JPH0241924B2 - - Google Patents

Info

Publication number
JPH0241924B2
JPH0241924B2 JP57148389A JP14838982A JPH0241924B2 JP H0241924 B2 JPH0241924 B2 JP H0241924B2 JP 57148389 A JP57148389 A JP 57148389A JP 14838982 A JP14838982 A JP 14838982A JP H0241924 B2 JPH0241924 B2 JP H0241924B2
Authority
JP
Japan
Prior art keywords
piezoelectric vibrator
conductive thin
etching
thin film
vibration type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57148389A
Other languages
Japanese (ja)
Other versions
JPS5937719A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14838982A priority Critical patent/JPS5937719A/en
Publication of JPS5937719A publication Critical patent/JPS5937719A/en
Publication of JPH0241924B2 publication Critical patent/JPH0241924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は縦振動をする主振動部と該主振動部の
支持部とをフオトエツチング加工により一体に形
成する縦振動型圧電振動子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a longitudinally vibrating piezoelectric vibrator, in which a main vibrating part that vibrates longitudinally and a supporting part of the main vibrating part are integrally formed by photoetching.

従来より、数100KHz〜1MHz付近の周波数帯の
圧電振動子として第1図に示すような縦振動型圧
電振動子が用いられている。第1図は斜視図であ
り、表裏面に電極2,3が形成された発振片1が
細い吊り線4,4′に半田付けにより、該発振片
1の重心部分を固定支持されている構成を示す。
該縦振動型圧電振動子は、 1 吊り線に発振片を固定支持する位置精度や半
田量のバラツキにより、CI値、振動漏れ等の
バラツキが大きい、 2 吊り線と発振片の接続強度が弱いため耐衝撃
性が低い、 3 吊り線と発振片との固定支持作業は熟練を要
し、製造コストが高くなる、 4 吊り線の形状から容器が大きくなる、などの
欠点を有している。
Conventionally, a longitudinal vibration type piezoelectric vibrator as shown in FIG. 1 has been used as a piezoelectric vibrator for a frequency band of several 100 KHz to around 1 MHz. FIG. 1 is a perspective view, in which an oscillating piece 1 having electrodes 2 and 3 formed on its front and back surfaces is fixedly supported at the center of gravity of the oscillating piece 1 by soldering to thin hanging wires 4 and 4'. shows.
The vertical vibration type piezoelectric vibrator has the following characteristics: 1. There are large variations in CI value, vibration leakage, etc. due to variations in the positional accuracy and solder amount of fixing and supporting the oscillating piece on the hanging wire, 2. The connection strength between the hanging wire and the oscillating piece is weak. 3. Fixing and supporting the hanging wire and the oscillating piece requires skill, resulting in high manufacturing costs; and 4. The shape of the hanging wire makes the container large.

その他の縦振動型圧電振動子の従来例を第2図
に斜視図で示す。同図において、本例の縦振動型
圧電振動子は、縦振動する主振動部5と連結部
6,6′と支持部7,7′とがフオトエツチング加
工により一体で形成されており、さらに音叉形状
の別部材の固定部8で支持されている。
Another conventional example of a longitudinal vibration type piezoelectric vibrator is shown in a perspective view in FIG. In the figure, the longitudinally vibrating piezoelectric vibrator of this example has a main vibrating part 5 that vibrates vertically, connecting parts 6, 6', and supporting parts 7, 7' that are integrally formed by photoetching, and furthermore, It is supported by a fixing part 8 which is a separate member shaped like a tuning fork.

さらに、その他のフオトエツチング加工による
縦振動型圧電振動子の従来例を第3図Aに斜視図
で示す。同図において、本例の縦振動型圧電振動
子は、主振動部9と、該主振動部9を取囲む二重
の枠10,11およびそれらを連結する連結部1
2,12′,13,13′がフオトエツチング加工
により一体に形成されている。
Furthermore, a conventional example of a vertical vibration type piezoelectric vibrator produced by another photoetching process is shown in a perspective view in FIG. 3A. In the figure, the longitudinal vibration type piezoelectric vibrator of this example includes a main vibrating part 9, double frames 10 and 11 surrounding the main vibrating part 9, and a connecting part 1 connecting them.
2, 12', 13, and 13' are integrally formed by photo-etching.

以上説明した従来の三例は、いずれにおいても
主振動エネルギーの漏洩を抑制するため種々の工
夫をしているがその効果は十分でなく、また、製
造コスト、寸法の面でも欠点を有している。
All of the three conventional examples described above employ various measures to suppress the leakage of main vibration energy, but the effects are not sufficient, and they also have drawbacks in terms of manufacturing cost and dimensions. There is.

本出願人は以上に述べた従来の欠点を解消し、
主振動エネルギーの漏洩を抑制し、小型、低コス
ト化に適した構造の縦振動型圧電振動子を先願し
ている。
The applicant has solved the conventional drawbacks mentioned above,
We have previously applied for a longitudinal vibration type piezoelectric vibrator with a structure that suppresses leakage of main vibration energy and is suitable for downsizing and cost reduction.

以下その第1実施例を第4図Aに斜視図で示
す。同図において、本発明は縦振動をする主振動
部14と該主振動部14の振動変位の最も小さく
なる位置に該主振動部14の巾方向に設けられた
連結部15,15′と該連結部15,15′の両端
から前記主振動部14の一方と平行に支持部1
6,16′を延長し、該支持部16,16′は前記
主振動部14を除く支持部分が音叉形状を構成す
るように基部17を設け、該基部17の長さLを
音叉腕に相当する支持部16,16′の巾Wの2
倍以上とした、以上の構成から成る縦振動型圧電
振動子である。本例において、該縦振動型圧電振
動子は主振動部の縦振動によつて生じる短辺方向
の振動に対して、音叉腕に相当する支持部および
連結部とが屈曲振動を行なうものである。該縦振
動型圧電振動子は主振動部を支持している部分が
音叉形状となつているため、小型、低コスト化に
適した構造で振動エネルギーの漏洩を効果的に抑
制できるという利点をもつている。ところで、第
2図、第3図に示した従来の縦振動型圧電振動子
は、たとえば、第3図Bに示すように水晶板のZ
板をY軸まわりに角度で20゜〜45゜回転し、X′軸回
りに角度で−5゜〜+5゜回転した(図示せず)、い
わゆるNTカツトの水晶ウエハーよりフオトエツ
チング加工により形成されている。縦振動の励起
は、主振動部9の表、裏、すなわちZ′面に形成さ
れた2個の電極18,19により電界Eが生じ、
その電界EのX成分Exが励振に有効な成分とな
り、Y軸方向すなわち主振動部9の長さ方向に成
されている。したがつて、圧電ウエハーの表、裏
面に形成した導電性薄膜のみで外形形状のエツチ
ングの際の耐食膜と電極膜とを兼ねることができ
る構成となつている。一方、第4図Aに示した縦
振動型圧電振動子は、たとえば、水晶板のZ板を
X軸回りに角度で−5゜〜+5゜の範囲で回転させた
水晶ウエハーから主振動部の巾方向をX軸、長さ
方向をY軸となる様フオトエツチング加工で形成
されている。第4図Bは第4図AのQ−Q′にお
ける断面図であり、主振動部14はX方向すなわ
ち巾方向の電界によりY方向すなわち長さ方向の
縦振動を励起するため、主電極20,21はX軸
に垂直な面すなわち主振動部14の側面に形成さ
れる。このため、第2図、第3図に示した従来の
他の縦振動型圧電振動子に比較し、電界の励振効
率が良いという利点を有する反面、外形形状のエ
ツチング加工後に主振動部の側面に電極を形成す
る必要性が生じるという不具合点を有している。
側面へ電極形成を行なう方法としては、いわゆる
マスキング方法が一般的である。第5図は、その
マスキング方法の説明図である。同図において、
22は縦振動型圧電振動子で、主振動部23、連
結部24,24′、連結部25,25′、基部26
とから構成され、その表面には導電性薄膜により
電極27,28が形成されている。29は該縦振
動型圧電振動子22を複数個同一ウエハー上に接
続するための枠であり、該枠29と該縦型圧電振
動子22とは結合部30により結合されている。
主振動部23の側面への電極形成は、導電性薄膜
を形成するための開口部101,102を有する
マスク103を前記縦振動型圧電振動子22に密
着させた状態で該マスク103を介して導電性薄
膜をスパツタリングし、予じめ形成されている平
面の電極27,28と電気的に接続する側面電極
を形成することができる。さらに電極形成につい
て詳細に説明したものが第6図の断面図である。
同図のA〜Hは加工工程順を示しており、同図A
は、圧電ウエハー31の表、裏面に該圧電ウエハ
ーのエツチング液に対して耐食性のある導電性薄
膜32,32′を形成する工程、同図Bは前記導
電性薄膜32,32′の上に縦振動型圧電振動子
の外形形状のフオトレジスト33,33′を形成
する工程、同図Cはフオトレジスト33,33′
を耐食膜として導電性薄膜32,32′を縦振動
子外形形状にエツチング加工する工程、同図Dは
導電性薄膜32,32′を耐食膜として圧電ウエ
ハー31を縦振動型圧電振動子外形形状にエツチ
ング加工する工程、同図Eは平面電極形状のフオ
トレジスト33,33′を形成する工程、同図F
はフオトレジスト33,33′を耐食膜として導
電性薄膜32,32′を平面電極形状にエツチン
グ加工する工程、同図Gはフオトレジスト33,
33′を剥離する工程、同図Hはマスク36,3
6′により前述のマスキング方法により側面電極
35,35′を形成する工程である。なお、前記
の加工工程の順序の中で、第6図Eで示す電極形
状のフオトレジスト33,33′を形成する工程
を、同図Cの後で行なうようにすることも可能で
ある。以上に説明した従来のマスキング方法によ
る側面電極形成方法は以下の欠点を有する。
The first embodiment is shown in a perspective view in FIG. 4A. In the figure, the present invention includes a main vibrating part 14 that vibrates longitudinally, connecting parts 15 and 15' provided in the width direction of the main vibrating part 14 at a position where the vibration displacement of the main vibrating part 14 is the smallest, A supporting portion 1 is connected from both ends of the connecting portions 15, 15' in parallel with one of the main vibrating portions 14.
6 and 16' are extended, and the support parts 16 and 16' are provided with a base part 17 so that the support part excluding the main vibrating part 14 constitutes a tuning fork shape, and the length L of the base part 17 is set to correspond to the tuning fork arm. 2 of the width W of the supporting parts 16, 16'
This is a longitudinal vibration type piezoelectric vibrator having the above configuration, which is more than twice as large. In this example, the longitudinal vibration type piezoelectric vibrator is such that the supporting part and the connecting part corresponding to the tuning fork arms perform bending vibration in response to the vibration in the short side direction caused by the longitudinal vibration of the main vibrating part. . The longitudinal vibration type piezoelectric vibrator has a tuning fork shape in the part that supports the main vibrating part, so it has a structure suitable for downsizing and cost reduction, and has the advantage of effectively suppressing leakage of vibration energy. ing. By the way, in the conventional longitudinal vibration type piezoelectric vibrator shown in FIGS. 2 and 3, for example, as shown in FIG. 3B, the Z
The plate was rotated 20° to 45° around the Y axis and -5° to +5° around the X' axis (not shown), and was formed by photoetching from a so-called NT cut crystal wafer. ing. For excitation of longitudinal vibration, an electric field E is generated by two electrodes 18 and 19 formed on the front and back sides of the main vibrating section 9, that is, on the Z' plane.
The X component Ex of the electric field E becomes an effective component for excitation, and is directed in the Y-axis direction, that is, in the length direction of the main vibrating section 9. Therefore, the configuration is such that only the conductive thin films formed on the front and back surfaces of the piezoelectric wafer can serve as both a corrosion-resistant film and an electrode film during etching of the external shape. On the other hand, in the longitudinal vibration type piezoelectric vibrator shown in FIG. It is formed by photo-etching so that the width direction is the X axis and the length direction is the Y axis. FIG. 4B is a cross-sectional view taken along Q-Q' in FIG. , 21 are formed on a plane perpendicular to the X-axis, that is, on a side surface of the main vibration section 14. Therefore, compared to other conventional longitudinal vibration type piezoelectric vibrators shown in Figs. 2 and 3, it has the advantage of high electric field excitation efficiency. This method has the drawback that it is necessary to form electrodes at the same time.
A so-called masking method is generally used to form electrodes on the side surfaces. FIG. 5 is an explanatory diagram of the masking method. In the same figure,
22 is a longitudinal vibration type piezoelectric vibrator, which includes a main vibration part 23, connecting parts 24, 24', connecting parts 25, 25', and a base part 26.
Electrodes 27 and 28 are formed on the surface of the conductive thin film. Reference numeral 29 denotes a frame for connecting a plurality of vertically vibrating piezoelectric vibrators 22 on the same wafer, and the frame 29 and the vertical piezoelectric vibrators 22 are coupled by a coupling portion 30 .
The electrodes are formed on the side surface of the main vibrating section 23 by using a mask 103 having openings 101 and 102 for forming a conductive thin film in close contact with the longitudinal vibrating piezoelectric vibrator 22. A conductive thin film can be sputtered to form side electrodes that are electrically connected to previously formed planar electrodes 27, 28. Further detailed explanation of electrode formation is shown in the cross-sectional view of FIG.
A to H in the figure indicate the order of processing steps, and A to H in the figure
3 is a step of forming conductive thin films 32, 32' that are resistant to corrosion against the etching solution of the piezoelectric wafer on the front and back surfaces of the piezoelectric wafer 31, and FIG. A step of forming photoresists 33, 33' in the external shape of a vibrating piezoelectric vibrator, C in the figure shows photoresists 33, 33'
The process of etching the conductive thin films 32, 32' into the external shape of a vertical vibrator using the conductive thin films 32, 32' as anti-corrosion films is shown in FIG. The process of etching the photoresists 33, 33' in the shape of planar electrodes is shown in FIG.
1 is a process of etching the conductive thin films 32, 32' into a planar electrode shape using the photoresists 33, 33' as anti-corrosion films;
The step of peeling off the mask 33', H in the same figure shows the mask 36, 3.
6' is a step of forming side electrodes 35, 35' by the above-described masking method. Incidentally, in the order of the processing steps described above, it is also possible to perform the step of forming the photoresists 33, 33' having the electrode shapes shown in FIG. 6E after the step shown in FIG. 6C. The side electrode forming method using the conventional masking method described above has the following drawbacks.

1 圧電振動子とマスクはズレ量10μm以下の合
わせ精度が必要であり、さらに両方を密着させ
て薄膜形成装置の中にセツトしなければならな
いため製造工数がかかる。
1. The piezoelectric vibrator and the mask must be aligned with a misalignment accuracy of 10 μm or less, and furthermore, both must be placed in close contact with each other in the thin film forming apparatus, which requires a lot of manufacturing man-hours.

2 位置合せ精度が確保されない場合、2個の電
極間のシヨート、または側面への薄膜付着が不
十分となり加工歩留りが低下する。また、特性
のバラツキが生じやすい。
2. If alignment accuracy is not ensured, thin film adhesion to the shot or side surface between the two electrodes will be insufficient, resulting in a decrease in processing yield. Further, variations in characteristics are likely to occur.

そこで、本発明はこのような欠点を解消しよう
とするもので、その目的とするところは、電極形
成を容易にすると共に低コストで製造可能な縦振
動型圧電振動子の製造方法を提供するところにあ
る。
Therefore, the present invention aims to eliminate such drawbacks, and its purpose is to provide a method for manufacturing a longitudinal vibration type piezoelectric vibrator that facilitates electrode formation and can be manufactured at low cost. It is in.

本発明における縦振動型圧電振動子の製造方法
の要旨は、縦振動をする主振動部と、前記主振動
部の支持部とをフオトエツチング加工により一体
で形成してなる縦振動型圧電振動子の製造方法に
おいて、圧電ウエハーを前記縦振動型圧電振動子
の外形形状にエツチング加工する工程と、前記縦
振動型圧電振動子のほぼ全表面に導電性薄膜を形
成する工程と、前記導電性薄膜の一部をエツチン
グ加工して電極を形成する工程からなることを特
徴とする。
The gist of the method for manufacturing a longitudinally vibrating piezoelectric vibrator according to the present invention is to produce a longitudinally vibrating piezoelectric vibrator in which a main vibrating part that vibrates longitudinally and a supporting part of the main vibrating part are integrally formed by photo-etching. In the manufacturing method, a step of etching a piezoelectric wafer into the external shape of the vertical vibration type piezoelectric vibrator, a step of forming a conductive thin film on substantially the entire surface of the vertical vibration type piezoelectric vibrator, and a step of etching the piezoelectric wafer into the external shape of the vertical vibration type piezoelectric vibrator, It is characterized by comprising a step of etching a part of the electrode to form an electrode.

以下に本発明の実施例を図面に基づいて詳細に
説明する。第7図に本発明の実施例を断面図で示
す。同図は、前述の従来例を示す第6図A〜Dの
加工工程、すなわち圧電ウエハーを圧電振動子外
形形状にエツチング加工する工程は同一であるた
めに省略し、以降の本発明に関する加工工程をE
〜Hとして示したものである。同図Eは外形形状
にエツチング加工された振動子部分(図では主振
動部31で示す)のほぼ全面に導電性薄膜37を
形成する工程、同図Fは電極形状のフオトレジス
ト38,38′を形成する工程、同図Gはフオト
レジスト38,38′を耐食膜として導電性薄膜
32,32′,37をエツチング加工する工程、
同図Hはフオトレジスト38,38′を剥離する
工程である。なお、前記の加工工程の順序の中で
第7図Eで示す導電性薄膜37を形成する工程
は、導電性薄膜32,32′を予じめ剥離した後
に同工程を実施してもよい。以上の加工工程によ
れば次のような利点を得ることができる。
Embodiments of the present invention will be described in detail below based on the drawings. FIG. 7 shows a cross-sectional view of an embodiment of the present invention. In this figure, the processing steps shown in FIGS. 6A to 6D showing the conventional example described above, that is, the step of etching a piezoelectric wafer into the external shape of a piezoelectric vibrator, are omitted because they are the same, and the processing steps related to the present invention are omitted. E
~H. The figure E shows the step of forming a conductive thin film 37 on almost the entire surface of the vibrator part (indicated by the main vibrating part 31 in the figure) which has been etched into the external shape, and the figure F shows the photoresist 38, 38' in the shape of electrodes. G in the figure is a step of etching the conductive thin films 32, 32', 37 using the photoresists 38, 38' as corrosion-resistant films;
H in the figure is a step of peeling off the photoresists 38, 38'. Incidentally, in the order of the processing steps described above, the step of forming the conductive thin film 37 shown in FIG. 7E may be performed after the conductive thin films 32, 32' are peeled off in advance. According to the above processing steps, the following advantages can be obtained.

1 複雑なマスク合わせが必要なくフオトエツチ
ング工程のみでできるため製造コストを安くで
きる。
1. Manufacturing costs can be reduced because there is no need for complicated mask alignment and only a photo etching process is required.

2 フオトエツチング工程により電極を形成する
ため形状精度が良く、特性のバラツキが少な
い。また、本発明の製造方法は、第7図Fに示
すようにフオトレジストを側面に形成すること
が必要となるが、これはレジスト液中への浸
漬、スプレー・ガンによる吹付け塗布などの方
法により容易に実現できる。なお、本発明の実
施例では水晶板のZ板を用いた縦振動型圧電振
動子について説明したが、他の水晶板を用いた
縦振動型圧電振動子においても、支持部が音叉
形状であり主電極を側面に有する縦振動型圧電
振動子であれば本発明の適用は可能である。ま
た、導電性薄膜32,32′,37については、
図示では一層としているが二層、三層といつた
多層膜にも適用は可能である。
2. Since the electrodes are formed by a photo-etching process, the shape accuracy is good and there is little variation in characteristics. Furthermore, in the manufacturing method of the present invention, it is necessary to form a photoresist on the side surface as shown in FIG. This can be easily achieved by In the embodiments of the present invention, a vertically vibrating piezoelectric vibrator using a Z-plate of a quartz crystal plate has been described, but in a vertically vibrating piezoelectric vibrator using another crystal plate, the supporting portion is shaped like a tuning fork. The present invention can be applied to any longitudinal vibration type piezoelectric vibrator that has a main electrode on its side surface. Regarding the conductive thin films 32, 32', 37,
Although the illustration shows a single layer, it is also possible to apply the invention to multilayer films such as two or three layers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は縦振動型圧電振動子の従来例
第4図は本出願人の先願である縦振動型圧電振動
子の実施例。第5図は第4図に示す縦振動型圧電
振動子に側面電極を形成するマスキング方法の説
明図。第6図は第5図のさらに詳細な説明図。第
7図は本発明の実施例。 14……主振動部、15……連結部、16……
支持部、17……基部、20,21……電極、2
2……縦振動型圧電振動子、23……主振動部、
24……連結部、25……支持部、26……基
部、27,28……電極、29……枠、30……
結合部、31……圧電ウエハー、32……導電性
薄膜、33……フオトレジスト、35……側面電
極、36……マスク、37……導電性薄膜、38
……フオトレジスト、101,102……開口
部、103……マスク。
FIGS. 1 to 3 show a conventional example of a longitudinal vibration type piezoelectric vibrator. FIG. 4 shows an example of a longitudinal vibration type piezoelectric vibrator that was filed in the applicant's earlier application. FIG. 5 is an explanatory diagram of a masking method for forming side electrodes on the longitudinal vibration type piezoelectric vibrator shown in FIG. 4. FIG. 6 is a more detailed explanatory diagram of FIG. 5. FIG. 7 shows an embodiment of the present invention. 14... Main vibration part, 15... Connection part, 16...
Support part, 17... Base, 20, 21... Electrode, 2
2... Longitudinal vibration type piezoelectric vibrator, 23... Main vibration part,
24... Connection portion, 25... Support portion, 26... Base, 27, 28... Electrode, 29... Frame, 30...
Bonding portion, 31... Piezoelectric wafer, 32... Conductive thin film, 33... Photoresist, 35... Side electrode, 36... Mask, 37... Conductive thin film, 38
... Photoresist, 101, 102 ... Opening, 103 ... Mask.

Claims (1)

【特許請求の範囲】[Claims] 1 水晶板のZ板をX軸回りに−5゜〜+5゜の範囲
で回転させた水晶ウエハーから主振動部の幅方向
をX軸、長さ方向をY軸となるよう主振動部及び
支持部をフオトエツチング加工により一体形成し
てなる縦振動型圧電振動子の製造方法において、
前記主振動部の幅方向の長さがエツチング方向と
なる厚さ方向の長さより短くなる縦振動型圧電振
動子を第一の導電性薄膜をマスクとして前記水晶
ウエハーからエツチング加工する工程と、前記第
一の導電性薄膜を含む前記主振動部のほぼ全表面
に第二の導電性薄膜を形成する工程と、前記第一
の導電性薄膜が配置された面の中央部の導電性薄
膜を長手方向に沿つてエツチング加工により除去
し互いに対向する側面電極を形成する工程とから
なることを特徴とする縦振動型圧電振動子の製造
方法。
1 From the crystal wafer, which rotates the Z plate of the crystal plate in the range of -5° to +5° around the In a method for manufacturing a longitudinal vibration type piezoelectric vibrator whose parts are integrally formed by photoetching,
etching a longitudinally vibrating piezoelectric vibrator from the crystal wafer using the first conductive thin film as a mask, in which the length in the width direction of the main vibrating part is shorter than the length in the thickness direction, which is the etching direction; forming a second conductive thin film on almost the entire surface of the main vibrating section including the first conductive thin film; 1. A method for manufacturing a longitudinally vibrating piezoelectric vibrator, comprising the steps of forming side electrodes facing each other by etching along the direction.
JP14838982A 1982-08-26 1982-08-26 Manufacture of longitudianl oscillation type piezoelectric oscillator Granted JPS5937719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14838982A JPS5937719A (en) 1982-08-26 1982-08-26 Manufacture of longitudianl oscillation type piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14838982A JPS5937719A (en) 1982-08-26 1982-08-26 Manufacture of longitudianl oscillation type piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JPS5937719A JPS5937719A (en) 1984-03-01
JPH0241924B2 true JPH0241924B2 (en) 1990-09-20

Family

ID=15451675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14838982A Granted JPS5937719A (en) 1982-08-26 1982-08-26 Manufacture of longitudianl oscillation type piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JPS5937719A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754891B2 (en) * 1987-06-02 1995-06-07 セイコー電子部品株式会社 Vertical crystal unit
JPH02132913A (en) * 1988-11-14 1990-05-22 Seiko Electronic Components Ltd Vertical crystal resonator
JPH0831760B2 (en) * 1988-11-14 1996-03-27 セイコー電子工業株式会社 Electrode structure of vertical crystal unit
JPH0831761B2 (en) * 1988-11-14 1996-03-27 セイコー電子工業株式会社 Vertical crystal unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100693A (en) * 1975-03-04 1976-09-06 Citizen Watch Co Ltd Atsudenshindoshino denkyokumakukoseiho
JPS5263093A (en) * 1975-11-19 1977-05-25 Seiko Instr & Electronics Ltd Method of manufacturing piezo-electric oscillator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100693A (en) * 1975-03-04 1976-09-06 Citizen Watch Co Ltd Atsudenshindoshino denkyokumakukoseiho
JPS5263093A (en) * 1975-11-19 1977-05-25 Seiko Instr & Electronics Ltd Method of manufacturing piezo-electric oscillator

Also Published As

Publication number Publication date
JPS5937719A (en) 1984-03-01

Similar Documents

Publication Publication Date Title
JP5216288B2 (en) Method for manufacturing piezoelectric vibrating piece, method for manufacturing piezoelectric device
JP2010109527A (en) Crystal vibration chip and method of manufacturing the same
US8729780B2 (en) Piezoelectric vibrating pieces and corresponding devices exhibiting reduced vibration leakage
JPH0352249B2 (en)
JP2009060478A (en) Manufacturing method of piezoelectric vibration chip, and tuning fork type piezoelectric vibration chip
US7126262B2 (en) Piezoelectric vibration gyro element, method for manufacturing the same, and piezoelectric vibration gyro sensor
US8689415B2 (en) Methods for manufacturing piezoelectric devices
JP5088664B2 (en) Method for manufacturing piezoelectric vibrating piece
JP3844213B2 (en) Method for manufacturing piezoelectric vibrating piece, photomask, piezoelectric vibrating piece, and piezoelectric device
JPS58172008A (en) Structure and manufacture of piezoelectric oscillator
JP2012029262A (en) Piezoelectric vibration piece and method of manufacturing the same
JPH0241924B2 (en)
JP2008113380A (en) Method for manufacturing crystal vibrator, crystal vibrator, and electronic component
JP5154977B2 (en) Piezoelectric vibrating piece, piezoelectric device, and tuning fork type piezoelectric vibrator frequency adjusting method
JP2010283805A (en) Manufacturing method of manufacturing tuning fork type piezoelectric vibration piece, tuning fork type piezoelectric vibration piece, and piezoelectric vibration device
JPS6144408B2 (en)
JP2012065000A (en) Piezoelectric vibration piece, piezoelectric vibrator
JPS60191511A (en) Piezoelectric vibrator and its manufacture
JP2017060125A (en) Piezoelectric vibration piece and piezoelectric vibrator
JPWO2018212181A1 (en) Tuning fork type crystal resonator, method of manufacturing the same, and tuning fork type crystal resonator
JPS6070811A (en) Longitudinal vibration type piezoelectric vibrator and its manufacture
JP2005026847A (en) Method of manufacturing piezoelectric transducer element
JPH0345930B2 (en)
JP2000091866A (en) Piezoelectric vibrator and piezoelectric oscillator and manufacture of piezoelectric vibrating element used for the device
JPS624888B2 (en)