JPH03281965A - Control device for two-cycle engine - Google Patents

Control device for two-cycle engine

Info

Publication number
JPH03281965A
JPH03281965A JP8374590A JP8374590A JPH03281965A JP H03281965 A JPH03281965 A JP H03281965A JP 8374590 A JP8374590 A JP 8374590A JP 8374590 A JP8374590 A JP 8374590A JP H03281965 A JPH03281965 A JP H03281965A
Authority
JP
Japan
Prior art keywords
combustion
fuel injection
fuel
uniform
stratified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8374590A
Other languages
Japanese (ja)
Inventor
Koji Morikawa
弘二 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP8374590A priority Critical patent/JPH03281965A/en
Priority to US07/676,831 priority patent/US5078107A/en
Priority to DE4110618A priority patent/DE4110618C2/en
Publication of JPH03281965A publication Critical patent/JPH03281965A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To smoothly shift torque characteristics as combustion is changed by providing a mixed combustion zone at a switching point between stratified combustion and uniform combustion in an engine where fuel injection for stratified combustion is controlled at the time of low and intermediate loading, and fuel injection for uniform combustion is controlled at the time of high loading. CONSTITUTION:Three sections are provided, they are a fuel injection timing determination section 54 which inputs both engine revolution Ne by an engine revolution computing section 51, and the quantity of fuel injection Gf by a fuel injection pulse duration computing section 53, an ignition timing determination section 55 and a combustion mode judging section 56. In the combustion mode judging section 56, a switching point between stratified combustion and uniform combustion is set in advance by the map of Ne - Gf, and a mixed combustion zone of both of them is set at a switching point Po where a torque curve TL for stratified combustion at low speed and intermediate loading and a torque curve TH for uniform combustion at high loading are over- lapped. In mixed combustion, fuel is injected 2 times, that is, at the early and later stages of compression stroke, and furthermore, the quantity of fuel injection by an injector 10 is controlled to be great at the early stage as loading is increased, and is also controlled to be less at the later stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両用の2サイクルエンジンにおいて運転条
件に応じて燃料噴射量と共に燃焼方式を制御する制御装
置に関し、詳しくは、燃焼方式切換時のエンジン動力特
性の円滑化対策に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a control device that controls the fuel injection amount and combustion method according to operating conditions in a two-stroke engine for a vehicle. Concerning measures to smooth engine power characteristics.

〔従来の技術〕[Conventional technology]

一般に車両用2サイクルエンジンとして燃焼室にインジ
ェクタを装着し、少なくとも排気孔を閉じた後に点火す
る迄の間の圧縮行程において、インジェクタから燃料を
高圧で直接筒内に噴射する。
Generally, an injector is installed in the combustion chamber of a two-stroke vehicle engine, and fuel is injected directly into the cylinder at high pressure at least during the compression stroke after the exhaust hole is closed and before ignition.

そして燃料噴射の時期を早く定めて均一燃焼し、遅く定
めて成層燃焼する方式が本件出願人により既に提案され
ている。
The applicant has already proposed a system in which the timing of fuel injection is set early to achieve uniform combustion, and the timing is set late to achieve stratified combustion.

かかる燃焼方式切換式では、予めマツプにより切換点で
の成層燃焼と均一燃焼とのエンジン出力トルクが一致す
るように設定され、連続的にトルクが変化するようにな
っている。しかるに、例えば大気条件の大気圧、温度、
湿度等が大幅に変化したり、経年変化により各燃焼方式
での実際の出力トルク特性が異なると、切換点でのトル
クに段付きが生じて違和感等を与えることが考えられる
In such a combustion method switching type, the engine output torques for stratified combustion and uniform combustion are set in advance using a map so as to match each other at the switching point, and the torque is changed continuously. However, for example, atmospheric conditions such as atmospheric pressure, temperature,
If the actual output torque characteristics of each combustion method differ due to significant changes in humidity, etc. or changes over time, it is possible that the torque at the switching point will be stepped, giving a sense of discomfort.

従って、大気条件変化、経年変化等に対し燃焼方式切換
点での特性を常に円滑化するように、予め対策を施すこ
とが望まれる。
Therefore, it is desirable to take measures in advance to always maintain smooth characteristics at the combustion method switching point against changes in atmospheric conditions, aging, etc.

そこで従来、上記燃焼方式切換式のエンジンにおいて、
切換点での出力特性の円滑化対策に関しては、例えば特
開昭60−36719号公報の先行技術がある。ここで
、吸気密度を検出して、吸気密度が低下した場合は成層
燃焼から均一燃焼への切換点を低負向側に移行し、吸気
密度が上昇した場合は逆に切換点を高負荷側に移行する
ことが示されている。
Therefore, conventionally, in the above-mentioned combustion method switching type engine,
Regarding measures for smoothing the output characteristics at the switching point, for example, there is a prior art technique disclosed in Japanese Patent Laid-Open No. 60-36719. Here, the intake air density is detected, and if the intake air density decreases, the switching point from stratified charge combustion to uniform combustion is shifted to the low negative side, and if the intake air density increases, the switching point is shifted to the high load side. It has been shown that there is a transition to

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記先行技術のものにあっては、吸気密度の
検出センサが必要になり、吸気密度以外の経年変化等に
は対処し得ない。また、2種類の燃焼方式をベースにし
て切換点を変更する方法であるから、燃焼は改善されて
も段付きのトルク変化は残る。更に、燃焼方式の切換え
は2サイクルエンジンの場合において燃焼の良否に大き
く影響するものであり、予め最適に設定されているため
、この切換点を変更すると全体の燃焼形態がくずれて好
ましくない等の問題がある。
By the way, the prior art described above requires a sensor for detecting intake air density, and cannot deal with changes over time other than intake air density. Furthermore, since the method changes the switching point based on two types of combustion methods, even if combustion is improved, stepped torque changes remain. Furthermore, switching the combustion method greatly affects the quality of combustion in the case of a two-stroke engine, and since it is optimally set in advance, changing this switching point may disrupt the overall combustion pattern and cause undesirable effects. There's a problem.

本発明は、かかる点に鑑みてなされたもので、その目的
とするところは、燃焼方式の切換式において種々の条件
により実際の出力トルク特性が変化しても、全体の燃焼
方式切換えの条件は変更すること無く常に円滑にトルク
を変化することが可能な2サイクルエンジンの制御装置
を提供することにある。
The present invention has been made in view of these points, and its purpose is to maintain the overall combustion method switching conditions even if the actual output torque characteristics change due to various conditions in the combustion method switching system. To provide a control device for a two-stroke engine that can always smoothly change torque without changing it.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の2サイクルエンジン
の制御装置は、運転条件により燃焼方式を判断し、少な
くとも低・中負荷時には成層燃焼の燃料噴射および点火
時期を制御し、高負荷時には均一燃焼の燃料噴射および
点火時期を制御する2サイクルエンジンの制御系におい
て、成層燃焼と均一燃焼との切換点に両者の混合燃焼領
域を設け、成層燃焼方式と均一燃焼方式の一方から他方
への混合燃焼方式を介して移行するものである。
In order to achieve the above object, the two-stroke engine control device of the present invention determines the combustion method based on operating conditions, controls fuel injection and ignition timing for stratified combustion at least at low and medium loads, and controls uniform combustion at high loads. In the control system of a two-stroke engine that controls fuel injection and ignition timing, a mixed combustion region is provided at the switching point between stratified combustion and uniform combustion, and mixed combustion from one of the stratified combustion method and uniform combustion method to the other. This is a method of transition.

〔作   用〕[For production]

上記構成に基づき、2サイクルエンジンの負荷運転にお
いて低・中負荷では、圧縮後期の遅い燃料噴射により少
ない燃料でも安定して成層燃焼され、また高負荷では、
圧縮初期の早くて多量の燃料噴射により空気利用率の高
い均一燃焼が行われる。そして両燃焼方式の切換点では
、両者の混合燃焼方式になることで、燃焼状態と共にト
ルク特性が滑らかに移行し、大気条件、経年変化の場合
もトルク特性を円滑に変化するようになる。
Based on the above configuration, during low and medium load operation of a 2-stroke engine, slow fuel injection in the latter half of compression allows stable stratified combustion even with a small amount of fuel, and at high loads,
By injecting a large amount of fuel early at the beginning of compression, uniform combustion with high air utilization efficiency is achieved. At the switching point between the two combustion methods, by switching to a mixed combustion method, the torque characteristics change smoothly with the combustion state, and the torque characteristics change smoothly even in the case of atmospheric conditions or changes over time.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図において、2サイクル筒内直噴式ガソリンエンジ
ンの全体の構成について述べると、符号1は2サイクル
エンジンの本体であり、シリンダ2にピストン3が往復
動可能に挿入され、クランク室4のクランク軸5に対し
偏心して設けられたコンロッド6によりピストン3が連
結し、クランク軸5にはピストン3の往復動慣性力を相
殺するようにバランサ7が設けられる。燃焼室8は、オ
フセット、ウェッジ、カマボコ等の形状であり、中心頂
部付近の高い位置に高圧1流体式インジェクタIOが、
パルス信号のオン時間(パルス幅)だけ開くようにして
設置される。また点火プラグ9は、電極9aがインジェ
クタ10の噴射方向直下に位置するように傾いて取付け
られる。
In FIG. 2, the overall configuration of a two-stroke direct injection gasoline engine is described. Reference numeral 1 is the main body of the two-stroke engine, in which a piston 3 is inserted into a cylinder 2 so as to be able to reciprocate, and a crank in a crank chamber 4 is inserted. The piston 3 is connected by a connecting rod 6 provided eccentrically with respect to the shaft 5, and a balancer 7 is provided on the crankshaft 5 so as to offset the reciprocating inertia force of the piston 3. The combustion chamber 8 has an offset, wedge, or semicylindrical shape, and a high-pressure single-fluid injector IO is located at a high position near the center top.
It is installed so that it is open for the ON time (pulse width) of the pulse signal. Further, the spark plug 9 is installed at an angle so that the electrode 9a is located directly below the injector 10 in the injection direction.

インジェクタlOと電極ブ9aとの距離は、低・中負荷
で点火直前に噴射されるコーン型の燃料噴霧を考慮して
設定される。即ち、距離が短い場合は霧化が不足し、長
くなると噴霧が拡散することから、両者の間で噴霧の後
端部に着火して成層燃焼することが可能になっている。
The distance between the injector lO and the electrode bulb 9a is set in consideration of the cone-shaped fuel spray that is injected just before ignition at low/medium loads. That is, when the distance is short, atomization is insufficient, and when the distance is long, the spray diffuses, so that between the two, the rear end of the spray can be ignited and stratified combustion can occur.

また、インジェクタlOはシリンダ2の略中心線上に配
置されていることから、高負荷で早い時期に噴射された
多量の燃料は、シリンダ2の内部中心から全体に迅速に
拡散して均一に予混合し、均一燃焼することが可能にな
っている。
In addition, since the injector IO is located approximately on the center line of the cylinder 2, a large amount of fuel injected at an early stage under high load quickly diffuses throughout the cylinder 2 from its internal center and is uniformly premixed. This makes it possible to burn evenly.

シリンダ2にはピストン3により所定のタイミングで開
閉する排気ポート11が開口し、排気ボー)11からの
排気管!2に触媒装置13.マフラI4が設けられる。
The cylinder 2 has an exhaust port 11 opened and closed at a predetermined timing by the piston 3, and an exhaust pipe from the exhaust port 11! 2. Catalyst device 13. A muffler I4 is provided.

ここで、排気ポート11には排気ロータリ弁15が設置
され、ベルト手段16によりクランク軸5に連結して排
気ポート11の開閉を各別に定めている。即ち、ピスト
ン3の上昇時に下死点側で排気ロータリ弁15により排
気ポート11を早目に閉じ、高負荷での均一燃焼方式に
おいて燃料噴射の時期を早く設定することが可能になっ
ている。
Here, an exhaust rotary valve 15 is installed in the exhaust port 11, and is connected to the crankshaft 5 by a belt means 16 to individually determine opening and closing of the exhaust port 11. That is, when the piston 3 rises, the exhaust port 11 is closed early by the exhaust rotary valve 15 on the bottom dead center side, making it possible to set the timing of fuel injection early in the uniform combustion method under high load.

また、シリンダ2において排気ポート11に対して、円
周方向に180度および略90度前後ずれた位置に、同
様にピストン3により所定のタイミングで開閉する掃気
ボート17が開口して設けられる。そして掃気ボート1
7の給気管18には、エアクリーナ19.アクセル開度
に応じて開くスロットル弁20が設けられ、スロットル
弁20の下流には掃気ポンプ21が、ベルト手段22に
よりクランク軸5に連結し、エンジン動力より常にポン
プ駆動して掃気圧が生じるように設けられる。ここで、
スロットル弁20はアクセル全閉でも少し開いて掃気ポ
ンプ21の吸込みが可能に設定され、この遊び範囲を越
えるとアクセル開度に応じスロットル弁20が開いて空
気量を制御する。そして空気のみの掃気圧で強制的に掃
気作用し、空気を高い充填効率で供給するようになって
いる。
Further, in the cylinder 2, a scavenging boat 17, which is similarly opened and closed at a predetermined timing by the piston 3, is provided at a position shifted by 180 degrees and about 90 degrees in the circumferential direction with respect to the exhaust port 11. and scavenging boat 1
The air supply pipe 18 of No. 7 has an air cleaner 19. A throttle valve 20 is provided which opens according to the opening degree of the accelerator, and a scavenging pump 21 is connected to the crankshaft 5 by a belt means 22 downstream of the throttle valve 20, and is constantly driven by the engine power to generate scavenging pressure. established in here,
The throttle valve 20 is set to open slightly even when the accelerator is fully closed, allowing suction by the scavenging pump 21, and when this play range is exceeded, the throttle valve 20 opens according to the accelerator opening to control the amount of air. The scavenging pressure of air alone is used to forcefully scavenge air, supplying air with high filling efficiency.

インジェクタ10の高圧燃料系について述べると、燃料
タンク30が、フィルタ31.燃料ポンプ32.燃圧レ
ギュレータ38.圧力変動を吸収するアキュムレータ3
4を有する燃料通路35を介してインジェクタ10に連
通し、燃圧レギュレータ33からの戻り通路3Bが燃料
タンク30に連通している。そして燃圧・レギュレータ
33が燃料ポンプ82の高圧燃料の戻りを調整してイン
ジェクタlOの燃圧を制御する。ここで、低負荷の充填
空気量が少ない場合は燃圧が低く、負荷の増大により充
填空気量が多くなると、燃圧も高く制御されている。
Regarding the high pressure fuel system of the injector 10, the fuel tank 30 is connected to the filter 31. Fuel pump 32. Fuel pressure regulator 38. Accumulator 3 absorbs pressure fluctuations
4, and a return passage 3B from the fuel pressure regulator 33 communicates with the fuel tank 30. The fuel pressure regulator 33 then adjusts the return of high-pressure fuel from the fuel pump 82 to control the fuel pressure of the injector IO. Here, when the amount of charged air is small under low load, the fuel pressure is low, and when the amount of filled air increases due to an increase in load, the fuel pressure is also controlled to be high.

続いて、第1図において電子制御系として燃料噴射9点
火時期の制御系について述べる。
Next, in FIG. 1, a fuel injection 9 ignition timing control system will be described as an electronic control system.

先ず、クランク角センサ40.気筒判別センサ41゜ア
クセル開度センサ42を有し、これらのセンサ信号が制
御ユニット50に入力する。制御ユニット50は、クラ
ンク角センサ40のクランク角θが人力するエンジン回
転数算出部51を有し、クランクパルスの時間等により
エンジン回転数Noを算出する。
First, the crank angle sensor 40. It has a cylinder discrimination sensor 41 and an accelerator opening sensor 42, and these sensor signals are input to a control unit 50. The control unit 50 has an engine rotation speed calculating section 51 that manually calculates the crank angle θ of the crank angle sensor 40, and calculates the engine rotation speed No. based on the time of the crank pulse and the like.

クランク角センサ40.気筒判別センサ41の信号はク
ランク位置検出部52に入力し、各気筒での上死点前の
基準位置を検出する。
Crank angle sensor 40. The signal from the cylinder discrimination sensor 41 is input to a crank position detection section 52, which detects the reference position before the top dead center of each cylinder.

また、エンジン回転数Neとアクセル開度センサ42の
アクセル開度φとが入力する燃料噴射パルス幅算出部5
3を有し、エンジン回転数No、アクセル開度φによる
各運転条件に応じた燃料噴射量Gfをマツプ検索する。
Further, the fuel injection pulse width calculation unit 5 receives the engine rotation speed Ne and the accelerator opening degree φ of the accelerator opening degree sensor 42.
3, and a map search is performed for the fuel injection amount Gf according to each operating condition based on the engine speed No. and the accelerator opening degree φ.

そして燃圧に応じた係数に、電圧補正分子sを加味して
燃料噴射パルス幅Tiを、Ti−に−Gf+Tsにより
算出する。
Then, the fuel injection pulse width Ti is calculated by adding -Gf+Ts to Ti- by adding the voltage correction numerator s to the coefficient corresponding to the fuel pressure.

エンジン回転数Ne、燃料噴射量Gfは燃料噴射時期決
定部541点火時期決定部55に入力し、更に燃焼方式
判定部56に入力する。燃焼方式判定部56では、成層
と均一の燃焼方式の切換点が予めNeGfのマツプによ
り設定されている。
The engine rotational speed Ne and the fuel injection amount Gf are inputted to a fuel injection timing determining section 541, an ignition timing determining section 55, and further inputted to a combustion method determining section 56. In the combustion method determining section 56, a switching point between the stratified combustion method and the uniform combustion method is set in advance using a map of NeGf.

ここで本発明では、第3図(a)で示すように、低速・
中負荷の成層燃焼のトルク曲線Tしと、高負荷の均一燃
焼のトルク曲線T oとが重合する切換点P。において
、両者の混合燃焼領域が設定される。そして混合燃焼領
域のトルク曲線TMが、成層燃焼のトルク曲線Tl、と
均一燃焼のトルク曲線T oとの間にまたがって設けら
れ、トルク曲線TしとTMとが一致する切換点P、と、
トルク曲線T&4とToとが一致する切換点P2が設定
される。そこで、切換点p、、p2に対応した燃料噴射
量設定値Gf+ 、Gf2を有し、これらと燃料噴射f
f1Gfとを比較して、Gf<Gf、の場合に成層燃焼
を、Gf≧Gf2の場合に均一燃焼を判断するのであり
、これらの燃焼方式の信号が燃料噴射時期決定部541
点火時期決定部55に入力する。
Here, in the present invention, as shown in FIG.
A switching point P where the torque curve T for medium-load stratified combustion and the torque curve T for high-load uniform combustion overlap. In this step, a mixed combustion region for both is set. and a switching point P where the torque curve TM in the mixed combustion region is provided straddling the torque curve Tl of stratified combustion and the torque curve T0 of uniform combustion, and the torque curve T and TM coincide;
A switching point P2 is set where the torque curve T&4 and To match. Therefore, we have fuel injection amount setting values Gf+ and Gf2 corresponding to the switching points p, , p2, and these and the fuel injection amount f
f1Gf, stratified combustion is determined when Gf<Gf, and uniform combustion is determined when Gf≧Gf2, and these combustion method signals are sent to the fuel injection timing determining unit 541.
The signal is input to the ignition timing determining section 55.

また、Gf、≦Gf<Gf2の場合に混合燃焼を判断す
る。
Further, mixed combustion is determined when Gf, ≦Gf<Gf2.

燃料噴射時期決定部54は、エンジン回転数Neと燃料
噴射量Gfとによる成層と均一の各燃焼方式毎の燃料噴
射時期θlE、θisのマツプを有し、成層燃焼では成
層燃焼方式の燃料噴射時期θilEを、均一燃焼では均
一燃焼方式の燃料噴射時期θISをマツプ検索して出力
する。ここで成層燃焼では、点火直前に所定の霧化時間
を残して噴射終了する必要があるため、この場合は噴射
終了時期θIIEが設定される。一方、均一燃焼では、
排気が閉じた後の早い時期に噴射開始する必要があるた
め、この場合は噴射開始時期θISが設定される。点火
時期決定部55も、エンジン回転数Neと燃料噴射量G
fとによる各燃焼方式毎の点火時期θgのマ・ツブを有
し、各燃焼方式で点火時期θgをマツプ検索するのであ
り、こうして低・中負荷で成層燃焼し、高負荷で均一燃
焼するようになっている。
The fuel injection timing determining unit 54 has a map of fuel injection timings θlE and θis for each stratified and uniform combustion method based on the engine speed Ne and the fuel injection amount Gf, and in the case of stratified combustion, the fuel injection timing of the stratified combustion method is determined. In the case of uniform combustion, θILE is output by searching a map for the fuel injection timing θIS of the uniform combustion method. Here, in stratified charge combustion, it is necessary to end injection with a predetermined atomization time left immediately before ignition, so in this case, injection end timing θIIE is set. On the other hand, in uniform combustion,
Since it is necessary to start the injection early after the exhaust gas closes, the injection start timing θIS is set in this case. The ignition timing determining unit 55 also determines the engine speed Ne and the fuel injection amount G.
It has a map of ignition timing θg for each combustion method based on It has become.

燃料噴射パルス幅Tiと燃料噴射時期θiEまたはθ1
sは燃料噴射タイミング設定部57に人力し、クランク
角基準位置に基づき燃料噴射パルス幅Ti、燃料噴射時
期θIF、またはθISに応じた燃料噴射信号を駆動部
58を介してインジェクタ!0に出力する。また、点火
時期θgは点火タイミング設定部59に人力し、クラン
ク角基準位置に基づき点火時期θgに応じた点火タイミ
ング、ドエル時間等の点火信号を駆動部60を介して点
火プラグ9に出力するように構成される。
Fuel injection pulse width Ti and fuel injection timing θiE or θ1
s is input manually to the fuel injection timing setting section 57, and a fuel injection signal corresponding to the fuel injection pulse width Ti, fuel injection timing θIF, or θIS is sent to the injector via the drive section 58 based on the crank angle reference position. Output to 0. The ignition timing θg is manually input to the ignition timing setting section 59, and ignition signals such as ignition timing and dwell time are outputted to the spark plug 9 via the drive section 60 based on the crank angle reference position. It is composed of

続いて、混合燃焼方式の制御系について述べる。Next, we will discuss the control system for the mixed combustion method.

この混合燃焼では、少なくとも燃料を圧縮行程の初期と
後期の2回に分けて噴射し、かつ負荷の増大に応じて初
期(前)燃料噴射量を多くし、後期(後)燃料噴射量を
少な(するように制御すれば良い。そこで、エンジン回
転数Ne、燃料噴射fiGf、および燃料噴射パルス幅
Tiが入力する2回燃料噴射量算出部61を有し、燃料
噴射パルス幅Tiを前燃料噴射パルス幅Ti、と後燃料
噴射パルス幅Ti2との2回噴射とする。そして第3図
(b)に示すように、混合燃焼開始時P、での前燃料噴
射パルス幅Tt1mに対しては均一リーンのみで燃焼す
る必要最小限燃料噴射量に、混合燃焼から均一燃焼へ移
るP2での後燃料噴射パルス幅T i 2.に対しては
成層のみて燃焼する必要最小限燃料噴射量に、それぞれ
定める。また、エンジン回転数Ne、燃料噴射量Gf、
混合燃焼方式の信号、および旧燃料噴射パルス幅Ti、
、後燃料噴射パルス幅Ti2は混合燃焼燃料噴射時期決
定部62に入力して、均一の燃料噴射時期θIsを用い
て前燃料噴射パルス幅Ti1に応じた燃料噴射時期θ1
1と、成層の燃料噴射時期θICEを用いて後燃料噴射
パルス幅Ti2に応じた燃料噴射時期θ12とを決定し
、この信号を燃料噴射タイミング設定部57に人力する
In this mixed combustion, fuel is injected at least twice, at the beginning and the end of the compression stroke, and as the load increases, the initial (front) fuel injection amount is increased and the late (rear) fuel injection amount is decreased. (The engine speed Ne, fuel injection fiGf, and fuel injection pulse width Ti are input to the two-time fuel injection amount calculation section 61. Two injections are performed with a pulse width Ti and a post-fuel injection pulse width Ti2.As shown in Fig. 3(b), the pre-fuel injection pulse width Tt1m at the start of mixed combustion is uniform. The required minimum fuel injection amount for lean combustion only, and the necessary minimum fuel injection amount for stratified combustion only for the after-fuel injection pulse width T i 2 at P2 when the mixture combustion shifts from mixed combustion to uniform combustion, respectively. In addition, the engine rotation speed Ne, the fuel injection amount Gf,
Mixed combustion method signal and old fuel injection pulse width Ti,
, the post-fuel injection pulse width Ti2 is input to the mixed combustion fuel injection timing determination unit 62, and the uniform fuel injection timing θIs is used to determine the fuel injection timing θ1 according to the pre-fuel injection pulse width Ti1.
1 and the stratified fuel injection timing θICE, the fuel injection timing θ12 corresponding to the post-fuel injection pulse width Ti2 is determined, and this signal is manually input to the fuel injection timing setting section 57.

また、混合燃焼方式での点火時期に関しては、例えば点
火時期決定部55が専用の点火時期θgを有し、このマ
ツプ検索して点火時期信号を出力する。
Regarding the ignition timing in the mixed combustion method, for example, the ignition timing determining section 55 has a dedicated ignition timing θg, searches this map, and outputs an ignition timing signal.

次いで、かかる構成の2サイクルエンジンの制御装置の
作用についてべろ。
Next, let's talk about the operation of the control device for a two-stroke engine with this configuration.

先ず、エンジン運転時に、アクセル開度に応じスロット
ル弁20が開いて空気が掃気ポンプ21に吸入されて所
定の掃気圧が生じており、ピストン3の下降時に排気ボ
ート11が開き、次に掃気ボート17も開くと、この加
圧空気が掃気ボートI7からシリンダ2の内部に流入す
る。そしてこの給気の縦スワール流によりシリンダ2の
残留ガスを排気ボート11から押し出し、給気を高い充
填効率で満すように掃気作用される。一方、ピストン3
が下死点から上昇し始めると、排気ロータリ弁15が閉
じて掃気が終了し、燃料の吹き抜けが生じること無く燃
料噴射することが可能になり、次いで掃気ボート17が
閉じて圧縮行程に移行する。一方、このときインジェク
タIOの高圧燃料系では運転条件に応じて燃圧レギュレ
ータ33で燃圧が制御され、この燃料がインジェクタI
Oに導かれている。
First, during engine operation, the throttle valve 20 opens according to the accelerator opening and air is sucked into the scavenging pump 21 to generate a predetermined scavenging pressure.When the piston 3 descends, the exhaust boat 11 opens, and then the scavenging boat 17 is also opened, this pressurized air flows into the interior of the cylinder 2 from the scavenging boat I7. This vertical swirl flow of the supply air pushes out the residual gas in the cylinder 2 from the exhaust boat 11, and performs a scavenging action to fill the supply air with high filling efficiency. On the other hand, piston 3
When the engine starts to rise from the bottom dead center, the exhaust rotary valve 15 closes and scavenging ends, making it possible to inject fuel without fuel blow-through, and then the scavenging boat 17 closes and the compression stroke begins. . On the other hand, at this time, in the high-pressure fuel system of the injector IO, the fuel pressure is controlled by the fuel pressure regulator 33 according to the operating conditions, and this fuel is supplied to the injector I.
Guided by O.

また、制御ユニット50の燃料噴射パルス幅算出部53
では、エンジン回転数No、アクセル開度φに応じて燃
料噴射量Gfがマツプ検索され、更に燃料噴射量Gfに
基づいて燃料噴射パルス幅Tiが算出される。同時に燃
焼方式判定部5Bでは、燃焼方式が判断され、燃料噴射
時期決定部541点火時期決定部55のマツプがこの判
断により選択される。
Further, the fuel injection pulse width calculation section 53 of the control unit 50
Then, the fuel injection amount Gf is searched on a map according to the engine speed No. and the accelerator opening degree φ, and the fuel injection pulse width Ti is further calculated based on the fuel injection amount Gf. At the same time, the combustion method determining section 5B determines the combustion method, and the map of the fuel injection timing determining section 541 and the ignition timing determining section 55 is selected based on this determination.

そこで低・中負荷時には、燃料噴射時期決定部54で成
層燃焼用マツプが選択され、これにより燃料噴射時期θ
IBが点火時期の近くに決定され、点火時期決定部55
でも成層燃焼用マツプにより点火時期θgが比較的上死
点に近く決定される。そして燃料噴射パルス幅Ti、燃
料噴射時期θIP、による噴射信号がインジェクタIO
に出力することで、第4図(a)に示すように、圧縮後
期に比較的少量の燃料が点火プラグ9の電極9aに向け
て噴射され、その直後に点火時期θgによる点火信号が
点火プラグ9に出力する。このため、コーン型の燃料噴
霧が拡散する前にその後端部に電極9aで着火して成層
燃焼するのであり、こうして空気量に比べて燃料が非常
に少なくても、燃料の濃混合気を有効利用して安定した
燃焼が行われる。
Therefore, at low/medium load, the fuel injection timing determining section 54 selects the stratified combustion map, and thereby the fuel injection timing θ
IB is determined to be close to the ignition timing, and the ignition timing determining section 55
However, the ignition timing θg is determined relatively close to top dead center by the stratified combustion map. Then, the injection signal based on the fuel injection pulse width Ti and the fuel injection timing θIP is output to the injector IO.
As shown in FIG. 4(a), a relatively small amount of fuel is injected toward the electrode 9a of the spark plug 9 in the late stage of compression, and immediately after that, an ignition signal based on the ignition timing θg is sent to the spark plug. Output to 9. For this reason, before the cone-shaped fuel spray diffuses, it is ignited by the electrode 9a at its rear end, resulting in stratified combustion.In this way, even if the fuel is very small compared to the amount of air, a rich mixture of fuel can be effectively used. Stable combustion is achieved using this method.

続いて、中負荷から高負荷に移る燃焼方式の切換点で燃
焼方式判定部56により混合燃焼が判断されると、2回
燃料噴射量算出部61により前、後2回の燃料噴射を実
行するための燃料噴射パルス幅Ti、、Ti2に分けら
れ、かつ混合燃焼燃料噴射時期決定部62で圧縮初期と
後期の燃料噴射時期θiI+  θ12が決定されるこ
とで、第4図(b)に示すように、2回燃料噴射される
。そこで、第5図(a)に示すように、圧縮初期に少な
くとも均一のみでリーン燃焼する必要最小限の燃料F、
がインジェクタ10から噴射し、第5図(b)に示すよ
うに、燃料噴射が終了すると、第5図(c)に示すよう
に、燃料F1はピストン3の上昇に伴い拡散して均一混
合する。そして第5図(d)に示すように、均一混合気
A中に再び少ない燃料F、が噴射され、この直後に第5
図(e)に示すように、燃料F2の噴霧に点火プラグ9
で着火される。このため、2回目の燃料F2を火種とし
て1回目の燃料F、の混合気Aが均一燃焼して、成層と
均一が混合した燃焼状態になる。そして負荷の上昇と共
に、第3図(b)に示すように、前燃料噴射量を増し、
後燃料噴射量を減少させ、最終的には後燃料噴射量は成
層のみで燃焼する必要最小限の噴射量とする。
Subsequently, when the combustion method determining section 56 determines mixed combustion at the switching point of the combustion method from medium load to high load, the double fuel injection amount calculating section 61 executes two fuel injections, front and rear. As shown in FIG. 4(b), the fuel injection pulse widths Ti, Ti2 are divided into two, and the mixed combustion fuel injection timing determination unit 62 determines the fuel injection timings θiI+θ12 in the early and late stages of compression. Fuel is injected twice. Therefore, as shown in FIG. 5(a), the minimum necessary fuel F, which burns lean at least uniformly at the beginning of compression, is
is injected from the injector 10, and when the fuel injection is completed as shown in FIG. 5(b), the fuel F1 is diffused and mixed uniformly as the piston 3 rises, as shown in FIG. 5(c). . Then, as shown in FIG. 5(d), a small amount of fuel F is again injected into the homogeneous mixture A, and immediately after this, the fifth
As shown in Figure (e), the spark plug 9 is connected to the spray of fuel F2.
is ignited. Therefore, the mixture A of the first fuel F burns uniformly using the second fuel F2 as the ignition source, resulting in a combustion state in which stratified and homogeneous combustion is mixed. As the load increases, the pre-fuel injection amount is increased as shown in Figure 3(b).
The amount of post-fuel injection is reduced, and ultimately the amount of post-fuel injection is set to the minimum necessary amount for combustion only through stratification.

次いで高負荷時には、燃料噴射量Gfが多くなると均一
燃焼方式のマツプが燃料噴射時期決定部54、点火時期
決定部55で選択される。そこで燃料噴射時期θIsが
排気ロータリ弁15の閉後の早い時期に、点火時期θg
が最適値に決定されることになり、このため第4図(C
)に示すように、圧縮初期にインジェクタlOから多量
の燃料がシリンダ2内に噴射され、圧縮中に燃料と空気
とが充分混合する。そしてこの均一に混合した後に点火
プラグ9で着火して、空気利用率の高い均一燃焼が行わ
れ、エンジン出力をアップするのである。この場合に、
トルク特性は第3図(a)に示すように、上述の混合燃
焼のトルク曲線TMを仲介して均一燃焼のトルク曲線T
+白こ滑らかに移行することになる。
Next, when the load is high, when the fuel injection amount Gf increases, a map for the uniform combustion method is selected by the fuel injection timing determining section 54 and the ignition timing determining section 55. Therefore, the fuel injection timing θIs is set early after the exhaust rotary valve 15 is closed, and the ignition timing θg
is determined to be the optimal value, and therefore, as shown in Fig. 4 (C
), a large amount of fuel is injected into the cylinder 2 from the injector IO at the beginning of compression, and the fuel and air are sufficiently mixed during compression. After this uniform mixing, the spark plug 9 ignites the mixture, resulting in uniform combustion with a high air utilization rate, increasing engine output. In this case,
As shown in FIG. 3(a), the torque characteristic is determined by the uniform combustion torque curve T via the mixed combustion torque curve TM described above.
+ White color will transition smoothly.

なお、エンジン出力の低下の場合も均一から混合を経て
成層の燃焼方式に切換わることは勿論である。
It goes without saying that even in the case of a decrease in engine output, the combustion method is switched from the homogeneous combustion method to the stratified combustion method via mixing.

こうして、成層燃焼と均一燃焼との切換点に両者の混合
燃焼が介在することで、切換点のトルク変化が円滑化す
る。また、大気条件、経年変化により実際の成層または
均一の燃焼状態の一方または両方が異なったものに変化
しても、両者の移行が滑らかに行われることになる。
In this way, mixed combustion between stratified combustion and uniform combustion is present at the switching point, thereby smoothing the torque change at the switching point. Furthermore, even if one or both of the actual stratified and uniform combustion conditions changes due to atmospheric conditions or changes over time, the transition between the two will be smooth.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、2サイクルの
筒内直噴式エンジンで、成層と均一の燃焼方式に切換え
るものにおいて、切換点に両者の混合燃焼領域を設ける
ので、切換点の燃焼状態、トルク特性が円滑に変化し、
特に大気条件。
As described above, according to the present invention, in a two-cycle direct injection engine that switches between the stratified combustion method and the uniform combustion method, a mixed combustion region of both is provided at the switching point, so that the combustion at the switching point The state and torque characteristics change smoothly,
Especially atmospheric conditions.

経年変化によるトルクの段付きを低減し得る。It is possible to reduce steps in torque due to aging.

さらに、混合燃焼では2回燃料噴射して、成層と均一の
傾向に制御して燃焼を行うので、切換点のトルク曲線を
滑らかに変化したものに設定でき、効果が大きい。
Furthermore, in mixed combustion, fuel is injected twice and combustion is controlled to have a stratified and uniform tendency, so the torque curve at the switching point can be set to change smoothly, which is highly effective.

また、専用のセンサが不要であり、燃焼方式の切換点は
固定化しているので、全体の燃焼形態は常に一定化して
最適燃焼状態を保ち得る。
Further, since a dedicated sensor is not required and the switching point of the combustion method is fixed, the overall combustion form is always constant and an optimum combustion state can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の2サイクルエンジンの制御装置の実施
例を示す電子制御系のブロック図、第2図は本発明の2
サイクルエンジンの全体の概略を示す構成図、 第3図(a)は成層、混合、均一の各燃焼方式のトルク
特性図、(b)は混合燃焼での2回燃料噴射量の設定マ
ツプを示す図、 第4図(a)ないしくC)は各燃焼方式の燃料噴射。 点火時期のタイミングを示す図、 第5図(a)ないしくo)は混合燃焼方式の燃料噴射等
の状態を示す図である。 l・・・2サイクル工ンジン本体、9・・・点火プラグ
、10・・・インジェクタ、50・・・制御ユニット、
53・・・燃料噴射パルス幅算出部、54・・・燃料噴
射時期決定部、55・・・点火時期決定部、56・・・
燃焼方式判定部、61・・・2回燃料噴射量算出部、6
2・・・混合燃焼燃料噴射時期決定部 果 図 (a) Gf。  f 2 燃料噴射量Gf− (Pl) (P2) 第 5 図
FIG. 1 is a block diagram of an electronic control system showing an embodiment of a control device for a two-stroke engine according to the present invention, and FIG.
Figure 3 (a) is a diagram showing the overall configuration of a cycle engine; Figure 3 (a) is a torque characteristic diagram for stratified, mixed, and uniform combustion methods; Figure 3 (b) is a map showing the setting of the amount of fuel injected twice in mixed combustion. Figures 4(a) to 4(c) show fuel injection for each combustion method. Figures 5(a) to 5(o) are diagrams showing the timing of ignition timing, and Figures 5(a) to 5(o) are diagrams showing states of fuel injection, etc. in the mixed combustion system. l... 2-stroke engine body, 9... spark plug, 10... injector, 50... control unit,
53...Fuel injection pulse width calculation unit, 54...Fuel injection timing determination unit, 55...Ignition timing determination unit, 56...
Combustion method determination section, 61... Twice fuel injection amount calculation section, 6
2...Mixed combustion fuel injection timing determination part diagram (a) Gf. f 2 Fuel injection amount Gf- (Pl) (P2) Fig. 5

Claims (3)

【特許請求の範囲】[Claims] (1)運転条件により燃焼方式を判断し、少なくとも低
・中負荷時には成層燃焼の燃料噴射および点火時期を制
御し、高負荷時には均一燃焼の燃料噴射および点火時期
を制御する2サイクルエンジンの制御系において、 成層燃焼と均一燃焼との切換点に両者の混合燃焼領域を
設け、 成層燃焼方式と均一燃焼方式の一方から他方への混合燃
焼方式を介して移行することを特徴とする2サイクルエ
ンジンの制御装置。
(1) A two-stroke engine control system that determines the combustion method based on operating conditions, and controls fuel injection and ignition timing for stratified combustion at least at low and medium loads, and controls fuel injection and ignition timing for uniform combustion at high loads. A two-stroke engine characterized in that a mixed combustion region is provided at the switching point between stratified combustion and uniform combustion, and a transition is made from one of the stratified combustion method and the uniform combustion method to the other through the mixed combustion method. Control device.
(2)混合燃焼方式の制御系は、混合燃焼領域を判断す
る燃焼方式判定手段と、燃料噴射量を前後2回に分ける
2回燃料噴射量算出手段と、成層と均一の燃料噴射時期
を用いて前後2回の燃料噴射量に応じた燃料噴射時期を
定める混合燃焼燃料噴射時期決定手段とを備えることを
特徴とする請求項(1)記載の2サイクルエンジンの制
御装置。
(2) The control system for the mixed combustion method uses a combustion method determining means that determines the mixed combustion region, a double fuel injection amount calculation means that divides the fuel injection amount into two before and after, and stratification and uniform fuel injection timing. 2. The control device for a two-stroke engine according to claim 1, further comprising a mixed combustion fuel injection timing determining means for determining fuel injection timing according to two fuel injection amounts before and after.
(3)2回燃料噴射量算出手段は、負荷に応じて前燃料
噴射量を増大関数で、後燃料噴射量を減少関数で設定す
ることを特徴とする請求項(1)記載の2サイクルエン
ジンの制御装置。
(3) The two-cycle engine according to claim 1, wherein the second fuel injection amount calculation means sets the pre-fuel injection amount using an increasing function and the post-fuel injection amount using a decreasing function depending on the load. control device.
JP8374590A 1990-03-30 1990-03-30 Control device for two-cycle engine Pending JPH03281965A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8374590A JPH03281965A (en) 1990-03-30 1990-03-30 Control device for two-cycle engine
US07/676,831 US5078107A (en) 1990-03-30 1991-03-28 Fuel injection control system for an internal combustion engine
DE4110618A DE4110618C2 (en) 1990-03-30 1991-04-02 Fuel injection control system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8374590A JPH03281965A (en) 1990-03-30 1990-03-30 Control device for two-cycle engine

Publications (1)

Publication Number Publication Date
JPH03281965A true JPH03281965A (en) 1991-12-12

Family

ID=13811067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8374590A Pending JPH03281965A (en) 1990-03-30 1990-03-30 Control device for two-cycle engine

Country Status (1)

Country Link
JP (1) JPH03281965A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009062A1 (en) * 1996-08-28 1998-03-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controller of in-cylinder injection spark ignition internal combustion engine
JPH10231746A (en) * 1996-12-19 1998-09-02 Toyota Motor Corp Combustion system control device for internal combustion engine
US5992372A (en) * 1997-05-21 1999-11-30 Nissan Motor Co., Ltd. Transient control between two spark-ignited combustion states in engine
EP0964143A2 (en) * 1998-06-08 1999-12-15 Ford Global Technologies, Inc. Mode control system for direct injection spark ignition engines
US6062190A (en) * 1997-07-18 2000-05-16 Nissan Motor Co., Ltd. Ignition timing control apparatus and method for internal combustion engine
JP2001073830A (en) * 1999-09-06 2001-03-21 Honda Motor Co Ltd Controller for internal combustion engine
CN109113886A (en) * 2017-06-23 2019-01-01 曼能解决方案(曼能解决方案德国股份公司)分公司 Large-sized turbo-charging two-stroke compression ignition internal combustion engine and its operating method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009062A1 (en) * 1996-08-28 1998-03-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controller of in-cylinder injection spark ignition internal combustion engine
US5988137A (en) * 1996-08-28 1999-11-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controller of in-cylinder injection spark ignition internal combustion engine
JPH10231746A (en) * 1996-12-19 1998-09-02 Toyota Motor Corp Combustion system control device for internal combustion engine
US5992372A (en) * 1997-05-21 1999-11-30 Nissan Motor Co., Ltd. Transient control between two spark-ignited combustion states in engine
US6062190A (en) * 1997-07-18 2000-05-16 Nissan Motor Co., Ltd. Ignition timing control apparatus and method for internal combustion engine
EP0964143A2 (en) * 1998-06-08 1999-12-15 Ford Global Technologies, Inc. Mode control system for direct injection spark ignition engines
EP0964143A3 (en) * 1998-06-08 2001-12-12 Ford Global Technologies, Inc. Mode control system for direct injection spark ignition engines
JP2001073830A (en) * 1999-09-06 2001-03-21 Honda Motor Co Ltd Controller for internal combustion engine
CN109113886A (en) * 2017-06-23 2019-01-01 曼能解决方案(曼能解决方案德国股份公司)分公司 Large-sized turbo-charging two-stroke compression ignition internal combustion engine and its operating method
CN109113886B (en) * 2017-06-23 2021-12-31 曼能解决方案(曼能解决方案德国股份公司)分公司 Large turbocharged two-stroke compression ignition internal combustion engine and method of operating the same

Similar Documents

Publication Publication Date Title
US5078107A (en) Fuel injection control system for an internal combustion engine
JP2869464B2 (en) Fuel injection control device for two-cycle engine
US7032381B2 (en) Direct-injection engine with turbocharger and method of controlling the same
US5020504A (en) Fuel injection control system for a two-cycle engine
US5222481A (en) Fuel injection control system for an internal combustion engine
JP3404059B2 (en) Fuel injection method for in-cylinder direct injection engine
JPH0233439A (en) Fuel injection control device for two-cycle direct injection engine
KR100317159B1 (en) Fuel injection control system for internal combustion engine
US6199534B1 (en) Control equipment for internal combustion engines
US20060201476A1 (en) Method for operating an internal combustion engine
JPH0249939A (en) Fuel injection control device of two-cycle direct-injection engine
JPH0240052A (en) Number of idle revolutions control device for 2-cycle direct injection engine
JPH0374569A (en) Fuel injection control device for gasoline engine
JPH0385346A (en) Idling rotation controller of two-cycle engine
US5975045A (en) Apparatus and method for controlling direct injection engines
US6484690B2 (en) Control equipment for internal combustion engines
JPH03281965A (en) Control device for two-cycle engine
JPH04370343A (en) Idle rotation speed control device for two-cycle engine
US11028797B2 (en) Engine control method and engine control device
JPH05149168A (en) Fuel pressure control device of direct injection-in-cylinder type engine
JPH033934A (en) Fuel injection control device for two-cycle engine
JP3065093B2 (en) Fuel injection control device for two-cycle engine
JP3084040B2 (en) Control device for two-stroke engine
JPH03286123A (en) Controller of two-cycle engine
JPH033935A (en) Fuel injection control device for two-cycle direct injection engine