するので、シリンダへの自吸作用ができ
ない。このなめ、例えばビス!−ン上昇時におけるクラ
ンク室に発生する負圧でクランクケース内に新気を導入
し、ピストン下降時のケース圧でその新気を掃気ポート
よりシリンダに導入し、同時に燃焼ガスを押出して排気
する方法が用いられている。また、負荷制御として掃気
系にスロットル弁を設け、この弁開度で掃気量を調整し
ている。 ところで、かかる方式によると低負荷時に掃気量が少な
いことで掃気が不充分になり、失火を生じて安定した運
転が不可能になる。また、運転条件に応じたトルク特性
を平滑に得がたくなる。クランクケース圧による掃気能
力には限界があるので、高負荷でのトルクも充分増大し
難い等の問題がある。 従って、掃気能力を増大して常に良好に掃気し、かつ掃
気の吹き抜けを低減することが望まれ、この点で掃気ポ
ンプにより掃気圧を上昇し、インジェクタにより燃料を
筒内に直接噴射して掃気吹き抜けを防ぐことが提案され
ている。 そこで従来、上記掃気ポンプ、インジェクタを備えた2
サイクルエンジンに関しては、例えば特開昭57−20
3821号公報の先行技術がある。 ここで、掃気ボンダをクランク軸と等速回転し、この掃
気ボンアにより掃気ポートを介してシリンダに新気を導
入する。また、燃焼室に噴射ノズルを収付けて、直接燃
料噴射することが示されている。
In general, a two-stroke engine has one revolution per crankshaft revolution.
Since the cycle ends, self-priming action on the cylinder is not possible. This lick, for example, bis! - Fresh air is introduced into the crankcase by the negative pressure generated in the crank chamber when the piston rises, and the new air is introduced into the cylinder from the scavenging port by the case pressure when the piston falls, and at the same time, the combustion gas is pushed out and exhausted. method is used. Additionally, a throttle valve is provided in the scavenging system for load control, and the amount of scavenging air is adjusted by the valve opening. However, according to such a system, the amount of scavenging air is small when the load is low, resulting in insufficient scavenging air, which causes misfires and makes stable operation impossible. Furthermore, it becomes difficult to obtain smooth torque characteristics that correspond to operating conditions. Since there is a limit to the scavenging ability based on crankcase pressure, there are problems such as difficulty in increasing torque sufficiently under high loads. Therefore, it is desirable to increase the scavenging capacity to always perform good scavenging and to reduce the blow-by of scavenging air.In this respect, the scavenging pressure is increased by the scavenging pump, and the fuel is directly injected into the cylinder by the injector to scavenge the air. It has been proposed to prevent blow-through. Therefore, conventionally, two
Regarding cycle engines, for example, Japanese Patent Application Laid-Open No. 57-20
There is a prior art in Publication No. 3821. Here, the scavenging bonder is rotated at the same speed as the crankshaft, and the scavenging bonder introduces fresh air into the cylinder through the scavenging port. It is also shown that an injection nozzle is installed in the combustion chamber and fuel is directly injected.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで、上記先行技術の、掃気ポンプにより掃気する
構成では、一般的に掃気ポートのポートエリアは、低負
荷時と高負荷時との出力特性から設定されており、必然
的に高負荷時の特性を犠牲にして定められているため、
高負荷時の掃気量には限界があり、高出力が得られない
という問題がある。ここで、高負荷時の掃気量を増大す
るには掃気ポートのポートエリアを増すことが考えられ
るが、ポートエリアが増すと低負荷時の掃気効率。 燃焼の悪化を招く、従って、各運転条件でポートエリア
を変更制御することが望まれる。 本発明は、かかる点に鑑みてなされたものであって、そ
の目的とするところは、エンジン運転状態に応じて掃気
ポート数の変更制御により各負荷での掃気をi適に行う
ことが可能な掃気ポンプ付2サイクルエンジンを提供す
ることにある。
By the way, in the above-mentioned prior art configuration in which air is scavenged by a scavenging pump, the port area of the scavenging port is generally set based on the output characteristics at low load and high load, and the characteristics at high load are inevitably set. Because it is determined at the expense of
There is a limit to the amount of scavenging air at high loads, and there is a problem in that high output cannot be obtained. Here, increasing the port area of the scavenging port may be considered to increase the amount of scavenging air at high loads, but increasing the port area will reduce the scavenging efficiency at low loads. Therefore, it is desirable to change and control the port area under each operating condition. The present invention has been made in view of the above, and an object of the present invention is to make it possible to appropriately perform scavenging at each load by controlling the number of scavenging ports to be changed according to the engine operating condition. An object of the present invention is to provide a two-stroke engine with a scavenging pump.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するなめ、本発明の2サイクルエン・ジ
ンは、2サイクルエンジン本体のシリンダの排気ポート
の左右に第1.第2の掃気ポートを有し、上記第1.第
2の掃気ポートを第1.第2の掃気管を介して掃気ポン
プに連通形成する構成において、上記シリンダの排気ポ
ートと反対側に少なくとも第3・の掃気ポートを開口し
て、上記第3の掃気ポートをリード弁を有する第3の掃
気管を介して上記掃気ポンプに連設し、上記リード弁の
上流側を、負荷に応じて開閉する制御弁を備えな上記掃
気ポンプをバイパスするバイパス通路に連通ずるもので
ある。
In order to achieve the above object, the two-stroke engine of the present invention has first ports on the left and right of the exhaust port of the cylinder of the two-stroke engine main body. a second scavenging port; The second scavenging port is connected to the first scavenging port. In the configuration in which the scavenging air pipe is connected to the scavenging pump via the second scavenging pipe, at least a third scavenging port is opened on the side opposite to the exhaust port of the cylinder, and the third scavenging port is connected to a third scavenging air port having a reed valve. The reed valve is connected to the scavenging pump via a scavenging pipe No. 3, and the upstream side of the reed valve is communicated with a bypass passage that bypasses the scavenging pump and is provided with a control valve that opens and closes depending on the load.

【作   用】[For production]

上記構成に基づき、高負荷時は、制御弁を略全閉して第
3の掃気ポートにも高い掃気圧を生じることで、第1.
第2および第3の掃気ポートにより掃気作用して掃気量
を充分確保する。また低負荷時には、制御弁を略全開し
て掃気ポンプがらの掃気の一部が第3の掃気管からバイ
パス通路を介して掃気ポンプの吸入側に戻すことで、第
1.第2の掃気71テートにより効率よく掃気作用する
ようになる。そして低負荷時における掃気ポンプの駆動
力ら小さくてすむ。
Based on the above configuration, when the load is high, the control valve is substantially fully closed to generate high scavenging pressure at the third scavenging port as well.
The second and third scavenging ports perform a scavenging operation to ensure a sufficient amount of scavenging air. In addition, when the load is low, the control valve is almost fully opened and a part of the scavenging air from the scavenging pump is returned from the third scavenging pipe to the suction side of the scavenging pump via the bypass passage. The second scavenging air 71 provides efficient scavenging action. Furthermore, the driving force of the scavenging pump during low load is small.

【実 施 例】【Example】

以下、本発明の一実施例を図面に基づいて説明する。 第1図において、2サイクルエンジンの全体の構成につ
いて述べると、符号1は2サイクルエンジンの本体であ
り、シリンダ2にピストン3が往復動可能に挿入され、
クランク室4のクランク軸5には、これに対し爛心した
コンロッド6によりピストン3が連結し、クランク軸5
にはビスI・ン3の往復動慣性力を相殺するようにバラ
ンサ7が設けられる。燃焼室8の頂部には点火グラブ9
と筒内直接噴射式のインジェクタ10とが取付けられて
いる。 シリンダ2にはピストン3によって所定のタイミングで
開閉される排気ポート11が開口し、この排気ポート1
1と連通ずる排気管12に触媒装置13排気チャンバ1
4.マフラー15が配設される。また、第2図のように
シリンダ2の排気ポート11の位置から略90度ずれた
左右の位置には、ピストン3によって所定のタイミング
で開閉するシュニーレ型の第1の掃気ポート16.第2
の掃気ポート16′が開口し、第1の掃気ポート16.
第2の掃気ポート16゛に掃気系が設けられる。 上記インジェクタ10は2流体式であって、所定の燃料
を賄えた後に加圧空気で押圧し、燃料と空気とを混合し
た状態で直接噴射するものである。 そこで、インジェクタ10の燃料通路20がフィルタ2
1、燃料ポンプ22を介して燃料タンク23に連通し、
燃料通路20の途中に調圧弁24が設けられ、常に一定
の低い燃圧(上記加圧空気より若干高い圧力)を生じる
。また、インジェクタ10の空気通路25G;は調圧弁
26.アキュムレータ27.コンブ゛レッサ28が連結
し、加圧空気を生しるようになっている。 そして、予め制御ユニット45からの燃料パルスにより
所定の燃料をインジェクタ10に貯え、排気ポート11
の閉じた後に空気パルスで加圧空気を燃料に付与して噴
射する。 次いで、第1図と第2図において掃気系について述べる
と、シリンダ2において第1の掃気ポート16.第2の
掃気ポート16°と同じ高さ位置で排気ポート11と反
対側に、第3の掃気ポート30が開口する。また掃気ポ
ンプ31が、吸入側をエアクリーナ33に連通してエン
ジン本体1と各別に設置され、掃気ポンプ31の吐出側
直後に第1.第2および第3の掃気管34,34°、3
5が分岐して、第1.第2および第3の掃気ポート16
,16°、30に連通する。 掃気ポンプ31の吸入側と第3の掃気管35との間には
、制御弁36を有するバイパス通路37が連通し、第3
の掃気管35には、制御弁36の開度の増大による第3
の掃気管35の掃気圧低下時にシリンダ2からの逆流を
防止するリード弁38が設けである。 掃気ポンプ31は、伝動手段39によりクランク軸5に
連結し、エンジン動力により常にポンプ駆動する。アク
セルペダル40は、リンク機構等の機械的な開度変更手
段44を介してアクセル開度に対し制御弁36の開度を
反比例的に開閉するように連結する。また、各運転条件
を定めるエンジン回転数N、アクセル開度φおよび冷却
水温度TVTを検出するエンジン回転数センサ41.ア
クセル開度センサ42および水温センサ43を有し、各
センサ信号が制御ユニット45に入力して処理され、制
御ユニット45からインジェクタ10に燃料パルス信号
、空気パルス信号を、点火プラグ9に点火信号を出力す
るようになっている。 ここで制御ユニット45は、エンジン回転数N。 アクセル開度φおよび冷却水温度Twを入力し、運転状
態に応じた燃料噴射量Tiを算出する燃料噴射量設定手
段46を有し、この燃料噴射量Tiは、パルス発生手段
47に入力し、まず燃料噴射量Tiに対応する燃料パル
スを駆動回路48を介してインジェクタ10に出力して
燃料を貯え、次に所定の空気パルスを出力して加圧空気
を燃料に付与して噴射を行う。 次いで、このように構成された2サイクルエンジンの作
用について述べる。 先ず、アクセル開度の小さい低負荷時には、制御弁36
が略全開され、バイパス通路37を連通ずる。 そこで、掃気ポンプ31から第3の掃気管35に吐出す
る新気はポンプ吸入側に戻るだけになり、こうして第3
の掃気管35の掃気圧が小さくなり、ポンプ負荷を増大
することがない。 一方、掃気ポンプ31は、他の第1.第2の掃気管34
.34’に所定の掃気圧を生じ、第1図のようにピスト
ン3が下死点付近に位置して排気ポート11と共に第1
.第2.第3の掃気ポート16,16°、30を開くと
、掃気圧により加圧された空気が第1゜第2の掃気ポー
ト16,16°からシリンダ3内部に流入する。この場
合、第3図fa)のように第1.第2の掃気ポート16
.16’から流入する空気は、掃気量自体少ないが強い
縦スワールを生じることになり、この掃気流でシリンダ
2上部迄充分反転掃気して排気ポート11から残留燃焼
ガスを押出す。 なお、このとき第3の掃気ポート30の掃気圧か低いこ
とで、第3の掃気ポート30の開口時にはガスが第3の
掃気ポート30側に逆流するか、リード弁38により阻
止される。 そして、上述のように効率よく掃気作用して排気ポート
11および第1.第2.第3の掃気ポート16、1f3
’、30が閉じた後も、縮スワールの掃気流がシリンダ
2内に充分残る。そこで、インジェクタ10により噴射
された燃料はこの掃気流に乗り、点火プラグ9の付近が
濃い混合気になって、点火プラグ9の着火により良好に
成層燃焼するのである。 また高負荷時には、制御弁36が略全閉してバイパス通
路37を遮断する。そこで、掃気ポンプ31から第1.
第2.第3の掃気g34.34’、35に高い掃気圧を
生じるようになり、上述の掃気時には第1゜第2.第3
の掃気ポート16.16’、30から第3図(b)のよ
うに加圧空気が流入する。この場合に、第1゜第2の掃
気ポート16.16’からの流れが全体の方向性に対し
支配的になって、上述と同様に縦スワールを生じて効率
よく掃気作用する。しかも、低負荷時に対し、リード弁
38の開度が大きくなり掃気ポート面積が増大するので
掃気量は多くなり、高出力が得られる。 なお、第4図に示すようにシリンダ2に更に補助ポート
48.48’を、第3の掃気ポート30側に設け、第3
の掃気管35から分岐する掃気管49,49°で連通す
るように構成してもよい、この場合は、高負荷時に掃気
ポート数が増えるので掃気効率の向上を図ることができ
る。 本実施例では制御弁36を機械的な手段でアクセル開度
に応じて開閉したが、これに代って制御ユニットでアク
セル開度センサ42の信号に応じて可変制御できるのは
勿論である。
Hereinafter, one embodiment of the present invention will be described based on the drawings. In FIG. 1, the overall structure of a two-stroke engine is described. Reference numeral 1 is the main body of the two-stroke engine, and a piston 3 is inserted into a cylinder 2 so as to be able to reciprocate.
A piston 3 is connected to the crankshaft 5 of the crank chamber 4 by a connecting rod 6 which is engraved.
A balancer 7 is provided to offset the reciprocating inertia of the screw I/N 3. An ignition glove 9 is located at the top of the combustion chamber 8.
and an in-cylinder direct injection type injector 10 are attached. An exhaust port 11 is opened in the cylinder 2 and is opened and closed at a predetermined timing by a piston 3.
A catalyst device 13 is connected to an exhaust pipe 12 communicating with the exhaust chamber 1.
4. A muffler 15 is provided. Further, as shown in FIG. 2, on the left and right positions approximately 90 degrees apart from the position of the exhaust port 11 of the cylinder 2, there are Schneeler-type first scavenging ports 16, which are opened and closed at predetermined timing by the piston 3. Second
The first scavenging port 16' is opened, and the first scavenging port 16.
A scavenging system is provided at the second scavenging port 16'. The injector 10 is of a two-fluid type, and after supplying a predetermined amount of fuel, it is pressed with pressurized air and directly injects the mixed fuel and air. Therefore, the fuel passage 20 of the injector 10 is connected to the filter 2.
1. communicates with the fuel tank 23 via the fuel pump 22;
A pressure regulating valve 24 is provided in the middle of the fuel passage 20, and always produces a constant low fuel pressure (slightly higher pressure than the pressurized air). Also, the air passage 25G of the injector 10; has a pressure regulating valve 26. Accumulator 27. A compressor 28 is connected to produce pressurized air. A predetermined amount of fuel is stored in the injector 10 in advance by a fuel pulse from the control unit 45, and the exhaust port 11
After the valve closes, pressurized air is applied to the fuel using an air pulse and the fuel is injected. Next, referring to FIGS. 1 and 2, the scavenging system will be described. In the cylinder 2, the first scavenging port 16. A third scavenging port 30 opens on the opposite side of the exhaust port 11 at the same height position as the second scavenging port 16°. Further, a scavenging pump 31 is installed separately from the engine body 1 with its suction side communicating with the air cleaner 33, and a first scavenging pump 31 is installed immediately after the discharge side of the scavenging pump 31. Second and third scavenging pipes 34, 34°, 3
5 branches and the first. Second and third scavenging ports 16
, 16°, and 30. A bypass passage 37 having a control valve 36 communicates between the suction side of the scavenging pump 31 and the third scavenging pipe 35.
The scavenging pipe 35 has a third
A reed valve 38 is provided to prevent backflow from the cylinder 2 when the scavenging pressure in the scavenging pipe 35 decreases. The scavenging pump 31 is connected to the crankshaft 5 by a transmission means 39, and is constantly driven by engine power. The accelerator pedal 40 is connected to open and close the control valve 36 in inverse proportion to the accelerator opening via a mechanical opening changing means 44 such as a link mechanism. Also, an engine rotation speed sensor 41. which detects the engine rotation speed N, the accelerator opening degree φ, and the cooling water temperature TVT, which determine each operating condition. It has an accelerator opening sensor 42 and a water temperature sensor 43, and each sensor signal is input to a control unit 45 and processed, and the control unit 45 sends a fuel pulse signal and an air pulse signal to the injector 10, and an ignition signal to the spark plug 9. It is designed to be output. Here, the control unit 45 controls the engine rotation speed N. It has a fuel injection amount setting means 46 that inputs the accelerator opening degree φ and the cooling water temperature Tw and calculates the fuel injection amount Ti according to the driving state, and this fuel injection amount Ti is inputted to the pulse generation means 47. First, a fuel pulse corresponding to the fuel injection amount Ti is output to the injector 10 via the drive circuit 48 to store fuel, and then a predetermined air pulse is output to apply pressurized air to the fuel to perform injection. Next, the operation of the two-stroke engine configured as described above will be described. First, during low load with small accelerator opening, the control valve 36
is substantially fully opened and communicates with the bypass passage 37. Therefore, the fresh air discharged from the scavenging pump 31 to the third scavenging pipe 35 only returns to the pump suction side.
The scavenging pressure of the scavenging pipe 35 is reduced, and the pump load does not increase. On the other hand, the scavenging pump 31 is connected to the other first. Second scavenging pipe 34
.. A predetermined scavenging pressure is generated at the exhaust port 34', and the piston 3 is located near the bottom dead center as shown in FIG.
.. Second. When the third scavenging ports 16, 16°, and 30 are opened, air pressurized by the scavenging pressure flows into the cylinder 3 from the first and second scavenging ports 16, 16°. In this case, as shown in FIG. 3 fa), the first. Second scavenging port 16
.. The air flowing in from 16' generates a strong vertical swirl, although the amount of scavenging itself is small, and this scavenging flow sufficiently reversely scavenges up to the upper part of the cylinder 2 to push out residual combustion gas from the exhaust port 11. At this time, since the scavenging pressure of the third scavenging port 30 is low, when the third scavenging port 30 is opened, the gas flows back toward the third scavenging port 30 or is blocked by the reed valve 38. Then, as described above, the scavenging effect is performed efficiently and the exhaust port 11 and the first. Second. Third scavenging port 16, 1f3
', 30 is closed, sufficient constricted swirl scavenging air remains in the cylinder 2. Therefore, the fuel injected by the injector 10 rides on this scavenging air flow, becomes a rich air-fuel mixture near the ignition plug 9, and ignites the ignition plug 9, resulting in good stratified combustion. Further, when the load is high, the control valve 36 is substantially fully closed to cut off the bypass passage 37. Therefore, from the scavenging pump 31, the first.
Second. A high scavenging pressure is generated in the third scavenging air g34. Third
Pressurized air flows in from the scavenging ports 16, 16', 30 as shown in FIG. 3(b). In this case, the flow from the first and second scavenging ports 16, 16' becomes dominant with respect to the overall directionality, producing a vertical swirl in the same way as described above, and efficiently scavenging. Furthermore, compared to when the load is low, the opening degree of the reed valve 38 increases and the area of the scavenging port increases, so the amount of scavenging air increases and high output is obtained. In addition, as shown in FIG. 4, the cylinder 2 is further provided with auxiliary ports 48 and 48' on the third scavenging port 30 side.
The scavenging pipes 49 branched from the scavenging pipe 35 may be connected at 49°. In this case, the number of scavenging ports increases during high loads, so that the scavenging efficiency can be improved. In this embodiment, the control valve 36 is opened and closed by mechanical means in accordance with the accelerator opening degree, but it goes without saying that instead of this, the control valve 36 can be variably controlled in accordance with the signal from the accelerator opening sensor 42.

【発明の効果】【Effect of the invention】

以上述べてきたように、本発明によれば、掃気ポンプ付
2サイクルエンジンにおいて、負荷に応じて掃気ポート
数を変更制御し、低負荷での掃気効率を向上すると共に
高負荷時の掃気量を増すので、低負荷の燃焼2運転性等
と高負荷の出力アップを共に向上し得る。 さらに、低負荷では、掃気流量の一部がバイパスするの
で、掃気ポンプの負荷が軽減される。
As described above, according to the present invention, in a two-stroke engine equipped with a scavenging pump, the number of scavenging ports is changed and controlled according to the load, improving the scavenging efficiency at low loads and reducing the amount of scavenging air at high loads. Therefore, it is possible to improve both low-load combustion 2 operability and the like and high-load output. Furthermore, at low loads, part of the scavenging air flow is bypassed, so the load on the scavenging pump is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の掃気ポンプ付2サイクルエンジ
ンの実施例を示す全体の構成図、第1図(b)は要部の
平面図、 第2図は制御ユニットの機能ブロック図、第3図(a)
、 (b)は各負荷の掃気状態を示す図、第4図は池の
実施例の平面図である。 1・・・2サイクルエンジン本体、2・・・シリンダ。 11・・・排気ポート、16・・・第1の掃気ポート、
16°・・・第2の掃気ポート、30・・・第3の掃気
ポート、31・・・掃気ポンプ、36・・・制御弁、3
7・・・バイパス通路、38・・・リード弁 第3 図 (a) (b) 第2 図
FIG. 1(a) is an overall configuration diagram showing an embodiment of a two-stroke engine with a scavenging pump according to the present invention, FIG. 1(b) is a plan view of the main parts, FIG. 2 is a functional block diagram of the control unit, Figure 3(a)
, (b) is a diagram showing the scavenging state of each load, and FIG. 4 is a plan view of the embodiment of the pond. 1... 2-cycle engine body, 2... cylinder. 11... Exhaust port, 16... First scavenging port,
16°...Second scavenging port, 30...Third scavenging port, 31...Scavenging pump, 36...Control valve, 3
7... Bypass passage, 38... Reed valve Fig. 3 (a) (b) Fig. 2

Claims (1)

【特許請求の範囲】 2サイクルエンジン本体のシリンダの排気ポートの左右
に第1、第2の掃気ポートを有し、上記第1、第2の掃
気ポートを第1、第2の掃気管を介して掃気ポンプに連
通形成する構成において、上記シリンダの排気ポートと
反対側に少なくとも第3の掃気ポートを開口して、上記
第3の掃気ポートをリード弁を有する第3の掃気管を介
して上記掃気ポンプに連設し、 上記リード弁の上流側を、負荷に応じて開閉する制御弁
を備えた上記掃気ポンプをバイパスするバイパス通路に
連通することを特徴とする掃気ポンプ付2サイクルエン
ジン。
[Claims] A two-cycle engine main body has first and second scavenging ports on the left and right sides of the exhaust port of the cylinder, and the first and second scavenging ports are connected to each other through first and second scavenging pipes. At least a third scavenging port is opened on the side opposite to the exhaust port of the cylinder, and the third scavenging port is connected to the scavenging pump through a third scavenging pipe having a reed valve. A two-stroke engine with a scavenging pump, characterized in that the reed valve is connected to a scavenging pump, and the upstream side of the reed valve is connected to a bypass passage that bypasses the scavenging pump and includes a control valve that opens and closes depending on the load.
JP19114988A 1988-07-30 1988-07-30 Two-cycle engine with scavenging pump Pending JPH0242124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19114988A JPH0242124A (en) 1988-07-30 1988-07-30 Two-cycle engine with scavenging pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19114988A JPH0242124A (en) 1988-07-30 1988-07-30 Two-cycle engine with scavenging pump

Publications (1)

Publication Number Publication Date
JPH0242124A true JPH0242124A (en) 1990-02-13

Family

ID=16269714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19114988A Pending JPH0242124A (en) 1988-07-30 1988-07-30 Two-cycle engine with scavenging pump

Country Status (1)

Country Link
JP (1) JPH0242124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526156A (en) * 2006-02-09 2009-07-16 スプリンテックス・オーストラレーシア・プロプライエタリー・リミテッド Supercharging system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526156A (en) * 2006-02-09 2009-07-16 スプリンテックス・オーストラレーシア・プロプライエタリー・リミテッド Supercharging system
US8186157B2 (en) 2006-02-09 2012-05-29 Sprintex Australasia Pty Ltd Supercharging system

Similar Documents

Publication Publication Date Title
US4995354A (en) Two-cycle engine
JPH033933A (en) Fuel injection controller of two-cycle engine
JPH0233439A (en) Fuel injection control device for two-cycle direct injection engine
JPH0249939A (en) Fuel injection control device of two-cycle direct-injection engine
US4957089A (en) Fuel injection control system for a two-cycle engine
US4907549A (en) Scavenging system for a two-stroke-cycle engine
JPH0240052A (en) Number of idle revolutions control device for 2-cycle direct injection engine
US4185598A (en) Internal combustion engine
GB2237416A (en) Idle speed control system for a two-stroke engine.
JP2943486B2 (en) In-cylinder injection type internal combustion engine
JPH05240044A (en) Cylinder injection type internal combustion engine
JPH0264248A (en) Engine braking device for two cycle direct injection engine
JPH04370343A (en) Idle rotation speed control device for two-cycle engine
GB1591050A (en) Internal combustion engine
JP2946729B2 (en) Subchamber engine with exhaust gas recirculation system
JPH0242124A (en) Two-cycle engine with scavenging pump
JPH03281965A (en) Control device for two-cycle engine
JPH0240043A (en) Fuel injection control device for 2-cycle direct injection engine
JPH0663453B2 (en) 2-cycle internal combustion engine
JPH033934A (en) Fuel injection control device for two-cycle engine
JPS59158328A (en) Internal-combustion engine
JP2865672B2 (en) Mixture compression type two-stroke internal combustion engine
JPH09250429A (en) Fuel injecting/supplying type engine
JPH04103855A (en) Fuel injection control device for two cycle engine
JPH033935A (en) Fuel injection control device for two-cycle direct injection engine