JPH05240044A - Cylinder injection type internal combustion engine - Google Patents

Cylinder injection type internal combustion engine

Info

Publication number
JPH05240044A
JPH05240044A JP4044006A JP4400692A JPH05240044A JP H05240044 A JPH05240044 A JP H05240044A JP 4044006 A JP4044006 A JP 4044006A JP 4400692 A JP4400692 A JP 4400692A JP H05240044 A JPH05240044 A JP H05240044A
Authority
JP
Japan
Prior art keywords
cylinder
intake
cylinder head
injector
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4044006A
Other languages
Japanese (ja)
Other versions
JP2792308B2 (en
Inventor
Hiromitsu Ando
弘光 安東
Jun Takemura
純 竹村
Kazuyoshi Nakane
一芳 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP4044006A priority Critical patent/JP2792308B2/en
Priority to US08/022,630 priority patent/US5305720A/en
Priority to DE69301470T priority patent/DE69301470T2/en
Priority to AU33851/93A priority patent/AU657392B2/en
Priority to EP93103136A priority patent/EP0558072B1/en
Priority to KR1019930002927A priority patent/KR950003740B1/en
Publication of JPH05240044A publication Critical patent/JPH05240044A/en
Priority to US08/637,528 priority patent/USRE36500E/en
Application granted granted Critical
Publication of JP2792308B2 publication Critical patent/JP2792308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To secure the setting space of an injector for cylinder injection so easily and improve the volumetric efficiency. CONSTITUTION:A combustion chamber 7 is formed in an interspace between the upside of a piston 2 and the underside of a cylinder head 1, and an inlet port 8a is installed at one side of the cylinder head 1 and an exhaust port 9a at the other side, respectively, in holding a plane inclusive of a cylinder axis L along the center of a cylinder, while these ports are interconnected each to the combustion chamber 7 via each of on-off valves 10 and 11. A conducting passage 4a of the inlet port extends downward in the cylinder head 1 and its upstream end is connected to an inlet pipe 13 on top of the cylinder head, and an injector setting part 1a is formed in a side face of the cylinder head at the inlet port side, thereby making an injector 18 attached hereat adjoin to the combustion chamber 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸気ポートよりシリンダ
内に流入した気体を旋回流とした上で、筒内に燃料噴射
を行って混合気を生成して燃焼させる筒内噴射型の内燃
機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-cylinder injection type internal combustion engine in which a gas flowing from an intake port into a cylinder is made into a swirling flow, and fuel is injected into the cylinder to generate a mixture gas for combustion. Regarding

【0002】[0002]

【従来の技術】通常の内燃機関の本体はシリンダヘッド
とシリンダブロック及びクランクケースをこの順に重ね
て主要部が構成され、それらの内部にはピストンを嵌挿
したシリンダと、シリンダの上部から成る燃焼室に吸排
気弁を介して連通可能な吸排気路と、吸排気弁を駆動す
る動弁系と、ピストンの往復動を回転運動に変換してク
ランクシャフトに伝達するコンロッド等が収容されてい
る。このような内燃機関が例えば4サイクルエンジンの
場合、吸入行程でシリンダ内に吸入した吸気に対し、そ
の吸気量に見合った燃料を供給して燃焼エネルギを発生
させ、同エネルギを回転エネルギとして出力している。
このような内燃機関の内、燃焼室に直接燃料噴射を行っ
て運転応答性を改善出来る筒内噴射型の内燃機関が知ら
れている。
2. Description of the Related Art A main body of an ordinary internal combustion engine is composed of a cylinder head, a cylinder block, and a crankcase, which are stacked in this order to form a main portion. A combustion chamber is composed of a cylinder in which a piston is inserted and an upper portion of the cylinder. An intake / exhaust passage that can communicate with the chamber via an intake / exhaust valve, a valve system that drives the intake / exhaust valve, a connecting rod that converts the reciprocating motion of the piston into rotational motion and transmits it to the crankshaft, etc. are housed. .. In the case where such an internal combustion engine is, for example, a 4-cycle engine, fuel corresponding to the intake amount is supplied to the intake air sucked into the cylinder in the intake stroke to generate combustion energy, and the same energy is output as rotational energy. ing.
Among such internal combustion engines, there is known an in-cylinder injection type internal combustion engine capable of directly injecting fuel into a combustion chamber to improve operation response.

【0003】この種の筒内噴射型の内燃機関としては、
圧縮着火内燃機関であるディーゼルエンジン及び火花点
火内燃機関であるガソリンエンジン等が知られている。
このうち、ディーゼルエンジンは点火手段を必要としな
いが、高圧縮比を達成できる機関及び、高圧燃料噴射手
段を必要とし、大型化や重量増等に問題を残している。
これに対し、筒内噴射型のガソリンエンジンは、例えば
図10、図11に示すように構成される。ここでのガソ
リンエンジンは4弁式であり、そのシリンダS内にはピ
ストン51が嵌挿され、ピストン51の上死点より下死
点への摺動時に図示しない一対の吸気弁を開き、吸気導
通路52側より空気を各吸気ポート54を介して燃焼室
50内に導き、吸気及び圧縮行程の所定時に図示しない
インジェクタを駆動して筒内噴射を行い、圧縮行程終了
時に点火プラグ56を駆動して燃焼行程を行い、その後
の排気行程では排ガスをピストン51の上昇時に図示し
ない排気弁を開いて排気ポート55より排気導通路53
側に排出する様に構成されている。
As an in-cylinder injection type internal combustion engine of this type,
A diesel engine, which is a compression ignition internal combustion engine, and a gasoline engine, which is a spark ignition internal combustion engine, are known.
Among them, the diesel engine does not need an ignition means, but needs an engine capable of achieving a high compression ratio and a high-pressure fuel injection means, and has a problem in increasing the size and weight.
On the other hand, the cylinder injection type gasoline engine is configured as shown in FIGS. 10 and 11, for example. The gasoline engine here is of a four-valve type, and a piston 51 is inserted into the cylinder S of the gasoline engine. When the piston 51 slides from the top dead center to the bottom dead center, a pair of intake valves (not shown) are opened to intake air. Air is introduced into the combustion chamber 50 through the intake ports 54 from the side of the communication path 52, an injector (not shown) is driven at a predetermined time of the intake and compression strokes to perform in-cylinder injection, and the ignition plug 56 is driven at the end of the compression strokes. Then, the combustion process is performed, and in the subsequent exhaust process, the exhaust gas is exhausted from the exhaust port 55 by opening an exhaust valve (not shown) when the piston 51 rises.
It is configured to discharge to the side.

【0004】このようなガソリンエンジンはディーゼル
エンジンと比較して大型化や重量増等の問題は少なかっ
た。
[0004] Such a gasoline engine has few problems such as size increase and weight increase as compared with a diesel engine.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
筒内噴射型のガソリンエンジンは吸排気ポートより延び
る各導通路52,53が図示しないシリンダヘッドの両
側壁面にそれぞれ開口する構成を取る。ここで、燃焼室
の上側のシリンダヘッドのシリンダ対向部には各導通路
52,53や点火プラグ56が配備され、特に、各気筒
の体積効率を確保すべく各導通路52,53が大きく形
成され、あるいは図11のように2つの吸気導通路55
2,52及び2つの排気導通路53,53を配設した場
合にはほとんどインジェクタを装着するインジェクタ取
付部を確保するスペースが無くなり、スペースの確保が
出来た場合であっても、設計的な制約が多く最適なレイ
アウトの実現は極めて困難となっている。更に、筒内噴
射用のインジェクタは燃焼室に直接装着され、インジェ
クタ本体の冷却性と燃料の冷却性を十分に考慮する必要
が有り、この点でも問題が有った。
However, such an in-cylinder injection type gasoline engine has a structure in which the respective communication passages 52 and 53 extending from the intake and exhaust ports are opened on both side wall surfaces of a cylinder head (not shown). Here, the conducting passages 52, 53 and the spark plug 56 are provided in the cylinder facing portion of the upper cylinder head of the combustion chamber, and in particular, the conducting passages 52, 53 are formed large in order to secure the volume efficiency of each cylinder. Or, as shown in FIG. 11, the two intake passages 55
2, 52 and the two exhaust passages 53, 53, there is almost no space for securing the injector mounting portion for mounting the injector, and even if the space can be secured, there are design restrictions. However, it is extremely difficult to realize an optimal layout. Furthermore, the injector for in-cylinder injection is directly mounted in the combustion chamber, and it is necessary to fully consider the cooling performance of the injector body and the cooling performance of the fuel, which is also a problem.

【0006】本発明の目的は筒内噴射用のインジェクタ
の取付スペースの確保が容易で、しかも、体積効率の向
上を図れる筒内噴射型内燃機関を提供することにある。
An object of the present invention is to provide an in-cylinder injection type internal combustion engine in which it is easy to secure a mounting space for an injector for in-cylinder injection, and moreover, volume efficiency can be improved.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明はシリンダ内に嵌挿されるピストンの上面
とシリンダヘッドの下面との間に燃焼室を形成し、上記
シリンダの中心に沿ったシリンダ軸線を含む平面を挾ん
で上記シリンダヘッドの一側に吸気ポートと他側に排気
ポートをそれぞれ備えると共に上記各ポートはそれぞれ
開閉弁を介して上記燃焼室に連通され、上記吸気ポート
の導通路はシリンダヘッド内を下方向に延びその上流端
がシリンダヘッド上面において吸気管に接続され、吸気
ポート側のシリンダヘッド側面にはインジェクタ取付部
が形成され、上記インジェクタ取付部に取り付けられた
インジェクタを上記燃焼室に臨ませたことを特徴とす
る。
In order to achieve the above-mentioned object, the present invention forms a combustion chamber between the upper surface of a piston and the lower surface of a cylinder head, which are fitted in a cylinder, and which is formed at the center of the cylinder. The cylinder head is provided with an intake port on one side and an exhaust port on the other side across the plane including the cylinder axis, and each of the ports is communicated with the combustion chamber via an on-off valve. The conduction path extends downward in the cylinder head, the upstream end of which is connected to the intake pipe on the top surface of the cylinder head, and the injector mounting portion is formed on the side surface of the cylinder head on the intake port side. Facing the combustion chamber.

【0008】[0008]

【作用】吸気ポートの導通路がシリンダヘッド内を下方
向に延びその上流端がシリンダヘッド上面において吸気
管に接続されるので、吸気ポート側のシリンダヘッド側
面域を比較的大きく解放出来、同域にインジェクタ取付
部を容易に確保することができ、しかも導通路の流入抵
抗を比較的低減できる。
Since the conduction path of the intake port extends downward in the cylinder head and its upstream end is connected to the intake pipe on the top surface of the cylinder head, the side surface area of the cylinder head on the intake port side can be released relatively large. In addition, the injector mounting portion can be easily secured, and the inflow resistance of the conducting path can be relatively reduced.

【0009】[0009]

【実施例】図1、図2の筒内噴射型内燃機関は2サイク
ル4弁式で直列4気筒の内燃機関(以下単にエンジンE
と記す)に装着される。このエンジンEの本体はヘッド
カバー付きのシリンダヘッド1とシリンダブロック3及
び図示しないクランクケース及びクランクカバーをこの
順に重ねて一体化して構成され、それらの内部にはピス
トン2を嵌挿したシリンダSと、シリンダSの上部から
成る燃焼室7に連通可能な吸排気導通路4a,4b,5
a,5bと、これら吸排気導通路を開閉する各一対の吸
排気弁10,11を駆動する図示しない動弁系と、ピス
トン2の往復動を回転運動に変換する図示しないクラン
クシャフト及びコンロッド等が収容されている。ここで
のエンジンEにおける各気筒の構成は同一であるので、
ここでは1の気筒に関して主に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The in-cylinder injection type internal combustion engine of FIGS. 1 and 2 is a two-cycle four-valve internal combustion engine of in-line four-cylinder (hereinafter simply referred to as engine E).
Will be attached). The main body of the engine E is configured by integrating a cylinder head 1 with a head cover, a cylinder block 3, a crank case and a crank cover (not shown) in this order and integrating them, and a cylinder S into which a piston 2 is fitted and inserted. Intake and exhaust passages 4a, 4b, 5 which can communicate with the combustion chamber 7 formed of the upper part of the cylinder S.
a, 5b, a valve operating system (not shown) for driving the pair of intake / exhaust valves 10, 11 for opening / closing these intake / exhaust passages, a crankshaft, connecting rod, etc. for converting reciprocating motion of the piston 2 into rotational motion Is housed. Since the configuration of each cylinder in the engine E here is the same,
Here, the description will focus on the one cylinder.

【0010】ここでのシリンダヘッド1はシリンダSの
中心に沿ったシリンダ軸線Lを含む平面FC(ここでは
図3に示すようにヘッド長手方向に延出している)を挾
んで一側に一対の吸気ポート8aを他側に排気ポート9
aをそれぞれ備える。シリンダヘッド1にはシリンダS
内に形成される燃焼室7に対向するシリンダ対向下壁面
6が形成され、同下壁面はその中央に平面FCの延出す
る方向に長い楔状凹部601を形成される。この楔状凹
部601の一側、即ち、シリンダ軸線を含む平面FCを
挾んだ一側には一対の吸気導通路4a,4bに続く吸気
ポート8a,8b及び他側には一対の排気導通路5a,
5bに続く排気ポート9a,9bがそれぞれ形成され
(図1、図5参照)、各ポートは吸気弁10及び排気弁
11によってそれぞれ開閉される。更に、楔状凹部60
1のほぼ中央位置で、ピストン2がTDC位置に達した
際における後述の隆起部23の峰232との対向位置に
は、点火プラグ20が装着される。
The cylinder head 1 here sandwiches a plane FC (which extends in the head longitudinal direction as shown in FIG. 3) including the cylinder axis L along the center of the cylinder S, and has a pair of sides on one side. Intake port 8a on the other side and exhaust port 9
a are provided respectively. The cylinder head 1 has a cylinder S
A cylinder facing lower wall surface 6 facing the combustion chamber 7 formed therein is formed, and the lower wall surface is formed with a wedge-shaped recess 601 long in the direction in which the plane FC extends in the center thereof. Intake ports 8a, 8b following the pair of intake passages 4a, 4b on one side of the wedge-shaped recess 601, that is, one side across the plane FC including the cylinder axis, and a pair of exhaust passages 5a on the other side. ,
Exhaust ports 9a and 9b following 5b are formed (see FIGS. 1 and 5), and each port is opened and closed by an intake valve 10 and an exhaust valve 11, respectively. Further, the wedge-shaped recess 60
The spark plug 20 is mounted at a position substantially opposite to a peak 232 of a protrusion 23, which will be described later, when the piston 2 reaches the TDC position at a substantially central position of 1.

【0011】ここで一対の排気導通路5a,5bは図
2、図5に示すように排気ポート9aより湾曲して延出
し、更に平面FCより離れる方向に直状に延び、シリン
ダヘッド1の他側壁面に開口する様に構成されている。
一対の吸気導通路4a,4bはシリンダ軸線を含む平面
FCの一側(図3ではFCの右側域)にあって、シリン
ダヘッド1内を上下方向に直状に延びるように形成さ
れ、その下流側が各吸気ポート8aに連通し、上流端が
シリンダヘッド1の上面1fにおいて分岐管13に接続
される。ここで各吸気導通路4a,4bに直状に連結さ
れる各分岐管13はその上端がインタクーラ141内臓
のプレナムチャンバ14に連通し、チャンバ14の流入
口17は可変速プーリ付きの遠心式掃気ポンプ15に連
通されている。このように、このエンジンEの各吸気導
通路4a,4bや各分岐管13は上下に長い直状を成す
ので吸気に対する流動抵抗が比較的低くなり、燃焼室7
に比較的多くの吸気を供給し易く、エンジンの体積効率
を向上することができる。
Here, as shown in FIGS. 2 and 5, the pair of exhaust passages 5a and 5b extend in a curved manner from the exhaust port 9a, and further extend straight in the direction away from the plane FC, and It is configured to open to the side wall surface.
The pair of intake passages 4a and 4b are formed on one side of the plane FC including the cylinder axis (right side area of FC in FIG. 3) and extend straightly in the cylinder head 1 in the vertical direction, and downstream thereof. The side communicates with each intake port 8a, and the upstream end is connected to the branch pipe 13 on the upper surface 1f of the cylinder head 1. Here, the upper end of each branch pipe 13 that is directly connected to each of the intake passages 4a and 4b communicates with the plenum chamber 14 with the intercooler 141, and the inlet 17 of the chamber 14 is a centrifugal scavenger with a variable speed pulley. It communicates with the pump 15. As described above, since the intake passages 4a, 4b and the branch pipes 13 of the engine E have a vertically long straight shape, the flow resistance to intake air becomes relatively low and the combustion chamber 7
It is easy to supply a relatively large amount of intake air, and the volumetric efficiency of the engine can be improved.

【0012】シリンダヘッド1の平面FCの一側で一対
の吸気導通路4aの外側の領域にはインジェクタ取付部
1aが形成され、同部1aにインジェクタ18が装着さ
れる。このインジェクタ18には畜圧機25を介して高
圧ポンプ19が連結される。この高圧ポンプ19やイン
ジェクタ18は図示しないエンジンコントローラに接続
され、インジェクタには所定の噴射タイミング(クラン
ク角)において所定噴射時間(図7中のPH,PL)だ
け駆動出力が供給されるように構成されている。
An injector mounting portion 1a is formed on one side of the plane FC of the cylinder head 1 outside the pair of intake passages 4a, and an injector 18 is mounted on the portion 1a. A high-pressure pump 19 is connected to the injector 18 via a storage device 25. The high-pressure pump 19 and the injector 18 are connected to an engine controller (not shown), and a drive output is supplied to the injector for a predetermined injection time (PH, PL in FIG. 7) at a predetermined injection timing (crank angle). Has been done.

【0013】ここでのインジェクタ取付部1aは各吸気
導通路4aが各吸気ポート8aより直状に上側に延びて
いることより、その一対の吸気導通路4aの外側の領域
が解放されており、十分なスペースの確保が出来る。こ
のため、インジェクタ取付部1a及びインジェクタ18
自体の最適なレイアウトを確保し易い。更に、インジェ
クタ取付部1aは一対の吸気導通路4aの外側に位置
し、インジェクタ本体及び燃料の冷却性の向上を比較的
図りやすく、インジェクタの耐久性の確保、インジェク
タ及び燃料供給系の熱害の回避をも図りやすい。
In the injector mounting portion 1a, the intake passages 4a extend straightly upward from the intake ports 8a, so that the regions outside the pair of intake passages 4a are released. Enough space can be secured. Therefore, the injector mounting portion 1a and the injector 18
It is easy to secure the optimal layout for itself. Furthermore, the injector mounting portion 1a is located outside the pair of intake air passages 4a, and it is relatively easy to improve the cooling performance of the injector body and the fuel, and the durability of the injector is secured, and the heat damage of the injector and the fuel supply system is prevented. Easy to avoid.

【0014】1の気筒のシリンダS内にはピストン2が
嵌挿されており、図6に示すように、このピストン2は
実線で示す上死点TDCと、2点鎖線で示す下死点BD
Cの間で往復動する。このピストン2は図2に示す様に
スカート部21と主部22を有し、ピストンの主部22
の上面には凹部24及び隆起部23を形成している。こ
こで凹部24及び隆起部23は、図3に示す様に、平面
FC内のシリンダ軸線Lの直行線LHの平行線LH1の
まわりの吸気の逆タンブル流TFを助長すべく形成され
る。
A piston 2 is fitted in the cylinder S of one cylinder, and as shown in FIG. 6, the piston 2 has a top dead center TDC indicated by a solid line and a bottom dead center BD indicated by a two-dot chain line.
Reciprocates between C. This piston 2 has a skirt portion 21 and a main portion 22 as shown in FIG.
A concave portion 24 and a raised portion 23 are formed on the upper surface of the. Here, the concave portion 24 and the raised portion 23 are formed so as to promote the reverse tumble flow TF of the intake air around the parallel line LH1 of the orthogonal line LH of the cylinder axis L in the plane FC, as shown in FIG.

【0015】この場合、凹所24はシリンダ軸線Lを含
む状態で排気ポート9a側に偏心して形成されると共に
少なくとも直行線LHの直行面視(図2、図6中に直行
面視相当の凹所24が示される。)において下に凸の曲
面を呈する。隆起部23は凹所24の吸気ポート8a側
に連設され、平面FCと対向したままで平面方向に延び
る側壁vf、外側壁231及び両壁の結合端の峰232
を有する。特に、図6に実線で示すように、ピストン2
が上死点TDCに位置する際に、峰232がシリンダ対
向下壁面6に近接する様に構成されている。なお、この
隆起部23の側壁vfは凹所24からなだらかに隆起し
てくる曲面に連続的に接続している。
In this case, the recess 24 is formed eccentrically on the exhaust port 9a side in a state including the cylinder axis L, and at least the orthogonal line view of the orthogonal line LH (a concave portion corresponding to the orthogonal plane view in FIGS. 2 and 6). Location 24 is shown) presenting a downwardly convex curved surface. The raised portion 23 is continuously provided on the intake port 8a side of the recess 24 and extends in the plane direction while facing the plane FC, the side wall vf, the outer wall 231 and the peak 232 at the joint end of both walls.
Have. In particular, as shown by the solid line in FIG.
Is located at the top dead center TDC, the peak 232 is configured to approach the cylinder facing lower wall surface 6. The side wall vf of the raised portion 23 is continuously connected to a curved surface that gently rises from the recess 24.

【0016】このため、図2に示すように、ピストン2
が吸気終了時に下死点BDC側に達する際、吸気ポート
8aより流入した吸気は軸線Lの方向に沿ってピストン
上面に向かい、更に、凹所24及び側壁vfによってU
ターンし、シリンダ軸線を含む平面FC内直行線LHの
平行線LH1回りに回転する逆タンブル流TFが生成さ
れる。
Therefore, as shown in FIG.
When the intake air reaches the bottom dead center BDC side at the end of intake air, the intake air that has flowed in from the intake port 8a heads toward the piston upper surface along the direction of the axis L, and is further moved to the U by the recess 24 and the side wall vf.
The reverse tumble flow TF that is turned and rotates around the parallel line LH1 of the orthogonal line LH in the plane FC including the cylinder axis is generated.

【0017】さらに、図6に実線で示すように、ピスト
ン2が圧縮終了時に達した際、そのピストンの凹所24
及び側壁vfとシリンダ対向下壁面6間にはコンパクト
燃焼室Cが形成される。この時、燃焼室C内の混合気は
凹所24及び側壁vfによって流動規制を受けて峰23
2近傍の点火プラグ20に向けて流動し、しかも、この
時、点火プラグ20に向かう気流には外側壁231側で
生じているスキッシュSFがぶつかって混合気が更に撹
拌され、より燃焼性が改善されることとなる。
Further, as shown by the solid line in FIG. 6, when the piston 2 reaches the end of compression, the recess 24 of the piston 2 is reached.
A compact combustion chamber C is formed between the side wall vf and the cylinder facing lower wall surface 6. At this time, the air-fuel mixture in the combustion chamber C is subjected to flow regulation by the recess 24 and the side wall vf, and the peak 23
The squish SF generated on the outer wall 231 side collides with the air flow toward the spark plug 20 at this time, and the air-fuel mixture is further stirred, so that the combustibility is further improved. Will be done.

【0018】このようなエンジンEは2サイクルで有る
ため、図7に示すように、TDCの0°より前回の燃焼
行程を行い、クランク角で90°を経過後に排気弁11
を開き、排気行程に入り、更に、クランク角120°近
くに達すると吸気弁10をも開き、吸気(掃気)行程に
も入る。下死点BDC経過後、クランク角230°手前
近傍で排気弁11を閉じ、圧縮行程に入り、高速高負荷
運転時であると所定噴射時間PHだけ、低速低負荷運転
では所定噴射時間PLだけ噴射駆動させる。この後吸気
弁10をも閉じて吸排気を完了し、完全に圧縮行程のみ
を行う。そして、上死点TDC前の所定点火時期に達す
ると、点火プラグ20を駆動して点火処理(図7には符
号△で示した)に入る。この点火処理によって燃焼室の
筒内圧が上昇し、ピストンを押し下げ、出力を発するこ
とと成る。
Since such an engine E has two cycles, as shown in FIG. 7, the previous combustion stroke is performed from 0 ° of TDC, and the exhaust valve 11 is operated after the crank angle of 90 ° has elapsed.
The intake valve 10 is opened to enter the exhaust stroke, and when the crank angle approaches 120 °, the intake valve 10 is also opened to enter the intake stroke. After the bottom dead center BDC has passed, the exhaust valve 11 is closed near the crank angle of 230 °, the compression stroke is started, and the injection is performed for a predetermined injection time PH during high-speed high-load operation, and for a predetermined injection time PL during low-speed low-load operation. Drive it. After this, the intake valve 10 is also closed to complete the intake and exhaust, and only the compression stroke is performed completely. Then, when the predetermined ignition timing before the top dead center TDC is reached, the spark plug 20 is driven to start the ignition process (indicated by the symbol Δ in FIG. 7). Due to this ignition processing, the cylinder pressure in the combustion chamber rises, the piston is pushed down, and an output is generated.

【0019】ここで、インジェクタ18は機関が高速回
転時には所定噴射時間PHだけ噴射駆動し、低速回転時
には所定噴射時間PLだけ噴射駆動するように制御され
る。これによって、高速時には、燃料と逆タンブル流T
Fを成す空気との混合を早期に開始しすることによっ
て、乱れを促進し、急速燃焼の実現を図ることができ
る。他方、低速時には噴射を遅らせて、コンパクト燃焼
室Cの生成を待ち、コンパクト燃焼室C内に燃料噴射を
行って比較的リッチな混合気を生成し、スキッシュSF
の撹拌作用も受けて、着火性の確保を十分に図ることが
できる。更に、コンパクト燃焼室Cが球形化しており、
熱損失の低減を図れ、低負荷運転の安定化をも図れる。
更に、インジェクタ取付部1aは一対の吸気導通路4a
の外側に位置し、インジェクタ本体及び燃料の冷却性の
向上を比較的図りやすく、インジェクタの耐久性の確
保、熱害の回避をも図りやすい。図1乃至図6には2サ
イクルのガソリンエンジンを説明したが、これに代え
て、4サイクルのガソリンエンジンに本発明を適用して
も良い。この場合、そのエンジン本体の構成は同様のも
のが使用可能であり、重複説明を避ける。
Here, the injector 18 is controlled so as to drive the injection for a predetermined injection time PH when the engine rotates at a high speed, and to drive the injection for a predetermined injection time PL when the engine rotates at a low speed. As a result, at high speed, the fuel and the reverse tumble flow T
By starting the mixing with the air forming F early, it is possible to promote turbulence and achieve rapid combustion. On the other hand, at low speed, the injection is delayed to wait for the production of the compact combustion chamber C, and the fuel is injected into the compact combustion chamber C to produce a relatively rich air-fuel mixture, and the squish SF
It is possible to sufficiently secure the ignitability by receiving the stirring action of. Furthermore, the compact combustion chamber C is spherical,
It is possible to reduce heat loss and stabilize low load operation.
Further, the injector mounting portion 1a includes a pair of intake passages 4a.
It is located on the outer side of the engine, and it is relatively easy to improve the cooling performance of the injector body and the fuel, and it is also easy to ensure the durability of the injector and avoid heat damage. Although the 2-cycle gasoline engine has been described with reference to FIGS. 1 to 6, the present invention may be applied to a 4-cycle gasoline engine instead. In this case, the structure of the engine body can be the same, and a duplicate description will be avoided.

【0020】この場合の4サイクルエンジンは図8に示
すように、TDCの0°前より吸気弁10を開き、吸気
行程に入ると共にTDCの0°経過後に排気弁11を閉
じ、前回よりの排気行程を終了させる。この後、クラン
ク角で180°までピストン2は降下し、この間、図
2,図6に示すように、逆タンブル流TFが生成され、
この逆タンブル流TF中にインジェクタより燃料噴射が
成される。このインジェクタ18の噴射タイミングは図
8に示すように、機関が高速回転時には吸入早期の所定
噴射時期PHに噴射駆動し、低速回転時には圧縮後期の
所定噴射時期PLに噴射駆動するように制御される。こ
れによって、高速時には、燃料と逆タンブル流TFを成
す空気との混合を早期に開始しすることによって、乱れ
を促進し、急速燃焼の実現を図ることができる。他方、
低速時には噴射を遅らせて、コンパクト燃焼室Cの生成
を待ち、ここに燃料噴射を行って、スキッシュSFの撹
拌作用も受けて、着火性の確保を十分に図ることができ
る。
In the four-cycle engine in this case, as shown in FIG. 8, the intake valve 10 is opened from 0 ° before TDC, and the exhaust valve 11 is closed after 0 ° of TDC when the intake stroke starts and the exhaust gas from the previous exhaust is exhausted. Finish the process. After this, the piston 2 descends to 180 ° at the crank angle, and during this period, the reverse tumble flow TF is generated as shown in FIGS. 2 and 6.
Fuel is injected from the injector into the reverse tumble flow TF. As shown in FIG. 8, the injection timing of the injector 18 is controlled such that when the engine is rotating at high speed, the injection is driven at a predetermined injection timing PH in the early suction period, and at low speed, it is driven at a predetermined injection timing PL in the latter compression period. .. As a result, at high speed, turbulence can be promoted and rapid combustion can be realized by starting the mixing of the fuel and the air forming the reverse tumble flow TF early. On the other hand,
At a low speed, the injection is delayed to wait for the generation of the compact combustion chamber C, the fuel is injected into the compact combustion chamber C, and the stirring action of the squish SF is also received to sufficiently secure the ignitability.

【0021】この後、TDC360°前近傍では図6に
示すスキッシュSFも働き、コンパクト燃焼室Cより点
火プラグ20に向かう混合気に乱れを更に生じさせ、燃
焼性をより改善できる。その直後での所定点火時期に達
すると、点火プラグ20を駆動して点火処理(図8には
符号△で示した)に入る。この点火処理によって燃焼室
の筒内圧が上昇し、ピストンを押し下げ、出力を発っ
し、燃焼行程をクランク角で540°近くまで行う。ク
ランク角480°近傍では排気弁11を開き、クランク
角720経過まで排気行程を継続し、次回の吸気行程の
ための吸気弁10の開処理を行い、4サイクルを完了す
る。この場合も、2サイクの場合と同様の作用効果が得
られる。
After that, the squish SF shown in FIG. 6 also works in the vicinity of 360 ° before TDC to further generate turbulence in the air-fuel mixture flowing from the compact combustion chamber C toward the ignition plug 20, thereby further improving the combustibility. Immediately after that, when the predetermined ignition timing is reached, the spark plug 20 is driven to start the ignition process (indicated by symbol Δ in FIG. 8). By this ignition process, the in-cylinder pressure of the combustion chamber rises, the piston is pushed down, an output is generated, and the combustion stroke is performed up to a crank angle of approximately 540 °. In the vicinity of the crank angle of 480 °, the exhaust valve 11 is opened, the exhaust stroke is continued until the crank angle 720 elapses, the intake valve 10 is opened for the next intake stroke, and four cycles are completed. In this case as well, the same operational effect as in the case of two cycles can be obtained.

【0022】図1の2サイクル4弁式のエンジンEに代
えて、例えば、2サイクル5弁式や図9に示す3弁式の
エンジンE’を構成することもできる。この図9に示す
3弁式のエンジンE’のシリンダSの場合、一対の吸気
ポート8a,8bに各吸気導通路が連通し、1つの排気
ポート9’に排気導通路5’が連通する。ここでも、シ
リンダ軸線Lを含む平面FCを挾んだ一側には一対の吸
気導通路4a,4bに続く吸気ポート8a及び他側には
一つの排気導通路5’に続く排気ポート9’がそれぞれ
形成され(図9参照)、各ポートは吸気弁10及び排気
弁11によってそれぞれ開閉される。更に、シリンダ軸
線Lとの対向位置に点火プラグ20が装着される。
Instead of the 2-cycle 4-valve engine E of FIG. 1, for example, a 2-cycle 5-valve engine or a 3-valve engine E'shown in FIG. 9 can be constructed. In the case of the cylinder S of the three-valve engine E ′ shown in FIG. 9, the intake passages are in communication with the pair of intake ports 8a and 8b, and the exhaust passage 5 ′ is in communication with one exhaust port 9 ′. Here again, an intake port 8a following the pair of intake passages 4a, 4b on one side across the plane FC including the cylinder axis L, and an exhaust port 9'following one exhaust passage 5'on the other side. Each of them is formed (see FIG. 9), and each port is opened and closed by an intake valve 10 and an exhaust valve 11, respectively. Further, the spark plug 20 is mounted at a position facing the cylinder axis L.

【0023】この場合にも、図1のエンジンEと同様の
作用効果が得られる。上述の各エンジンE,E’等は火
花点火式エンジンで有ったが、これに代えて、圧縮点火
内燃機関に本発明を適用することも出来、この場合にも
図1の2サイクル火花点火式エンジンEと同様の各ポー
トやインジェクタの配置構成を取れ、同様の作用効果が
得られる。
Also in this case, the same operational effect as the engine E of FIG. 1 can be obtained. Although each of the above-mentioned engines E, E ′, etc. was a spark ignition type engine, the present invention can be applied to a compression ignition internal combustion engine instead of this, and in this case also, the two-cycle spark ignition of FIG. The ports and injectors can be arranged in the same manner as in the expression engine E, and the same effects can be obtained.

【0024】[0024]

【発明の効果】以上のように、この発明は、吸気ポート
の導通路がシリンダヘッド内を下方向に延びその上流端
がシリンダヘッド上面において吸気管に接続されるの
で、吸気に対する流動抵抗が比較的低くエンジンの体積
効率を向上できる。しかも、シリンダの吸気ポート側の
シリンダヘッド側面域を比較的大きく解放出来るので、
インジェクタの取付が容易化され、インジェクタ取付部
の最適なレイアウトを確保し易く、このインジェクタ取
付部を吸気導通路の外側に位置でき、インジェクタ本体
及び燃料の冷却性の向上を比較的図り易く、インジェク
タの耐久性の確保、熱害の回避をも図りやすい。
As described above, according to the present invention, since the conduction path of the intake port extends downward in the cylinder head and its upstream end is connected to the intake pipe on the upper surface of the cylinder head, the flow resistance to intake air is compared. It is possible to improve the volumetric efficiency of the engine. Moreover, since the side surface area of the cylinder head on the intake port side of the cylinder can be released relatively large,
The injector can be mounted easily, the optimum layout of the injector mounting part can be easily secured, and this injector mounting part can be located outside the intake passage, and it is relatively easy to improve the cooling performance of the injector body and fuel. It is easy to ensure durability and avoid heat damage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての筒内噴射型内燃機関
の全体構成図である。
FIG. 1 is an overall configuration diagram of a cylinder injection type internal combustion engine as an embodiment of the present invention.

【図2】図1の筒内噴射型内燃機関の1の気筒の側断面
図である。
FIG. 2 is a side sectional view of one cylinder of the in-cylinder injection internal combustion engine of FIG.

【図3】図1の筒内噴射型内燃機関の1のシリンダの概
略透視図である。
3 is a schematic perspective view of one cylinder of the in-cylinder injection internal combustion engine of FIG. 1. FIG.

【図4】図3のA視概略図である。FIG. 4 is a schematic view taken along line A in FIG.

【図5】図1の筒内噴射型内燃機関の1のシリンダの概
略上面図である。
5 is a schematic top view of one cylinder of the in-cylinder injection internal combustion engine of FIG. 1. FIG.

【図6】図1の筒内噴射型内燃機関の1のシリンダ内ピ
ストンの作動説明図である。
FIG. 6 is an operation explanatory view of the in-cylinder piston 1 of the in-cylinder injection internal combustion engine of FIG. 1.

【図7】図1の筒内噴射型内燃機関の駆動サイクル説明
図である。
FIG. 7 is a drive cycle explanatory diagram of the in-cylinder injection internal combustion engine of FIG. 1.

【図8】他の実施例の筒内噴射型内燃機関の駆動サイク
ル説明図である。
FIG. 8 is a drive cycle explanatory diagram of a cylinder injection internal combustion engine of another embodiment.

【図9】他の実施例の筒内噴射型内燃機関の1のシリン
ダの概略上面図である。
FIG. 9 is a schematic top view of one cylinder of an in-cylinder injection internal combustion engine of another embodiment.

【図10】従来の筒内噴射型内燃機関の要部概略側面図
である。
FIG. 10 is a schematic side view of a main part of a conventional in-cylinder injection internal combustion engine.

【図11】図10の筒内噴射型内燃機関のB視の概略側
面図である。
FIG. 11 is a schematic side view of the direct injection internal combustion engine of FIG.

【符号の説明】[Explanation of symbols]

1 シリンダヘッド 1a インジェクタ取付部 2 ピストン 3 シリンダブロック 4a 吸気導通路 4b 吸気導通路 5a 排気導通路 5b 排気導通路 7 燃焼室 8a 吸気ポート 8b 吸気ポート 9a 排気ポート 9b 排気ポート 10 吸気弁 11 排気弁 13 分岐管 18 インジェクタ 20 点火プラグ L シリンダ軸線 LH 直行線 LH1 平行線 FC 平面 E エンジン S シリンダ 1 Cylinder head 1a Injector mounting part 2 Piston 3 Cylinder block 4a Intake passage 4b Intake passage 5a Exhaust passage 5b Exhaust passage 7 Combustion chamber 8a Intake port 8b Intake port 9a Exhaust port 9b Exhaust port 10 Intake valve 11 Exhaust valve 13 Branch pipe 18 Injector 20 Spark plug L Cylinder axis LH Straight line LH1 Parallel line FC Plane E Engine S Cylinder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリンダ内に嵌挿されるピストンの上面と
シリンダヘッドの下面との間に燃焼室を形成し、上記シ
リンダの中心に沿ったシリンダ軸線を含む平面を挾んで
上記シリンダヘッドの一側に吸気ポートと他側に排気ポ
ートをそれぞれ備えると共に上記各ポートはそれぞれ開
閉弁を介して上記燃焼室に連通され、上記吸気ポートは
シリンダヘッド内を下方向に延びその上流端がシリンダ
ヘッド上面において吸気管に接続され、吸気ポート側の
シリンダヘッド側面にはインジェクタ取付部が形成さ
れ、上記インジェクタ取付部に取り付けられたインジェ
クタを上記燃焼室に臨ませたことを特徴とする筒内噴射
型内燃機関。
1. A combustion chamber is formed between an upper surface of a piston fitted in a cylinder and a lower surface of a cylinder head, and one side of the cylinder head is sandwiched across a plane including a cylinder axis line along the center of the cylinder. Is provided with an intake port and an exhaust port on the other side, and each of the ports is communicated with the combustion chamber via an on-off valve, and the intake port extends downward in the cylinder head and its upstream end is on the upper surface of the cylinder head. An in-cylinder injection internal combustion engine which is connected to an intake pipe and has an injector mounting portion formed on a side surface of a cylinder head on an intake port side, and an injector mounted on the injector mounting portion facing the combustion chamber. ..
JP4044006A 1992-02-28 1992-02-28 In-cylinder injection type internal combustion engine Expired - Fee Related JP2792308B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP4044006A JP2792308B2 (en) 1992-02-28 1992-02-28 In-cylinder injection type internal combustion engine
US08/022,630 US5305720A (en) 1992-02-28 1993-02-25 Internal combustion engine
AU33851/93A AU657392B2 (en) 1992-02-28 1993-02-26 Internal combustion engine
EP93103136A EP0558072B1 (en) 1992-02-28 1993-02-26 Internal combustion engine
DE69301470T DE69301470T2 (en) 1992-02-28 1993-02-26 Internal combustion engine
KR1019930002927A KR950003740B1 (en) 1992-02-28 1993-02-27 Internal combustion engine
US08/637,528 USRE36500E (en) 1992-02-28 1996-04-25 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4044006A JP2792308B2 (en) 1992-02-28 1992-02-28 In-cylinder injection type internal combustion engine

Publications (2)

Publication Number Publication Date
JPH05240044A true JPH05240044A (en) 1993-09-17
JP2792308B2 JP2792308B2 (en) 1998-09-03

Family

ID=12679621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4044006A Expired - Fee Related JP2792308B2 (en) 1992-02-28 1992-02-28 In-cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2792308B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030633A1 (en) * 1995-03-28 1996-10-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder injection type internal combustion engine
US5711269A (en) * 1995-03-28 1998-01-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
EP0824188A2 (en) 1996-08-09 1998-02-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection internal combustion engine
EP0824186A2 (en) 1996-08-09 1998-02-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control system for internal combustion engine
US5806482A (en) * 1995-03-28 1998-09-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
WO1998055743A1 (en) * 1997-06-03 1998-12-10 Nissan Motor Co., Ltd. Piston for cylinder direct injection spark ignition internal combustion engine
EP0893584A2 (en) 1997-07-25 1999-01-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection type spark ignition internal combustion engine
JPH11200865A (en) * 1998-01-05 1999-07-27 Kawasaki Heavy Ind Ltd Fuel supply method of gasoline engine
KR100365113B1 (en) * 1996-11-22 2003-03-15 기아자동차주식회사 Structure of shape of piston head of direct injection type gasoline engine
KR100365114B1 (en) * 1996-11-22 2003-03-15 기아자동차주식회사 Structure of shape of piston head of direct injection type gasoline engine
DE19708288B4 (en) * 1996-02-29 2007-10-31 Mitsubishi Jidosha Kogyo K.K. Internal combustion engine
JP2016180359A (en) * 2015-03-24 2016-10-13 マツダ株式会社 Engine air-intake device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296470U (en) * 1989-01-23 1990-08-01
JPH0458030A (en) * 1990-06-27 1992-02-25 Toyota Motor Corp Cylinder injection type two-cycle internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296470U (en) * 1989-01-23 1990-08-01
JPH0458030A (en) * 1990-06-27 1992-02-25 Toyota Motor Corp Cylinder injection type two-cycle internal combustion engine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806482A (en) * 1995-03-28 1998-09-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
US5711269A (en) * 1995-03-28 1998-01-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
AU702939B2 (en) * 1995-03-28 1999-03-11 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
WO1996030633A1 (en) * 1995-03-28 1996-10-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder injection type internal combustion engine
DE19708288B4 (en) * 1996-02-29 2007-10-31 Mitsubishi Jidosha Kogyo K.K. Internal combustion engine
US5797367A (en) * 1996-08-09 1998-08-25 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection internal combustion engine
EP0824186A2 (en) 1996-08-09 1998-02-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control system for internal combustion engine
EP0824188A2 (en) 1996-08-09 1998-02-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection internal combustion engine
KR100365113B1 (en) * 1996-11-22 2003-03-15 기아자동차주식회사 Structure of shape of piston head of direct injection type gasoline engine
KR100365114B1 (en) * 1996-11-22 2003-03-15 기아자동차주식회사 Structure of shape of piston head of direct injection type gasoline engine
WO1998055743A1 (en) * 1997-06-03 1998-12-10 Nissan Motor Co., Ltd. Piston for cylinder direct injection spark ignition internal combustion engine
US6129070A (en) * 1997-06-03 2000-10-10 Nissan Motor Co., Ltd. Piston for cylinder direct injection spark ignition internal combustion engine
EP0893584A2 (en) 1997-07-25 1999-01-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection type spark ignition internal combustion engine
US6196180B1 (en) 1997-07-25 2001-03-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection type spark ignition internal combustion engine
US6382178B2 (en) 1997-07-25 2002-05-07 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection type spark ignition internal combustion engine
JPH11200865A (en) * 1998-01-05 1999-07-27 Kawasaki Heavy Ind Ltd Fuel supply method of gasoline engine
JP2016180359A (en) * 2015-03-24 2016-10-13 マツダ株式会社 Engine air-intake device

Also Published As

Publication number Publication date
JP2792308B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JP3158443B2 (en) In-cylinder injection internal combustion engine
JP2002048035A (en) Cylinder fuel injection engine with supercharger
EP0787252B1 (en) A dual piston internal combustion engine
JPS6312820A (en) Two-cycle internal combustion engine
JP2943486B2 (en) In-cylinder injection type internal combustion engine
JP2792308B2 (en) In-cylinder injection type internal combustion engine
JP2946917B2 (en) Internal combustion engine
JPH04506990A (en) Improvement of diesel compression ignition two-cycle internal combustion engine
JP2991182B2 (en) In-cylinder injection type internal combustion engine
JPH06146886A (en) Cylinder injection type internal combustion engine
JPH1018842A (en) Exhaust controller for spark ignition type 2-stroke internal combustion engine
JP2946729B2 (en) Subchamber engine with exhaust gas recirculation system
JPH05240045A (en) Swirl generating internal combustion engine
JPS6088810A (en) Internal-combustion engine
JPS6312821A (en) Two-cycle internal combustion engine
JPS60153427A (en) Supercharged multi-cylinder internal-combustion engine
JPS639627A (en) Two cycle internal combustion engine
JPH0568608B2 (en)
JPH01321A (en) 4-stroke internal combustion engine
JPH0835430A (en) Bypass manifold engine
JPH0545789Y2 (en)
JPH09250429A (en) Fuel injecting/supplying type engine
JPS6014173B2 (en) Fuel saving internal combustion engine
RU2206757C2 (en) Two-stroke internal combustion engine
RU2173395C2 (en) Two-stroke internal combustion engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980519

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080619

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110619

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees