JPH04370343A - Idle rotation speed control device for two-cycle engine - Google Patents

Idle rotation speed control device for two-cycle engine

Info

Publication number
JPH04370343A
JPH04370343A JP17437691A JP17437691A JPH04370343A JP H04370343 A JPH04370343 A JP H04370343A JP 17437691 A JP17437691 A JP 17437691A JP 17437691 A JP17437691 A JP 17437691A JP H04370343 A JPH04370343 A JP H04370343A
Authority
JP
Japan
Prior art keywords
idle
fuel injection
correction amount
deviation
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17437691A
Other languages
Japanese (ja)
Inventor
Takashi Matsuura
崇 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP17437691A priority Critical patent/JPH04370343A/en
Priority to GB9211550A priority patent/GB2256945B/en
Priority to DE19924219358 priority patent/DE4219358A1/en
Publication of JPH04370343A publication Critical patent/JPH04370343A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/086Introducing corrections for particular operating conditions for idling taking into account the temperature of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/04Two-stroke combustion engines with electronic control

Abstract

PURPOSE:To properly control and increase an engine speed while stably holding stratified combustion at the time of cold-state idle operation of a 2-cycle engine by adding an idle correction amount to a basic fuel injection amount to calculate fuel injection time. CONSTITUTION:A target engine speed setting means 58 in accordance with a water temperature, a deviation calculating means 59 for calculating a deviation between a target speed and an engine speed, an idle correction amount calculating means 60 for calculating an idle correction amount corresponding to the deviation at the time of idle operation and a fuel injection time calculating means 56 for calculating fuel injection time by adding an idle correction amount to a basic fuel amount are provided. At the time of idle operation, the idle correction amount is calculated corresponding to the deviation between the target speed in accordance with a water temperature and the engine speed to increase only fuel corrected with a fixed intake air amount by the idle correction amount, and thus at cold time, stratified combustion is well held to feedback-control the engine speed so as to properly rise, to promote warming up and further to stabilize rotation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、運転条件に応じて燃料
噴射量と共に燃焼方式を制御する車両用2サイクルエン
ジンのアイドル回転数制御装置に関し、詳しくは、冷態
時のアイドル回転数を目標回転数にフィードバック制御
するものに関する。
[Field of Industrial Application] The present invention relates to an idle speed control device for a two-stroke vehicle engine that controls the fuel injection amount and combustion method according to operating conditions. This relates to feedback control of rotation speed.

【0002】0002

【従来の技術】一般に車両用2サイクルエンジンとして
燃焼室にインジェクタを装着し、ピストンが掃気ポート
を閉じた後で点火する迄の間の圧縮行程において、イン
ジェクタから燃料を高圧で直接筒内に噴射する。そして
高負荷時には燃料噴射の時期を早く定めて均一燃焼し、
アイドル及び低、中負荷時には逆に遅く定めて成層燃焼
するように燃焼方式を変更し、この燃焼方式の変更と共
に燃焼噴射量を制御して負荷運転制御する方式が本件出
願人により既に提案されている。ここで、アイドル及び
低負荷時には、成層燃焼を良好に行い、運転の安定性を
向上するために、吸入空気量を一定に設定し燃料噴射量
のみを可変して負荷制御する構成になっている。ところ
で、かかる2サイクルエンジンにおいても、水温の低い
冷態時のアイドル運転時にはエンジン回転数を適正に上
昇制御して、暖機を促進し、フリクション増大に伴う不
安定性を回避することが望まれる。
[Prior Art] Generally, an injector is installed in the combustion chamber of a two-stroke vehicle engine, and fuel is injected directly into the cylinder at high pressure during the compression stroke after the piston closes the scavenging port and before ignition. do. At high loads, the timing of fuel injection is determined early to achieve uniform combustion.
The applicant has already proposed a method in which the combustion method is changed to perform stratified combustion at a slower rate during idle and low and medium loads, and in addition to this change in combustion method, the combustion injection amount is controlled to control load operation. There is. At idle and under low load, the intake air volume is set constant and only the fuel injection volume is varied to control the load in order to perform stratified combustion well and improve operational stability. . Incidentally, even in such a two-stroke engine, it is desirable to appropriately increase the engine speed during idling operation when the water temperature is low to promote warm-up and avoid instability due to increased friction.

【0003】従来、上記冷態時のアイドル制御に関して
は、例えば特開平1−232133号公報の先行技術が
ある。ここで、水温が低いほど燃料増量初期値を大きな
値に設定し、この初期値に基づいてエンジンへの供給燃
料を増量し、その後に増量値を徐々に減少することが示
されている。
Conventionally, regarding the idle control during the cold state, there is a prior art technique disclosed in, for example, Japanese Unexamined Patent Publication No. 1-232133. Here, it is shown that the lower the water temperature is, the larger the initial fuel increase value is set, the amount of fuel supplied to the engine is increased based on this initial value, and then the increase value is gradually decreased.

【0004】0004

【発明が解決しようとする課題】ところで、上記先行技
術のものにあっては、4サイクルエンジンの冷態アイド
ル運転時において、吸入空気量と共に燃料噴射量を増減
する方式であるから、2サイクルエンジンに適応すると
、吸入空気量の変化に応じて成層燃焼の状態が変動して
しまい、冷態時の燃焼を安定した状態に保持することが
難しい等の問題がある。従って、2サイクルエンジンの
冷態アイドル運転時には、4サイクルエンジンと異なっ
た制御を行うことが必要になる。
[Problems to be Solved by the Invention] By the way, in the prior art described above, the amount of fuel injection is increased or decreased along with the amount of intake air during cold idling operation of a 4-stroke engine. When adapted to this, there are problems such as the state of stratified combustion fluctuating in response to changes in the amount of intake air, making it difficult to maintain combustion in a stable state during cold conditions. Therefore, during cold idling operation of a two-stroke engine, it is necessary to perform different control from that of a four-stroke engine.

【0005】本発明は、この点に鑑みてなされたもので
、2サイクルエンジンの冷態アイドル運転時において、
成層燃焼を安定して保持しながらエンジン回転数を適正
に上昇制御することを目的とする。
The present invention has been made in view of this point, and during cold idling operation of a two-stroke engine,
The purpose is to appropriately increase and control the engine speed while stably maintaining stratified combustion.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明は、運転条件により燃焼方式を判断し、少なくと
も低・中負荷時には成層燃焼の燃料噴射および点火時期
を制御し、高負荷時には均一燃焼の燃料噴射および点火
時期を制御する制御系において、水温に応じた目標回転
数を設定する目標回転数設定手段と、目標回転数とエン
ジン回転数との偏差を算出する偏差算出手段と、アイド
ル運転時に偏差に対応したアイドル補正量を算出するア
イドル補正量算出手段と、基本燃料噴射量にアイドル補
正量を加算して燃料噴射時間を算出する燃料噴射時間算
出手段とを備えるものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention determines the combustion method depending on the operating conditions, controls fuel injection and ignition timing for stratified combustion at least at low and medium loads, and uniformly controls the fuel injection and ignition timing at high loads. In a control system that controls fuel injection and ignition timing for combustion, a target rotation speed setting means sets a target rotation speed according to water temperature, a deviation calculation means calculates a deviation between the target rotation speed and the engine rotation speed, and an idle The system includes an idle correction amount calculation means for calculating an idle correction amount corresponding to a deviation during driving, and a fuel injection time calculation means for calculating a fuel injection time by adding the idle correction amount to the basic fuel injection amount.

【0007】[0007]

【作用】上記構成に基づき、2サイクルエンジンにおい
てアイドル運転時には、水温に応じた目標回転数とエン
ジン回転数との偏差に対応してアイドル補正量が算出さ
れ、このアイドル補正量により一定の吸入空気量で燃料
のみが増量補正されるようになり、これにより冷態時に
は成層燃焼を良好に保持して、エンジン回転数を適正に
上昇するようにフィードバック制御される。
[Operation] Based on the above configuration, when a two-stroke engine is idling, the idle correction amount is calculated in response to the deviation between the target rotation speed according to the water temperature and the engine rotation speed, and the idle correction amount is used to maintain a constant intake air. Only the amount of fuel is corrected by increasing the amount of fuel, and as a result, feedback control is performed to properly maintain stratified combustion and increase the engine speed appropriately when the engine is cold.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図2において、2サイクル筒内直噴式ガソリンエ
ンジンの全体の構成について説明すると、符号1は2サ
イクルエンジンの本体であり、シリンダ2にピストン3
が往復動可能に挿入され、クランク室4のクランク軸5
に対し偏心して設けられたコンロッド6によりピストン
3が連結し、クランク軸5にはピストン3の往復動慣性
力を相殺するようにバランサ7が設けられる。燃焼室8
はオフセット、ウェッジ、カマボコ等の形状であり、中
心頂部付近の高い位置に高圧1流体式インジェクタ10
が、パルス信号のオン時間(パルス幅)だけ開くように
して設置される。また、点火プラグ9は電極9aがイン
ジェクタ10の噴射方向直下に位置するように傾いて取
付けられる。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. In FIG. 2, to explain the overall structure of a two-stroke direct injection gasoline engine, reference numeral 1 is the main body of the two-stroke engine, and a piston 3 is installed in the cylinder 2.
is inserted so as to be able to reciprocate, and the crankshaft 5 of the crank chamber 4
The piston 3 is connected by a connecting rod 6 provided eccentrically with respect to the crankshaft 5, and a balancer 7 is provided on the crankshaft 5 so as to offset the reciprocating inertia force of the piston 3. Combustion chamber 8
has an offset, wedge, or semicylindrical shape, and a high-pressure single-fluid injector 10 is installed at a high position near the center top.
is installed so that it is open for the ON time (pulse width) of the pulse signal. Further, the spark plug 9 is installed at an angle so that the electrode 9a is located directly below the injector 10 in the injection direction.

【0009】インジェクタ10と電極9aとの距離は、
低・中負荷で点火直前に噴射されるコーン型の燃料噴霧
を考慮して設定される。即ち、距離が短い場合は霧化が
不足し、長くなると噴霧が拡散することから、両者の間
で噴霧の後端部に着火して成層燃焼することが可能にな
っている。また、インジェクタ10はシリンダ2の略中
心線上に配置されていることから、高負荷で早い時期に
噴射された多量の燃料は、シリンダ2の内部中心から全
体に迅速に拡散して均一に予混合し、均一燃焼すること
が可能になっている。
The distance between the injector 10 and the electrode 9a is
It is set in consideration of the cone-shaped fuel spray that is injected just before ignition at low and medium loads. That is, when the distance is short, atomization is insufficient, and when the distance is long, the spray diffuses, so that between the two, the rear end of the spray can be ignited and stratified combustion can occur. In addition, since the injector 10 is arranged approximately on the center line of the cylinder 2, a large amount of fuel injected at an early stage under high load quickly diffuses throughout the cylinder 2 from its internal center and is uniformly premixed. This makes it possible to burn evenly.

【0010】シリンダ2には、ピストン3により所定の
タイミングで開閉する排気ポート11が開口し、排気ポ
ート11からの排気管12に触媒装置13、マフラ14
が設けられる。ここで、排気ポート11には排気ロータ
リ弁15が設置され、ベルト手段16によりクランク軸
5に連結して排気ポート11の開閉を各別に定めている
。即ち、ピストン3が下死点側から上昇し始めると排気
ロータリ弁15により排気ポート11を早目に閉じ、高
負荷での均一燃焼方式において燃料噴射の時期を早く設
定することが可能になっている。
An exhaust port 11 is opened in the cylinder 2 and is opened and closed at a predetermined timing by a piston 3. A catalyst device 13 and a muffler 14 are connected to an exhaust pipe 12 from the exhaust port 11.
is provided. Here, an exhaust rotary valve 15 is installed in the exhaust port 11, and is connected to the crankshaft 5 by a belt means 16 to individually determine opening and closing of the exhaust port 11. That is, when the piston 3 begins to rise from the bottom dead center side, the exhaust port 11 is closed early by the exhaust rotary valve 15, making it possible to set the timing of fuel injection earlier in the uniform combustion method under high load. There is.

【0011】また、シリンダ2において、排気ポート1
1に対して円周方向に180度ないし略90度前後ずれ
た位置に、同様にピストン3により所定のタイミングで
開閉する掃気ポート17が開口して設けられる。そして
掃気ポート17の吸気管18には、エアクリーナ19、
アクセル開度に応じて開くスロットル弁20が設けられ
、スロットル弁20の下流には掃気ポンプ21が、ベル
ト手段22によりクランク軸5に連結し、エンジン動力
より常にポンプ駆動して掃気圧が生じるように設けられ
る。ここで、スロットル弁20はアクセル全閉でも少し
開いて掃気ポンプ21の吸込みが可能に設定され、この
遊び範囲を越えるとアクセル開度に応じスロットル弁2
0が開いて空気量を制御する。そして空気のみの掃気圧
で強制的に掃気作用し、空気を高い充填効率で供給する
ようになっている。
[0011] Furthermore, in the cylinder 2, the exhaust port 1
A scavenging port 17, which is similarly opened and closed by the piston 3 at a predetermined timing, is provided at a position shifted by 180 degrees or about 90 degrees in the circumferential direction with respect to the scavenging port 17. The air cleaner 19 is connected to the intake pipe 18 of the scavenging port 17.
A throttle valve 20 is provided which opens according to the opening degree of the accelerator, and a scavenging pump 21 is connected to the crankshaft 5 by a belt means 22 downstream of the throttle valve 20, and is constantly driven by the engine power to generate scavenging pressure. established in Here, the throttle valve 20 is set to open slightly even when the accelerator is fully closed, allowing the scavenging pump 21 to take in suction.
0 opens to control the amount of air. The scavenging pressure of air alone is used to forcefully scavenge air, supplying air with high filling efficiency.

【0012】インジェクタ10の高圧燃料系について説
明すると、燃料タンク30が、フィルタ31、燃料ポン
プ32、燃圧レギュレータ33、圧力変動を吸収するア
キュムレータ34を有する燃料通路35を介してインジ
ェクタ10に連通し、燃圧レギュレータ33からの戻り
通路36が燃料タンク30に連通している。そして燃圧
レギュレータ33が燃料ポンプ32の高圧燃料の戻りを
調整して、インジェクタ10の燃圧を制御する。ここで
、低負荷の充填空気量が少ない場合は燃圧が低く、負荷
の増大により充填空気量が多くなると、燃圧も高く制御
されている。
To explain the high pressure fuel system of the injector 10, a fuel tank 30 communicates with the injector 10 via a fuel passage 35 having a filter 31, a fuel pump 32, a fuel pressure regulator 33, and an accumulator 34 for absorbing pressure fluctuations. A return passage 36 from the fuel pressure regulator 33 communicates with the fuel tank 30. The fuel pressure regulator 33 then adjusts the return of high-pressure fuel from the fuel pump 32 to control the fuel pressure of the injector 10. Here, when the amount of charged air is small under low load, the fuel pressure is low, and when the amount of filled air increases due to an increase in load, the fuel pressure is also controlled to be high.

【0013】図1において、電子制御系として、燃料噴
射、点火時期の制御系について説明する。先ず、クラン
ク角センサ40、気筒判別センサ41、アイドルスイッ
チ42、アクセル開度αを検出するアクセル開度センサ
43、車速Vを検出する車速センサ44、燃圧Pfを検
出する燃圧センサ45、水温Twを検出する水温センサ
46を有し、これらのセンサ信号が制御ユニット50に
入力する。
Referring to FIG. 1, a fuel injection and ignition timing control system will be described as an electronic control system. First, the crank angle sensor 40, the cylinder discrimination sensor 41, the idle switch 42, the accelerator opening sensor 43 that detects the accelerator opening α, the vehicle speed sensor 44 that detects the vehicle speed V, the fuel pressure sensor 45 that detects the fuel pressure Pf, and the water temperature Tw. It has a water temperature sensor 46 for detection, and these sensor signals are input to a control unit 50.

【0014】制御ユニット50は、クランク角センサ4
0のクランク角が入力するエンジン回転数検出部51を
有し、クランクパルスの時間等によりエンジン回転数N
eを検出する。クランク角センサ40、気筒判別センサ
41の信号はクランク位置検出部52に入力し、各気筒
での上死点前の基準位置を検出する。エンジン回転数N
eとアクセル開度αは基本燃料噴射量検索部53に入力
し、Ne、αに対する基本燃料噴射量Gfsのマップか
ら各運転条件に応じた基本燃料噴射量Gfsを検索して
定める。燃圧Pfは燃圧定数設定部54とインジェクタ
無効噴射時間設定部55にそれぞれ入力し、燃圧Pfに
対し予め設定される格子テーブルにより補間計算付で燃
圧定数K、インジェクタ無効噴射時間Tsを設定するの
であり、これらの基本燃料噴射量Gfs、燃圧定数K、
インジェクタ無効噴射時間Tsは燃料噴射時間算出部5
6に入力する。
The control unit 50 includes a crank angle sensor 4
It has an engine rotation speed detection unit 51 that inputs a crank angle of 0, and detects the engine rotation speed N depending on the crank pulse time etc.
Detect e. Signals from the crank angle sensor 40 and the cylinder discrimination sensor 41 are input to a crank position detection section 52, which detects the reference position before the top dead center of each cylinder. Engine speed N
e and the accelerator opening α are input to the basic fuel injection amount search unit 53, and the basic fuel injection amount Gfs corresponding to each driving condition is searched and determined from a map of the basic fuel injection amount Gfs with respect to Ne and α. The fuel pressure Pf is input to the fuel pressure constant setting section 54 and the injector invalid injection time setting section 55, respectively, and the fuel pressure constant K and the injector invalid injection time Ts are set with interpolation calculations using a grid table set in advance for the fuel pressure Pf. , these basic fuel injection quantities Gfs, fuel pressure constants K,
The injector invalid injection time Ts is determined by the fuel injection time calculation unit 5.
Enter 6.

【0015】また、アイドル制御系について説明すると
、アイドルスイッチ42の信号と車速Vが入力するアイ
ドル判定部57を有し、停車時にアイドルONの信号が
入力する場合にアイドル運転を判定する。水温Twが入
力する目標回転数設定部58を有し、水温Twに対して
適正な目標回転数Nedを設定する。ここで、図3(a
)に示すように所定の設定値Tws以下の冷態時には水
温Twが低いほど目標回転数Nedが高くなるように設
定されており、このマップを参照して目標回転数Ned
を求める。この目標回転数Nedとエンジン回転数Ne
は偏差算出部59に入力して、偏差ΔNを目標回転数N
edからエンジン回転数Neを減算して算出するのであ
り、この偏差ΔNとアイドル判定信号はアイドル補正量
算出部60に入力する。アイドル補正量算出部60はア
イドル時に偏差ΔNに対してアイドル補正量Gfaを、
以下のように算出する。
The idle control system has an idle determination section 57 that receives the signal from the idle switch 42 and the vehicle speed V, and determines whether the vehicle is idling when an idle ON signal is input when the vehicle is stopped. It has a target rotation speed setting section 58 into which the water temperature Tw is input, and sets an appropriate target rotation speed Ned for the water temperature Tw. Here, Fig. 3 (a
), when the water temperature is below a predetermined set value Tws, the lower the water temperature Tw is, the higher the target rotation speed Ned becomes.
seek. This target rotation speed Ned and engine rotation speed Ne
is input to the deviation calculating section 59, and the deviation ΔN is calculated as the target rotation speed N.
It is calculated by subtracting the engine speed Ne from ed, and this deviation ΔN and the idle determination signal are input to the idle correction amount calculation section 60. The idle correction amount calculation unit 60 calculates the idle correction amount Gfa for the deviation ΔN during idle,
Calculate as follows.

【0016】即ち、アイドル補正量Gfaを比例分フィ
ードバック値Pと積分分フィードバック値Iにより、以
下のように設定する。 Gfa=P+I そこで、比例分フィードバック値Pを定数Kpを用いて
、 P=Kp・ΔN に設定し、定数KpをΔNの関数で定める。定数Kpは
実験により回転数変動が最も少なくなるように設定し、
図3(b)のように目標値に対して実際値が小さい場合
は定数Kpを正の増大関数で、実際値の方が大きい場合
は定数Kpを負の増大関数でそれぞれ定める。また、積
分分フィードバック値Iを定数Kiと前回の積分分フィ
ードバック値Ioを用いて、 I=Io+Ki・ΔN に設定し、定数Kiを同様にΔNの関数で定める。こう
して、これらの比例分と積分分のフィードバック値P,
Iにより、偏差ΔNの大きさ、状態に応じて、その偏差
ΔNを変動の少ない状態で補うようにアイドル補正量G
faを定めるのであり、このアイドル補正量Gfaが燃
料噴射時間算出部56に入力する。燃料噴射時間算出部
56は上記基本燃料噴射量Gfs、燃圧定数K、インジ
ェクタ無効噴射時間Ts、アイドル補正量Gfaにより
燃料噴射時間Tiを、以下のように算出する。 Ti=K(Gfs+Gfa)+Ts
That is, the idle correction amount Gfa is set as follows using the proportional feedback value P and the integral feedback value I. Gfa=P+I Therefore, the proportional feedback value P is set to P=Kp·ΔN using a constant Kp, and the constant Kp is determined as a function of ΔN. The constant Kp is set by experiment so that the rotation speed fluctuation is minimized,
As shown in FIG. 3B, when the actual value is smaller than the target value, the constant Kp is determined by a positive increasing function, and when the actual value is larger, the constant Kp is determined by a negative increasing function. Further, the integral feedback value I is set as I=Io+Ki·ΔN using the constant Ki and the previous integral feedback value Io, and the constant Ki is similarly determined as a function of ΔN. In this way, the feedback value P of these proportional and integral components,
I adjusts the idle correction amount G to compensate for the deviation ΔN with less fluctuation depending on the size and state of the deviation ΔN.
fa is determined, and this idle correction amount Gfa is input to the fuel injection time calculation section 56. The fuel injection time calculation unit 56 calculates the fuel injection time Ti from the basic fuel injection amount Gfs, the fuel pressure constant K, the injector invalid injection time Ts, and the idle correction amount Gfa as follows. Ti=K(Gfs+Gfa)+Ts

【0017】一方、基本燃料噴射量Gfsは、燃料噴射
時期決定部61、点火時期決定部62及び燃焼方式判定
部63に入力する。燃焼方式判定部63では、成層と均
一の燃焼方式の切換点が予めNe−Gfsのマップによ
り設定されており、この切換点の噴射量設定値Gfoと
基本燃料噴射量Gfsとを比較し、低・中負荷のGfs
<Gfoの場合に成層燃焼を、高負荷のGfs≧Gfo
の場合に均一燃焼を判断するのであり、この判定信号が
燃料噴射時期決定部61、点火時期決定部62に出力す
る。
On the other hand, the basic fuel injection amount Gfs is input to a fuel injection timing determining section 61, an ignition timing determining section 62, and a combustion method determining section 63. In the combustion method determination unit 63, the switching point between the stratified combustion method and the uniform combustion method is set in advance using the Ne-Gfs map, and the injection amount set value Gfo at this switching point is compared with the basic fuel injection amount Gfs, and the・Gfs for medium load
<Gfo, stratified combustion is performed, and high load Gfs≧Gfo
Uniform combustion is determined in this case, and this determination signal is output to the fuel injection timing determining section 61 and the ignition timing determining section 62.

【0018】燃料噴射時期決定部61は、エンジン回転
数Neと基本燃料噴射量Gfsとによる成層と均一の各
燃焼方式毎の燃料噴射時期θie、θisのマップを有
し、成層燃焼では成層燃焼方式の燃料噴射時期θieを
、均一燃焼では均一燃焼方式の燃料噴射時期θisをマ
ップ検索して出力する。ここで成層燃焼では、点火直前
に所定の霧化時間を残して噴射終了する必要があるため
、この場合は噴射終了時期θieが設定される。一方、
均一燃焼では、排気が閉じた後の早い時期に噴射開始す
る必要があるため、この場合は噴射開始時期θisが設
定される。点火時期決定部62も、エンジン回転数Ne
と基本燃料噴射量Gfsとによる各燃焼方式毎の点火時
期θgのマップを有し、各燃焼方式で点火時期θgをマ
ップ検索するのであり、こうして低・中負荷で成層燃焼
し、高負荷で均一燃焼するようになっている。
The fuel injection timing determining unit 61 has a map of fuel injection timings θie and θis for each stratified combustion method and uniform combustion method based on the engine speed Ne and the basic fuel injection amount Gfs. In the case of uniform combustion, the fuel injection timing θis of the uniform combustion method is searched on a map and output. Here, in stratified combustion, it is necessary to end injection with a predetermined atomization time left immediately before ignition, so in this case, the injection end timing θie is set. on the other hand,
In uniform combustion, it is necessary to start injection early after the exhaust gas closes, so in this case, the injection start timing θis is set. The ignition timing determining section 62 also determines the engine rotation speed Ne.
It has a map of the ignition timing θg for each combustion method based on the basic fuel injection amount Gfs and the basic fuel injection amount Gfs, and searches the map for the ignition timing θg for each combustion method.In this way, stratified combustion occurs at low and medium loads, and uniform combustion occurs at high loads. It is designed to burn.

【0019】燃料噴射時間Tiと燃料噴射時期θieま
たはθisは燃料噴射タイミング設定部64に入力し、
クランク角基準位置に基づき燃料噴射時間Ti、燃料噴
射時期θieまたはθisに応じた噴射信号を駆動部6
5に出力してインジェクタ10を作動させる。また点火
時期θgは、点火タイミング設定部66に入力し、クラ
ンク角基準位置に基づき点火時期θgに応じた点火タイ
ミング、ドエル時間等の点火信号を駆動部67に出力し
て、点火プラグ9を作動させるように構成される。
The fuel injection time Ti and the fuel injection timing θie or θis are input to the fuel injection timing setting section 64,
The drive unit 6 sends an injection signal according to the fuel injection time Ti and the fuel injection timing θie or θis based on the crank angle reference position.
5 to operate the injector 10. The ignition timing θg is inputted to the ignition timing setting section 66, which outputs ignition signals such as ignition timing and dwell time according to the ignition timing θg to the drive section 67 to operate the spark plug 9. configured to allow

【0020】次に、この実施例の作用について説明する
。先ず、エンジン運転時に、アクセル開度に応じスロッ
トル弁20が開いて空気が掃気ポンプ21に吸入されて
所定の掃気圧が生じており、ピストン3の下降時に排気
ポート11が開き、次に掃気ポート17も開くと、この
加圧空気が掃気ポート17からシリンダ2の内部に流入
する。そしてこの給気の縦スワール流によりシリンダ2
の残留ガスを排気ポート11から押し出し、給気を高い
充填効率で満すように掃気作用される。一方、ピストン
3が下死点から上昇し始めると、排気ロータリ弁15が
閉じて掃気が終了し、燃料の吹き抜けが生じること無く
燃料噴射することが可能になり、次いで掃気ポート17
が閉じて圧縮行程に移行する。一方、このときインジェ
クタ10の高圧燃料系では運転条件に応じて燃圧レギュ
レータ33で燃圧Pfが制御され、この燃料がインジェ
クタ10に導かれている。
Next, the operation of this embodiment will be explained. First, during engine operation, the throttle valve 20 opens according to the accelerator opening and air is sucked into the scavenging pump 21 to generate a predetermined scavenging pressure.When the piston 3 descends, the exhaust port 11 opens, and then the scavenging port When 17 is also opened, this pressurized air flows into the cylinder 2 from the scavenging port 17. Then, due to the vertical swirl flow of this supply air, the cylinder 2
Scavenging is performed to push out residual gas from the exhaust port 11 and fill the supply air with high filling efficiency. On the other hand, when the piston 3 begins to rise from the bottom dead center, the exhaust rotary valve 15 closes and scavenging ends, making it possible to inject fuel without causing fuel blow-through, and then the scavenging port 17
closes and moves on to the compression stroke. On the other hand, at this time, in the high-pressure fuel system of the injector 10, the fuel pressure Pf is controlled by the fuel pressure regulator 33 according to the operating conditions, and this fuel is guided to the injector 10.

【0021】また、制御ユニット50において基本燃料
噴射量検索部53では、エンジン回転数Ne、アクセル
開度αに応じて基本燃料噴射量Gfsがマップ検索され
、更に燃圧Pfに応じて燃圧定数K、インジェクタ無効
噴射時間Tsが設定される。そこで、アイドル以外の運
転条件では、燃料噴射時間算出部56で基本燃料噴射量
Gfsに基づいて燃料噴射時間Tiが算出され、同時に
燃焼方式判定部63で燃焼方式が判断され、燃料噴射時
期決定部61、点火時期決定部62のマップがこの判断
により選択される。
Further, in the control unit 50, the basic fuel injection amount search section 53 searches a map for the basic fuel injection amount Gfs according to the engine speed Ne and the accelerator opening degree α, and further searches for the fuel pressure constant K, according to the fuel pressure Pf. An injector invalid injection time Ts is set. Therefore, under operating conditions other than idling, the fuel injection time calculation section 56 calculates the fuel injection time Ti based on the basic fuel injection amount Gfs, and at the same time, the combustion method determination section 63 determines the combustion method, and the fuel injection timing determination section 61, the map of the ignition timing determining section 62 is selected based on this determination.

【0022】そこで低、中負荷時には、燃料噴射時期決
定部61で成層燃焼用マップが選択され、これにより燃
料噴射時期θieが点火時期の近くに決定され、点火時
期決定部62でも成層燃焼用マップにより点火時期θg
が比較的上死点に近く決定される。そして燃料噴射時間
Ti、燃料噴射時期θieによる噴射信号がインジェク
タ10に出力することで、圧縮後期に比較的少量の燃料
が点火プラグ9の電極9aに向けて噴射され、その直後
に点火時期θgによる点火信号が点火プラグ9に出力す
る。このため、コーン型の燃料噴霧が拡散する前にその
後端部に電極9aで着火して成層燃焼するのであり、こ
うして空気量に比べて燃料が非常に少なくても、燃料の
濃混合気を有効利用して安定した燃焼が行われる。
Therefore, at low and medium loads, the fuel injection timing determining section 61 selects the stratified combustion map, and thereby the fuel injection timing θie is determined to be close to the ignition timing, and the ignition timing determining section 62 also selects the stratified combustion map. The ignition timing θg
is determined relatively close to top dead center. Then, by outputting an injection signal to the injector 10 based on the fuel injection time Ti and the fuel injection timing θie, a relatively small amount of fuel is injected toward the electrode 9a of the spark plug 9 in the late stage of compression, and immediately after that, the injection signal based on the ignition timing θie is output to the injector 10. An ignition signal is output to the ignition plug 9. For this reason, before the cone-shaped fuel spray diffuses, it is ignited by the electrode 9a at its rear end, resulting in stratified combustion.In this way, even if the fuel is very small compared to the amount of air, a rich mixture of fuel can be effectively used. Stable combustion is achieved using this method.

【0023】また高負荷時には、基本燃料噴射量Gfs
が多くなるのに対応して均一燃焼方式のマップが燃料噴
射時期決定部61、点火時期決定部62で選択される。 そこで燃料噴射時期θisが排気ロータリ弁15の閉後
の早い時期に、点火時期θgが最適値に決定されること
になり、このため圧縮初期にインジェクタ10から多量
の燃料がシリンダ2内に噴射され、圧縮中に燃料と空気
とが充分混合する。そしてこの均一に混合した後に点火
プラグ9で着火して、空気利用率の高い均一燃焼が行わ
れ、エンジン出力をアップするのである。
[0023] Also, at high load, the basic fuel injection amount Gfs
As the number increases, a map for the uniform combustion method is selected by the fuel injection timing determining section 61 and the ignition timing determining section 62. Therefore, the ignition timing θg is determined to be the optimum value when the fuel injection timing θis is early after the exhaust rotary valve 15 is closed, and therefore a large amount of fuel is injected from the injector 10 into the cylinder 2 at the beginning of compression. , fuel and air are thoroughly mixed during compression. After this uniform mixing, the spark plug 9 ignites the mixture, resulting in uniform combustion with a high air utilization rate, increasing engine output.

【0024】次に、アイドル運転時について図4のフロ
ーチャートを用いて説明する。先ずステップS1で、エ
ンジン回転数Ne、水温Tw、車速V、アクセル開度α
、燃圧Pf、アイドルスイッチ信号を読込み、ステップ
S2で、基本燃料噴射量Gfsをエンジン回転数Neと
アクセル開度αのマップにより検索し、ステップS3に
おいて、アイドルスイッチ信号と車速Vによりアイドル
判定する。そこで、走行運転状態の場合には、ステップ
S4に進んで、アイドル補正量Gfaが零に設定され、
ステップS5において、燃料噴射時間Tiが基本燃料噴
射量Gfsのみに基づいて算出され、この信号が出力し
て上述のように制御される。
Next, the idle operation will be explained using the flowchart of FIG. First, in step S1, engine rotation speed Ne, water temperature Tw, vehicle speed V, accelerator opening degree α
, fuel pressure Pf, and idle switch signal are read, and in step S2, the basic fuel injection amount Gfs is searched using a map of engine speed Ne and accelerator opening α.In step S3, idling is determined based on the idle switch signal and vehicle speed V. Therefore, in the case of the driving operation state, the process proceeds to step S4, where the idle correction amount Gfa is set to zero,
In step S5, the fuel injection time Ti is calculated based only on the basic fuel injection amount Gfs, and this signal is output and controlled as described above.

【0025】一方、停車時のアイドル運転が判定される
と、ステップS6に進んで、目標回転数Nedが水温T
wに応じて設定され、このため冷態時には図3(a)の
マップにより目標回転数Nedが高く設定されることに
なる。その後、ステップS7で、目標回転数Nedとエ
ンジン回転数Neの偏差ΔNが算出され、ステップS8
において、この偏差ΔNに対応した比例分と積分分のフ
ィードバック値定数Kp,Kiが検索され、且つステッ
プS9で、比例分と積分分のフィードバック値P,Iが
算出され、更にステップS10で、これらのフィードバ
ック値P,Iによりアイドル補正量Gfaが算出される
On the other hand, if it is determined that the engine is idling while stopped, the process proceeds to step S6, and the target rotation speed Ned is set to the water temperature T.
Therefore, the target rotational speed Ned is set high according to the map shown in FIG. 3(a) in the cold state. After that, in step S7, the deviation ΔN between the target rotational speed Ned and the engine rotational speed Ne is calculated, and in step S8
In step S9, the proportional and integral feedback value constants Kp and Ki corresponding to this deviation ΔN are searched, and in step S9, the proportional and integral feedback values P and I are calculated. The idle correction amount Gfa is calculated based on the feedback values P and I.

【0026】そこで、エンジンスタート時において図5
のように水温Twが低い値Tw1では、それに応じた高
い目標回転数Ned1が設定されるため、アイドル補正
量Gfaが大きい値Gfa1に算出される。そしてステ
ップS5において、燃料噴射時間Tiが基本燃料噴射量
Gfsにこのアイドル補正量Gfa1を加算して多く算
出されるのであり、これにより一定の吸入空気量に対し
て燃料のみが増量補正され、成層燃焼を良好に保った状
態で燃料増量に応じてエンジン回転数Neが上昇する。 このとき、エンジン回転数Neが目標回転数Ned1に
対して上昇または低下すると、上述のフィードバック値
P,Iによりアイドル補正量Gfa1が適正に減少また
は増大して算出されることになり、こうしてエンジン回
転数Neは変動の少ない状態で目標回転数Ned1と略
一致した状態を保つようにフィードバック制御される。
Therefore, when starting the engine, the
When the water temperature Tw is a low value Tw1, a correspondingly high target rotational speed Ned1 is set, so the idle correction amount Gfa is calculated to a large value Gfa1. Then, in step S5, the fuel injection time Ti is calculated to be larger by adding this idle correction amount Gfa1 to the basic fuel injection amount Gfs, and as a result, only the fuel is increased with respect to a constant intake air amount, and the stratified The engine speed Ne increases as the amount of fuel increases while maintaining good combustion. At this time, when the engine speed Ne increases or decreases with respect to the target speed Ned1, the idle correction amount Gfa1 is appropriately decreased or increased according to the feedback values P and I described above, and thus the engine speed The number Ne is feedback-controlled so as to maintain a state substantially equal to the target rotational speed Ned1 with little variation.

【0027】その後、図5のように水温TwがTw2に
上昇すると、目標回転数NedがNed2に少し低下し
てアイドル補正量GfaもGfa2に減少されるため、
エンジン回転数Neがその目標回転数Ned2に対して
同様に変動の少ない状態で低下制御される。以下同様に
して、エンジン回転数Neは水温Twの上昇に伴って徐
々に低下するように制御され、このようなハイアイドル
回転数制御により暖機が促進され、且つフリクションの
増大に対してエンジン回転数Neが安定した状態に保持
される。そして、水温Twが設定値Twsに達すると、
目標回転数Nedが所定のアイドル回転数Nesに設定
され、このためアイドル補正量Gfaは略零付近の値に
なり、エンジン回転数Neが同様に変動の少ない状態で
この所定のアイドル回転数Nesに一定制御されること
になる。
After that, when the water temperature Tw rises to Tw2 as shown in FIG. 5, the target rotational speed Ned slightly decreases to Ned2 and the idle correction amount Gfa is also reduced to Gfa2.
The engine rotational speed Ne is similarly controlled to decrease with respect to the target rotational speed Ned2 with little variation. In the same manner, the engine speed Ne is controlled to gradually decrease as the water temperature Tw increases, and warm-up is promoted by such high idle speed control, and the engine speed is reduced as the friction increases. The number Ne is kept stable. Then, when the water temperature Tw reaches the set value Tws,
The target rotational speed Ned is set to a predetermined idle rotational speed Nes, and therefore the idle correction amount Gfa becomes a value near zero, and the engine rotational speed Ne similarly reaches this predetermined idle rotational speed Nes with little fluctuation. It will be subject to constant control.

【0028】以上、本発明の実施例について説明したが
、これのみに限定されない。
Although the embodiments of the present invention have been described above, the present invention is not limited thereto.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
2サイクルエンジンにおいてアイドル運転時には、水温
に応じ燃料のみを増減変化するように制御するので、低
負荷の成層燃焼状態を良好に保ちながらハイアイドル回
転数制御することができ、これにより冷態時の暖機を促
進し、フリクションの増大で回転が不安定になるのを防
止することができる。アイドル補正量を比例分と積分分
のフィードバック値により、目標回転数とエンジン回転
数の偏差の関数で算出して増量補正するので、回転変動
の少ない状態でアイドル回転数制御することができる。 水温に対して目標回転数を設定し、この目標回転数にエ
ンジン回転数をフィードバック制御する構成であるから
、フリクション等の要因による回転数の変動も確実に低
減でき、暖機後のアイドル回転数も最適に一定制御する
ことができる。
[Effects of the Invention] As explained above, according to the present invention,
During idle operation in a 2-stroke engine, only the fuel is controlled to increase or decrease depending on the water temperature, so it is possible to control high idle speed while maintaining a good low-load stratified combustion condition. It can promote warm-up and prevent rotation from becoming unstable due to increased friction. Since the idle correction amount is calculated as a function of the deviation between the target rotational speed and the engine rotational speed using feedback values of the proportional and integral components and is corrected to increase, the idle rotational speed can be controlled with little rotational fluctuation. Since the target rotation speed is set for the water temperature and the engine rotation speed is feedback-controlled to this target rotation speed, fluctuations in the rotation speed due to factors such as friction can be reliably reduced, and the idle rotation speed after warming up can be reduced. can also be optimally controlled.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る2サイクルエンジンのアイドル回
転数制御装置の実施例を示す電子制御系のブロック図で
ある。
FIG. 1 is a block diagram of an electronic control system showing an embodiment of an idle speed control device for a two-stroke engine according to the present invention.

【図2】本発明の2サイクルエンジンの全体の概略を示
す構成図である。
FIG. 2 is a block diagram schematically showing the entire two-stroke engine of the present invention.

【図3】制御マップを示すものであり、(a)は目標回
転数のマップ、(b)はフィードバック値定数のマップ
の図である。
FIG. 3 shows control maps, in which (a) is a map of target rotation speed, and (b) is a map of feedback value constants.

【図4】アイドル運転時の制御の作用を示すフローチャ
ートである。
FIG. 4 is a flowchart showing the effect of control during idling operation.

【図5】冷態アイドル運転時の動作状態を示す図である
FIG. 5 is a diagram showing the operating state during cold idle operation.

【符号の説明】[Explanation of symbols]

1  2サイクルエンジン本体 9  点火プラグ 10  インジェクタ 50制御ユニット 53  基本燃料噴射量検索部 56  燃料噴射時間算出部 58  目標回転数設定部 59  偏差算出部 60  アイドル補正量算出部 61  燃料噴射時期決定部 62  点火時期決定部 63  燃焼方式判定部 1 2-cycle engine body 9 Spark plug 10 Injector 50 control unit 53 Basic fuel injection amount search section 56 Fuel injection time calculation section 58 Target rotation speed setting section 59 Deviation calculation section 60 Idle correction amount calculation section 61 Fuel injection timing determination section 62 Ignition timing determination section 63 Combustion method determination section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  運転条件により燃焼方式を判断し、少
なくとも低・中負荷時には成層燃焼の燃料噴射および点
火時期を制御し、高負荷時には均一燃焼の燃料噴射およ
び点火時期を制御する制御系において、水温に応じた目
標回転数を設定する目標回転数設定手段と、目標回転数
とエンジン回転数との偏差を算出する偏差算出手段と、
アイドル運転時に偏差に対応したアイドル補正量を算出
するアイドル補正量算出手段と、基本燃料噴射量にアイ
ドル補正量を加算して燃料噴射時間を算出する燃料噴射
時間算出手段とを備えることを特徴とする2サイクルエ
ンジンのアイドル回転数制御装置。
Claim 1: A control system that determines a combustion method based on operating conditions, controls fuel injection and ignition timing for stratified combustion at least at low and medium loads, and controls fuel injection and ignition timing for uniform combustion at high loads, a target rotation speed setting means for setting a target rotation speed according to water temperature; a deviation calculation means for calculating a deviation between the target rotation speed and the engine rotation speed;
It is characterized by comprising an idle correction amount calculation means for calculating an idle correction amount corresponding to a deviation during idle operation, and a fuel injection time calculation means for calculating a fuel injection time by adding the idle correction amount to a basic fuel injection amount. Idle speed control device for 2-stroke engines.
【請求項2】  上記アイドル補正量算出手段は、少な
くとも偏差とその偏差に応じた定数で比例分と積分分の
フィードバック値を求め、これらのフィードバック値を
加算してアイドル補正量を算出することを特徴とする請
求項1記載の2サイクルエンジンのアイドル回転数制御
装置。
2. The idle correction amount calculating means calculates the idle correction amount by calculating proportional and integral feedback values using at least a deviation and a constant corresponding to the deviation, and adding these feedback values. The idle speed control device for a two-stroke engine according to claim 1.
JP17437691A 1991-06-19 1991-06-19 Idle rotation speed control device for two-cycle engine Pending JPH04370343A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP17437691A JPH04370343A (en) 1991-06-19 1991-06-19 Idle rotation speed control device for two-cycle engine
GB9211550A GB2256945B (en) 1991-06-19 1992-06-01 An idling R.P.M.control system for a two-stroke engine
DE19924219358 DE4219358A1 (en) 1991-06-19 1992-06-12 IDLE SPEED CONTROL SYSTEM FOR A 2-STROKE COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17437691A JPH04370343A (en) 1991-06-19 1991-06-19 Idle rotation speed control device for two-cycle engine

Publications (1)

Publication Number Publication Date
JPH04370343A true JPH04370343A (en) 1992-12-22

Family

ID=15977535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17437691A Pending JPH04370343A (en) 1991-06-19 1991-06-19 Idle rotation speed control device for two-cycle engine

Country Status (3)

Country Link
JP (1) JPH04370343A (en)
DE (1) DE4219358A1 (en)
GB (1) GB2256945B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6619270B2 (en) * 2000-03-14 2003-09-16 Isuzu Motors Limited Engine fuel injection control device
JP2009068497A (en) * 2001-02-21 2009-04-02 Robert Bosch Gmbh Method of operating internal combustion engine, and control method for the internal combustion engine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926328B1 (en) * 1996-08-09 2003-01-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control system for internal combustion engine
JP3979692B2 (en) * 1997-01-31 2007-09-19 株式会社日立製作所 In-cylinder injection engine control device
DE19725233B4 (en) * 1997-06-14 2005-03-24 Volkswagen Ag Method for adjusting the injection quantity of an internal combustion engine for rudder control
JP3244116B2 (en) 1997-08-18 2002-01-07 日本電気株式会社 Semiconductor laser
DE19931826B4 (en) * 1999-07-08 2004-09-02 Robert Bosch Gmbh Method for controlling an internal combustion engine
US6481394B1 (en) * 1999-09-27 2002-11-19 Sanshin Kogyo Kabushiki Kaisha Control system for two-cycle engine
JP2001098985A (en) * 1999-09-30 2001-04-10 Mazda Motor Corp Device and method for controlling fuel for spark- ingnited direct injection engine
US6990953B2 (en) * 2004-05-24 2006-01-31 Nissan Motor Co., Ltd. Idle rotation control of an internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3039435C2 (en) * 1980-10-18 1984-03-22 Robert Bosch Gmbh, 7000 Stuttgart Device for regulating the idling speed of internal combustion engines
JP2573216B2 (en) * 1987-04-13 1997-01-22 富士重工業株式会社 Engine idle speed control device
JPH0196449A (en) * 1987-10-06 1989-04-14 Fuji Heavy Ind Ltd Valve controller for internal combustion engine
JPH01232133A (en) * 1988-03-10 1989-09-18 Mazda Motor Corp Fuel control device for engine
JPH0385346A (en) * 1989-08-29 1991-04-10 Fuji Heavy Ind Ltd Idling rotation controller of two-cycle engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6619270B2 (en) * 2000-03-14 2003-09-16 Isuzu Motors Limited Engine fuel injection control device
JP2009068497A (en) * 2001-02-21 2009-04-02 Robert Bosch Gmbh Method of operating internal combustion engine, and control method for the internal combustion engine

Also Published As

Publication number Publication date
DE4219358A1 (en) 1992-12-24
GB9211550D0 (en) 1992-07-15
GB2256945B (en) 1994-10-12
GB2256945A (en) 1992-12-23

Similar Documents

Publication Publication Date Title
JP2869464B2 (en) Fuel injection control device for two-cycle engine
US5078107A (en) Fuel injection control system for an internal combustion engine
JPH051837U (en) Fuel injection control device for in-cylinder direct injection engine
JP3404059B2 (en) Fuel injection method for in-cylinder direct injection engine
JPH112169A (en) Gasified fuel direct injection device for internal combistion engine
JPH0233439A (en) Fuel injection control device for two-cycle direct injection engine
US6899077B2 (en) Method for operating a multiple injection internal combustion engine in the starting phase
JPH0249939A (en) Fuel injection control device of two-cycle direct-injection engine
JPH0240052A (en) Number of idle revolutions control device for 2-cycle direct injection engine
JPH09268942A (en) Control device for in-cylinder injection type internal combustion engine
JPH0385346A (en) Idling rotation controller of two-cycle engine
JPH11159383A (en) Direct cylinder injection multiple cylinder engine
JPH0240042A (en) Fuel injection control device for 2-cycle direct injection engine
JPH04370343A (en) Idle rotation speed control device for two-cycle engine
JP2007154853A (en) Control device of spark-ignition direct-injection internal combustion engine
JP3500876B2 (en) Fuel injection device for direct injection spark ignition engine
JPH09250435A (en) Engine control method and control device therefor
JPH03281965A (en) Control device for two-cycle engine
JPH05149168A (en) Fuel pressure control device of direct injection-in-cylinder type engine
JP3903832B2 (en) Control method for internal combustion engine
EP1284353A2 (en) Fuel injection control for start-up of internal combustion engine
RU2752526C1 (en) Method for controlling air-fuel injector of internal combustion engine
JP2631940B2 (en) Control device for in-cylinder direct injection engine
JP3084040B2 (en) Control device for two-stroke engine
JPH0240043A (en) Fuel injection control device for 2-cycle direct injection engine