JP2005026847A - Method of manufacturing piezoelectric transducer element - Google Patents

Method of manufacturing piezoelectric transducer element Download PDF

Info

Publication number
JP2005026847A
JP2005026847A JP2003188196A JP2003188196A JP2005026847A JP 2005026847 A JP2005026847 A JP 2005026847A JP 2003188196 A JP2003188196 A JP 2003188196A JP 2003188196 A JP2003188196 A JP 2003188196A JP 2005026847 A JP2005026847 A JP 2005026847A
Authority
JP
Japan
Prior art keywords
region
etching
piezoelectric
manufacturing
piezoelectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003188196A
Other languages
Japanese (ja)
Inventor
Kenji Sato
健二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003188196A priority Critical patent/JP2005026847A/en
Publication of JP2005026847A publication Critical patent/JP2005026847A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a piezoelectric transducer element which copes with the miniaturization (thinning) and improves the yield. <P>SOLUTION: The method of manufacturing a piezoelectric transducer element having a thick-walled vibrating part having a thicker central portion than a peripheral edge of a piezoelectric substrate has a first etching step of etching first and second gaps after covering element regions of the large piezoelectric substrate, corresponding to the piezoelectric transducer elements, support regions adjacent to the element regions across the first gaps and frame regions adjacent to the support regions across the second gaps with a protective film; and a second etching step of etching the piezoelectric substrate after covering vibrating regions corresponding to the vibrating part, the support regions, and the frame regions with the protective film. After piercing the first gaps by the first and second etching steps with leaving narrow joints tying the element regions and the support regions, the joints are bent and broken to obtain individual piezoelectric transducer elements. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、振動子やフィルタ等に使用される圧電振動素子の製造方法に関し、特に薄板化した圧電振動素子の電極形成工程に発生する種々の不具合を解決した圧電振動素子の製造方法に関する。
【0002】
【従来の技術】
携帯電話機等の移動体通信機器の普及に伴う低価格化および小型化の急激な進展により、これらの通信機器に使用される水晶振動子に対しても低価格化、小型化の要求が高まっており、水晶振動子の高周波化、即ち水晶振動素子の薄板化の傾向を辿っている。
【0003】
以下、従来の水晶振動子(水晶振動素子)について説明する。
従来の水晶振動子には、例えば特開平8−330883号公報で開示されたようなものがあり、図16はその構成を示す斜視図である。
水晶基板101の両主面に形成した励振電極102と該励振電極102から延出する引き出し電極103とをエッチング用マスクと見立てて、励振電極102及び引き出し電極103の非形成部位104(表面に水晶の露出している部位)をウエットエッチングにより厚みを薄く成形した水晶振動素子100である。
【0004】
前記水晶振動子100の製造方法は、所望の共振周波数に対応した厚みに加工した前記水晶基板101の両主面の中央部に相対面して蒸着(CVD及びPVD)により前記励振電極102を形成し、該励振電極102夫々から互いに反対方向の端縁部へ延出した前記引き出し電極103を形成している。そして、このまま水晶基板101をエッチング液に浸漬する。この種の目的に用いるエッチング液としてはフッ化水素、フッ化アンモニウム等の飽和水溶液が知られている。このようにすれば励振電極102及び引き出し電極103はマスクとなりエッチング液に浸してもこれらの電極部分はエッチングされない。したがって、前記非形成部位104のみがエッチングされて該非形成部位104の厚みは薄くなり電極の形成部位との間に段差を生じると共に、エッチングによって(厚み加工時に形成された)加工変質層は取り除かれ、それによって良好な振動特性を得ることができる。
【0005】
【特許文献】特開平8−330883号公報。
【0006】
【発明が解決しようとする課題】
一般的な水晶振動素子の製造方法、特に前記励振電極及び前記引き出し電極の形成方法は、図17に示すように、前記水晶基板101とほぼ同一の厚みを有する中板111が備える水晶基板101の平面外形と略一致する複数の貫通孔に水晶基板101を挿入し、水晶基板101の一方主面に形成する前記励振電極パターン及び前記引き出し電極パターンに相当する開口を有する上板112と水晶基板101の他方主面に形成する前記励振電極パターン及び前記引き出し電極パターンに相当する開口を有する下板113とを中板111を挟んで対向配置した上で、中板111と上板112と下板113との位置決め治具である枠板114に固定し、蒸着により前記励振電極102及び前記引き出し電極103を形成する。しかしながら、薄板の水晶基板101は機械的強度が低くため、水晶基板101の把持及び前記貫通孔への挿入時に水晶基板101を破損する虞があり、その取り扱いは極めて困難である。
また、水晶基板101の厚み(共振周波数)毎にそれに対応する前記中板111を用意する必要がある。
【0007】
生産効率を鑑みバッチ処理にて実施するために大型水晶基板を採用し、該大型水晶基板に区画形成した水晶振動素子を分割、個片化することで複数の水晶振動素子を得る製造方法がある。しかし、大型水晶基板を所望の共振周波数に対応するために、例えば100MHz〜208MHzの共振周波数を得るためには前記水晶基板101の厚みを16.7〜8.03μm(0.0167〜0.0080mm)に加工すると共に、発振波形を安定させるために大型水晶基板の両主面の平行度を限りなく0(バラツキ無し)に近く制御することが極めて困難である。
また、薄板の前記大型水晶基板は機械的強度が低く、前記電極を形成するための大型水晶基板用の大型上板、大型下板及び大型枠板(大型中板は不要となる。)を取り付け又は取り外しする時や前記エッチング液に浸漬させる時の大型水晶基板のハンドリングで破損する虞があり、薄板の大型水晶基板の取り扱いは極めて困難である。
さらに、前記非形成部位104に更なる加工、例えばフォトリソプロセスで段差を施す場合など、レジストをスピンナーでコーティングする際、該スピンナーによる吸引固定によって大型水晶基板に反りが発生しレジスト膜厚が不均一になり、所望の加工が実施できない虞がある。
【0008】
本発明は、上記の課題を解決するためになされたものであり、小型化(薄型化)に対応し、且つ、歩留まりを向上させる圧電振動素子の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明に係わる請求項1記載の発明は、圧電基板の周縁よりも中央部分の厚みを大きくして該圧肉部分を振動部とした圧電振動素子の製造方法であって、大型の圧電基板の前記圧電振動素子に相当する素子領域と、該素子領域と第1の間隙を隔てて配置した支持部領域と、該支持部領域と第2の間隙を隔てて配置した枠部領域と、を保護膜で覆い、圧電基板の前記間隙にエッチングを施す第1のエッチング工程と、前記振動部に相当する振動領域と前記支持部領域と前記枠部領域とを保護膜で覆い、圧電基板にエッチングを施す第2のエッチング工程と、を有し、前記第1及び第2のエッチング工程により前記素子領域と前記支持部領域とを繋ぐ細幅の連結部を残して前記第1の間隙を貫通した後、前記連結部を折り割ることにより個片の圧電振動素子を得ることを特徴とする。
【0010】
また請求項2記載の発明は、請求項1において、前記枠部領域の一方の面を保護膜で覆い、圧電基板にエッチングを施す第3のエッチング工程と、第3のエッチング工程にて保護膜で覆った前記枠部領域を位置合わせの基準として電極用マスクを圧電基板に装着する工程と、電極用マスクを介して電極膜を成膜する成膜工程と、を含むことを特徴とする。
【0011】
また請求項3記載の発明は、請求項1において、前記保護膜として金属膜を用い、該金属膜を前記振動領域に主電極として残して他の金属膜を除去する工程と、引き出し電極用マスクを用いて前記主電極から前記素子領域の端部まで延びる引き出し電極を蒸着若しくはスパッタリングにて成膜する工程と、を含むことを特徴とする。
【0012】
また請求項4記載の発明は、請求項1乃至3のいずれかにおいて、前記素子領域に開口を有する折り割り用マスクを、前記素子領域と前記連結部との接続部に開口端部が位置するように圧電基板に装着して前記連結部を折り割ることを特徴とする。
【0013】
【発明の実施の形態】
以下、図示した本発明の実施の形態に基づいて、本発明を詳細に説明する。
【0014】
図1(a)は本発明の実施形態に係わる圧電振動素子としての水晶振動素子の平面図、図1(b)はその側面図であって、図2(a)は本発明の実施形態の製造方法の折り割り(個片化)工程前の大型圧電基板としての大型水晶基板の一部を示す上面図、図2(b)はそのA−A縦断面図である。
本発明実施例に係わる水晶振動素子10は、振動部1aと該振動部1aの外端面の略中央を囲繞する薄肉の段差部1bとを備える略矩形状の水晶振動素子本体、例えばATカット水晶基板1と、該振動部1aの略中央に配設する励振電極2と、該励振電極2夫々から長手方向の一方端部に延在するリード電極3と、を備えたメサ型水晶振動素子である。
複数の前記水晶振動素子10を区画形成した大型水晶基板21(一部のみ図示)は、水晶振動素子10と、該水晶振動素子10の対向する短辺端部の略中央から外方向へ延出する連結部22と、該連結部22と機械的に接続する枠部23と、該枠部23の一部、例えば大型水晶基板21が略矩形状であれば対角に配置し且つ互いに反対の主面に形成した突起部23aと、各連結部22の略中央に形成すると共に水晶振動素子10の短辺とほぼ同一の長さを有する支持部24と、水晶振動素子10と隣接するその他の水晶振動素子(不図示)との間隙(両主面間を貫通する。)25と、を備えたものである。振動部1a、支持部24及び突起部23aを除く枠部23は同一の厚さを有すると共に、連結部22は段差部1bより更に薄くなっている。図2(b)中右側の前記突起部23aの一方主面(上面)は上方に厚く(下面は支持部24の下面と略一致する。)なると共に、左側の突起部23aの他方主面(下面)は下方に厚く(上面は支持部24の上面と略一致する。)なっている。
【0015】
以下、図1及び2を参照しつつ図3乃至図15に基づいて、本発明の実施形態の水晶振動子の製造方法を説明する。
図3に示すように、ポリッシュ加工した大型水晶基板31の両主面に対して金/クロムの金属膜を真空蒸着により付着する。該金属膜のそれぞれに対してフォトリソプロセスを用いて、前記水晶振動素子10になる部分(素子領域10z)にエッチング用のマスクパターン32aと前記枠部23になる部分(枠部領域23z)にエッチング用のマスクパターン32bと前記突起部23aになる部分(突起部領域23az)にエッチング用のマスクパターン32cと前記支持部24になる部分(支持部領域24z)にエッチング用のマスクパターン32dとを形成する、即ち前記連結部22及び前記間隙(不図示)になる部分(連結部領域22z及び間隙領域)の金属膜を除去する。
次に、両主面の前記段差部1bになる部分(段差部領域1bz)の前記マスクパターン32a、同図中右側の一方主面(上面)側の前記マスクパターン32c及び同図中左側の他方主面(下面)側の前記マスクパターン32cにスピンナー等でコーティングした第1のフォトレジスト(感光性樹脂)33を被着する。さらに、両主面夫々に露出する前記振動部1aになる部分(振動部領域1az)の前記マスクパターン32a及び前記マスクパターン32b乃至dに、スピンナー等でコーティングした第2のフォトレジスト(感光性樹脂)34を被着する(保護膜形成工程)、即ち両主面の前記段差部領域1bzに被着した第1のフォトレジスト33と前記連結部領域22z及び前記間隙領域の水晶面とが露出した大型水晶基板となる。
【0016】
図4に示すように、両主面に露出する水晶面、即ち前記連結部領域22z及び前記間隙領域(不図示)にエッチングを施す(第1の水晶エッチング工程)。
図5に示すように、両主面に露出する(前記段差部領域1bzに被着した)前記第1のフォトレジスト33を剥離する(第1のフォトレジスト剥離工程)。
図6に示すように、第1のフォトレジスト33を剥離したことで両主面に露出した部分のマスクパターン(前記マスクパターン32aの一部)にエッチングを施す(第1のマスクパターンのエッチング工程)ことで、両主面の前記連結部領域22z、前記段差部領域1bz及び前記間隙領域(不図示)の水晶面が露出した大型水晶基板となる。
【0017】
図7に示すように、両主面に露出する水晶面(前記連結部領域22z、前記段差部領域1bz及び前記間隙領域)に更なるエッチングを施す(第2の水晶エッチング工程)。
図8に示すように、前記第2のフォトレジスト34を剥離する(第2のフォトレジスト剥離工程)ことで、前記マスクパターン32aの一部と前記マスクパターン32bと前記マスクパターン32dと同図中右側の下面側の前記マスクパターン32cと同図中左側の上面側の前記マスクパターン32cと両主面の前記連結部領域22z、前記間隙領域及び前記段差部領域1bzの水晶面と前記マスクパターン32cに被着した前記第1のフォトレジスト33と前記マスクパターン32c及び32dとが露出した大型水晶基板となる。
【0018】
図9に示すように、両主面に露出した前記マスクパターンにエッチングを施す(第2のマスクパターンのエッチング工程)、換言すれば前記突起部領域23azに被着させた前記マスクパターン32c及び前記第1のフォトレジスト33のみを残す。
図10に示すように、前工程により露出した水晶面に更なるエッチングを施す(第3の水晶エッチング工程)ことで前記振動領域1azを所望の共振周波数に対応した厚みに加工すると共に、前記間隙領域(不図示)の水晶を除去する。
図11に示すように、前記第1のフォトレジスト33を剥離する(第3のフォトレジスト剥離工程)。
図12に示すように、前記マスクパターン32cにエッチングを施す(第3のマスクパターンのエッチング工程)ことで前記突起部23aが形成され、図2(a)に示す前記大型水晶基板と同一形状であって前記励振電極及び前記リード電極が未形成の大型水晶基板(40)が完成する。
【0019】
図13に示すように、前記大型水晶基板40に区画形成した複数の前記水晶基板41(前記励振電極及び前記リード電極が未形成状態の前記水晶振動素子10)に対応する位置に前記励振電極パターン及びリード電極パターンに相当する開口を有する大型蒸着マスク45を該大型水晶基板40の両主面に載置すると共に、平面方向は前記突起部23aを基準とし厚み方向は前記支持部24を基準とし位置決めする。大型蒸着マスク45同士の固定は、任意の前記間隙に磁石(不図示)を挿入する(該磁石を挟んで大型蒸着マスク45の内側主面同士を固定する。)か若しくは任意の前記支持部24の近傍に位置する大型蒸着マスク45の外主面に磁石46を載置する(支持部を挟んで大型蒸着マスク45の内側主面同士を固定する。)ことで可能となる(蒸着マスク装着工程)。
図14に示すように、前記大型蒸着マスク45から露出した大型水晶基板40の両主面(水晶面)に対して両面同時に又は各主面を個別に蒸着により金属薄膜43を被着する(電極形成工程)ことで、各水晶基板41の両主面に前記励振電極及びリード電極が形成した、即ち連設する複数の前記水晶振動素子10(を含む大型水晶基板40)が形成される。
【0020】
図15(a)に示すように、前記大型蒸着マスクを取り外し、前記水晶基板に含む複数の前記水晶振動素子の短手方向に一列に並ぶ任意の該水晶振動素子群51の各水晶振動子の長手方向の端部と該端部のそれぞれと機械的に接続する前記連結部22との境界に合せて折り割り用マスク50を載置し、図15(b)に示すように、該境界を折る作業(折り割り工程)を繰り返すことで複数の前記水晶振動素子10が得られる。
【0021】
前記大型蒸着マスク45を介して前記励振電極及び前記リード電極を同時に形成する方法では、メサ型水晶振動素子の振動特性に影響を及ぼす励振電極同士の位置誤差が、前記大型蒸着マスクの加工精度や大型水晶基板への取付け精度に依存してしまい、製造バラツキが大きくなる(歩留りを悪化させる)虞がある。そこで、大型水晶基板を挟んで前記大型水晶基板40に区画形成した複数の前記水晶基板41に対応する位置に少なくとも前記励振電極パターンに相当する開口を有する大型フォトマスクを載置し、両面同時に又は各主面を個別にフォトリソプロセスを実施し前記励振電極を形成することで励振電極の製造バラツキ(位置誤差)を抑止し、振動特性に影響を及ぼさないリード電極は蒸着で形成することで生産性を向上させることが可能となる。
【0022】
ATカットの水晶振動素子(水晶基板)を用いて本発明を説明したが、本発明はATカットに限定するものではなくBTカット、CTカット、DTカット、SCカット、GTカット等のカットアングルの水晶基板に適用できることは云うまでもない。
【0023】
また本発明は、水晶振動素子(水晶基板)のみに限定するものではなくランガサイト、四方酸リチウム、タンタル酸リチウム、ニオブ酸リチウム等の圧電振動素子に適用できることは云うまでもない。
【0024】
【発明の効果】
本発明によれば、小型化(薄型化)に対応し、且つ、歩留まりを向上させる圧電振動素子の製造方法が得られる。
【図面の簡単な説明】
【図1】本発明の実施形態に係わる水晶振動素子の構成図。
(a)平面図。
(b)側面図。
【図2】本発明の実施形態に係わる大型水晶基板の構成図。
(a)平面図。
(b)A−A縦断面図。
【図3】本発明の製造方法に係わる保護膜形成工程の説明図。
【図4】本発明の製造方法に係わる第1の水晶エッチング工程の説明図。
【図5】本発明の製造方法に係わる第1のフォトレジスト剥離工程の説明図。
【図6】本発明の製造方法に係わる第1のマスクパターンのエッチング工程の説明図。
【図7】本発明の製造方法に係わる第2の水晶エッチング工程の説明図。
【図8】本発明の製造方法に係わる第2のフォトレジスト剥離工程の説明図。
【図9】本発明の製造方法に係わる第2のマスクパターンのエッチング工程の説明図。
【図10】本発明の製造方法に係わる第3の水晶エッチング工程の説明図。
【図11】本発明の製造方法に係わる第3のフォトレジスト剥離工程の説明図。
【図12】本発明の製造方法に係わる第3のマスクパターンのエッチング工程の説明図。
【図13】本発明の製造方法に係わる蒸着マスク装着工程の説明図。
【図14】本発明の製造方法に係わる電極形成工程の説明図。
【図15】本発明の製造方法に係わる折り割り工程の説明図。
(a)折り割りマスク載置作業。
(b)折り割り作業。
【図16】従来の水晶振動素子の斜視図。
【図17】従来の電極形成工程を説明するための縦断面図。
【符号の説明】
1…水晶基板 1a…振動部 1b…段差部 2…励振電極
3…リード電極 10…水晶振動素子
21…大型水晶基板 22…連結部 23…枠部 23a…突起部
24…支持部 25…間隙
31…大型水晶基板 32a〜32d…マスクパターン
33…第1のフォトレジスト 34…第2のフォトレジスト
40…大型水晶基板 43…金属薄膜 45…大型蒸着マスク
46…磁石 50…折り割り用マスク
100…水晶振動素子 101…水晶基板 102…励振電極
103…引き出し電極 104…非形成部位
111…中板 112…上板 113…下板 114…枠板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a piezoelectric vibration element used for a vibrator, a filter, or the like, and more particularly to a method for manufacturing a piezoelectric vibration element that solves various problems that occur in the electrode forming process of a thin piezoelectric vibration element.
[0002]
[Prior art]
Due to the rapid progress of price reduction and miniaturization accompanying the popularization of mobile communication devices such as mobile phones, there is an increasing demand for price reduction and miniaturization of crystal units used in these communication devices. Accordingly, the trend is toward higher frequency of the crystal resonator, that is, the thinner crystal resonator element.
[0003]
Hereinafter, a conventional crystal resonator (crystal resonator element) will be described.
There is a conventional crystal resonator as disclosed in, for example, Japanese Patent Laid-Open No. 8-330883, and FIG. 16 is a perspective view showing the configuration thereof.
The excitation electrode 102 formed on both main surfaces of the quartz substrate 101 and the extraction electrode 103 extending from the excitation electrode 102 are regarded as etching masks, and the excitation electrode 102 and the extraction electrode 103 are not formed on the surface 104 (the crystal is formed on the surface). Is a quartz resonator element 100 in which the thickness of the exposed portion is reduced by wet etching.
[0004]
In the method of manufacturing the quartz crystal resonator 100, the excitation electrode 102 is formed by vapor deposition (CVD and PVD) so as to face the central portions of both main surfaces of the quartz substrate 101 processed to a thickness corresponding to a desired resonance frequency. In addition, the extraction electrode 103 extending from each of the excitation electrodes 102 to end edges in opposite directions is formed. Then, the quartz crystal substrate 101 is immersed in an etching solution as it is. As an etching solution used for this kind of purpose, a saturated aqueous solution of hydrogen fluoride, ammonium fluoride or the like is known. In this way, the excitation electrode 102 and the extraction electrode 103 serve as a mask, and these electrode portions are not etched even when immersed in an etching solution. Therefore, only the non-formed portion 104 is etched, the thickness of the non-formed portion 104 is reduced, and a step is formed between the non-formed portion 104 and the formed portion of the electrode, and the work-affected layer (formed during thickness processing) is removed by etching. Thereby, good vibration characteristics can be obtained.
[0005]
[Patent Document] JP-A-8-330883.
[0006]
[Problems to be solved by the invention]
As shown in FIG. 17, a general method for manufacturing a crystal resonator element, in particular, a method for forming the excitation electrode and the extraction electrode, includes a crystal substrate 101 provided in an intermediate plate 111 having substantially the same thickness as the crystal substrate 101. The quartz substrate 101 is inserted into a plurality of through-holes that substantially match the planar outer shape, and the quartz substrate 101 and the upper plate 112 having openings corresponding to the excitation electrode pattern and the extraction electrode pattern formed on one main surface of the quartz substrate 101 The lower plate 113 having an opening corresponding to the excitation electrode pattern and the extraction electrode pattern formed on the other main surface of the substrate is disposed opposite to the intermediate plate 111, and then the intermediate plate 111, the upper plate 112, and the lower plate 113 are disposed. And the excitation electrode 102 and the extraction electrode 103 are formed by vapor deposition. However, since the thin quartz substrate 101 has low mechanical strength, the quartz substrate 101 may be damaged when the quartz substrate 101 is gripped and inserted into the through hole, and its handling is extremely difficult.
Further, it is necessary to prepare the corresponding intermediate plate 111 for each thickness (resonance frequency) of the quartz substrate 101.
[0007]
There is a manufacturing method for obtaining a plurality of crystal resonator elements by adopting a large crystal substrate for batch processing in consideration of production efficiency, and dividing and dividing the crystal resonator elements partitioned on the large crystal substrate. . However, in order to obtain a resonance frequency of, for example, 100 MHz to 208 MHz in order to cope with a desired resonance frequency of the large quartz substrate, the thickness of the quartz substrate 101 is set to 16.7 to 8.03 μm (0.0167 to 0.0080 mm). In addition, in order to stabilize the oscillation waveform, it is extremely difficult to control the parallelism of both major surfaces of the large quartz substrate to be close to 0 (no variation).
Moreover, the large-sized quartz crystal substrate having a thin plate has a low mechanical strength, and a large-sized upper plate, a large-sized lower plate, and a large-sized frame plate (a large-sized middle plate are not required) for forming the electrode. Alternatively, the large crystal substrate may be damaged when it is removed or immersed in the etching solution, and handling of the thin large crystal substrate is extremely difficult.
Further, when the resist is coated with a spinner when the non-formed portion 104 is further processed, for example, when a step is formed by a photolithography process, the large quartz substrate is warped due to suction fixation by the spinner, and the resist film thickness is uneven. Therefore, there is a possibility that desired processing cannot be performed.
[0008]
SUMMARY An advantage of some aspects of the invention is that it provides a method for manufacturing a piezoelectric vibration element that can cope with downsizing (thinning) and improve yield.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention is a method of manufacturing a piezoelectric vibrating element in which the thickness of the central portion is made larger than the peripheral edge of the piezoelectric substrate and the pressed portion is used as a vibrating portion. An element region corresponding to the piezoelectric vibration element of a large piezoelectric substrate, a support region disposed with the element region separated from the first gap, and a support region disposed with the second gap disposed A first etching step of covering the frame region with a protective film and etching the gap of the piezoelectric substrate, and the vibration region corresponding to the vibrating unit, the support region, and the frame region with a protective film. And a second etching step for etching the piezoelectric substrate, and the first and second etching steps leave the narrow connection portion connecting the element region and the support portion region. After passing through the gap of 1, the connecting part is folded. Characterized in that to obtain a piezoelectric vibrating element of the individual pieces by dividing.
[0010]
According to a second aspect of the present invention, in the first aspect, the third etching step of covering one surface of the frame region with a protective film and etching the piezoelectric substrate, and the protective film in the third etching step The method includes a step of mounting an electrode mask on the piezoelectric substrate using the frame region covered with the substrate as a reference for alignment, and a film forming step of forming an electrode film through the electrode mask.
[0011]
According to a third aspect of the present invention, in the first aspect, a metal film is used as the protective film, and the metal film is left as a main electrode in the vibration region to remove another metal film, and a lead electrode mask And forming a lead electrode extending from the main electrode to the end of the element region by vapor deposition or sputtering.
[0012]
According to a fourth aspect of the present invention, in any one of the first to third aspects, the folding mask having an opening in the element region is located at an opening end portion at a connection portion between the element region and the connecting portion. As described above, the connecting portion is folded by being attached to the piezoelectric substrate.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on illustrated embodiments of the present invention.
[0014]
1A is a plan view of a crystal resonator element as a piezoelectric resonator element according to an embodiment of the present invention, FIG. 1B is a side view thereof, and FIG. 2A is an embodiment of the present invention. A top view showing a part of a large quartz substrate as a large piezoelectric substrate before folding (dividing into pieces) of the manufacturing method, and FIG.
A crystal resonator element 10 according to an embodiment of the present invention includes a substantially rectangular crystal resonator element body, for example, an AT-cut crystal, including a vibrating portion 1a and a thin stepped portion 1b surrounding the substantial center of the outer end surface of the vibrating portion 1a. A mesa-type crystal resonator element comprising a substrate 1, an excitation electrode 2 disposed substantially at the center of the vibration part 1a, and a lead electrode 3 extending from each of the excitation electrodes 2 to one end in the longitudinal direction. is there.
A large-sized quartz substrate 21 (partially shown) in which a plurality of quartz resonator elements 10 are partitioned is extended outward from the approximate center of the quartz resonator element 10 and the short side ends of the quartz resonator element 10 facing each other. The connecting portion 22, the frame portion 23 mechanically connected to the connecting portion 22, and a part of the frame portion 23, for example, if the large crystal substrate 21 is substantially rectangular, are arranged diagonally and opposite to each other A protrusion 23 a formed on the main surface, a support portion 24 formed substantially at the center of each connecting portion 22 and having substantially the same length as the short side of the crystal resonator element 10, and other adjacent to the crystal resonator element 10 And a gap (through between both main surfaces) 25 to a quartz crystal vibration element (not shown). The frame part 23 excluding the vibration part 1a, the support part 24, and the protrusion part 23a has the same thickness, and the connecting part 22 is thinner than the step part 1b. In FIG. 2B, one main surface (upper surface) of the right projection portion 23a is thicker upward (the lower surface substantially coincides with the lower surface of the support portion 24), and the other main surface of the left projection portion 23a ( The lower surface is thicker downward (the upper surface substantially coincides with the upper surface of the support portion 24).
[0015]
Hereinafter, a method for manufacturing a crystal resonator according to an embodiment of the present invention will be described based on FIGS. 3 to 15 with reference to FIGS.
As shown in FIG. 3, a gold / chrome metal film is attached to both main surfaces of a polished large crystal substrate 31 by vacuum deposition. Using a photolithographic process on each of the metal films, etching is performed on a portion to be the crystal resonator element 10 (element region 10z) and an etching mask pattern 32a and a portion to be the frame portion 23 (frame portion region 23z). The mask pattern 32b for etching and the mask pattern 32c for etching are formed in the portion (projection region 23az) that becomes the projection 23a and the mask pattern 32d for etching is formed in the portion (support region 24z) that becomes the support 24. That is, the metal film of the connecting portion 22 and the portion (the connecting portion region 22z and the gap region) that becomes the gap (not shown) is removed.
Next, the mask pattern 32a of the portion (stepped portion region 1bz) that becomes the stepped portion 1b on both main surfaces, the mask pattern 32c on the one main surface (upper surface) side on the right side in the drawing, and the other on the left side in the drawing A first photoresist (photosensitive resin) 33 coated with a spinner or the like is applied to the mask pattern 32c on the main surface (lower surface) side. Further, a second photoresist (photosensitive resin) coated with a spinner or the like on the mask pattern 32a and the mask patterns 32b to d of the part (vibration part region 1az) exposed on each of the main surfaces to become the vibration part 1a. ) 34 (protective film forming step), that is, the first photoresist 33 deposited on the stepped portion region 1bz on both main surfaces, the coupling portion region 22z, and the crystal plane of the gap region are exposed. It becomes a large crystal substrate.
[0016]
As shown in FIG. 4, the crystal surface exposed on both main surfaces, that is, the connecting portion region 22z and the gap region (not shown) are etched (first crystal etching step).
As shown in FIG. 5, the first photoresist 33 exposed on both main surfaces (attached to the stepped region 1bz) is removed (first photoresist removing step).
As shown in FIG. 6, etching is performed on a mask pattern (a part of the mask pattern 32 a) exposed on both main surfaces by removing the first photoresist 33 (first mask pattern etching step). Thus, the large crystal substrate in which the crystal surfaces of the coupling region 22z, the step region 1bz, and the gap region (not shown) on both main surfaces are exposed is obtained.
[0017]
As shown in FIG. 7, further etching is performed on the crystal surfaces (the coupling portion region 22z, the step portion region 1bz, and the gap region) exposed on both main surfaces (second crystal etching step).
As shown in FIG. 8, a part of the mask pattern 32a, the mask pattern 32b, and the mask pattern 32d are removed by stripping the second photoresist 34 (second photoresist stripping step). The mask pattern 32c on the lower surface side on the right side, the mask pattern 32c on the upper surface side on the left side in the drawing, the crystal surface of the coupling region 22z, the gap region and the step region 1bz on both main surfaces, and the mask pattern 32c. Thus, a large quartz substrate is obtained in which the first photoresist 33 and the mask patterns 32c and 32d deposited thereon are exposed.
[0018]
As shown in FIG. 9, the mask pattern exposed on both main surfaces is etched (second mask pattern etching step), in other words, the mask pattern 32c deposited on the projection region 23az and the mask pattern 32c. Only the first photoresist 33 is left.
As shown in FIG. 10, the crystal surface exposed by the previous process is further etched (third crystal etching process) to process the vibration region 1az to a thickness corresponding to a desired resonance frequency, and the gap The crystal in the region (not shown) is removed.
As shown in FIG. 11, the first photoresist 33 is stripped (third photoresist stripping step).
As shown in FIG. 12, the protrusion 23a is formed by etching the mask pattern 32c (third mask pattern etching step), and has the same shape as the large crystal substrate shown in FIG. Thus, a large quartz substrate (40) in which the excitation electrode and the lead electrode are not formed is completed.
[0019]
As shown in FIG. 13, the excitation electrode pattern is located at a position corresponding to a plurality of the quartz substrates 41 (the quartz oscillation element 10 in which the excitation electrodes and the lead electrodes are not formed) partitioned on the large quartz substrate 40. And a large vapor deposition mask 45 having an opening corresponding to the lead electrode pattern is placed on both main surfaces of the large quartz substrate 40, and the planar direction is based on the protrusion 23a and the thickness direction is based on the support 24. Position. The large vapor deposition masks 45 are fixed to each other by inserting a magnet (not shown) in any gap (fixing the inner main surfaces of the large vapor deposition mask 45 with the magnet interposed therebetween) or the arbitrary support portion 24. It becomes possible by placing the magnet 46 on the outer main surface of the large evaporation mask 45 located in the vicinity of (fixing the inner main surfaces of the large evaporation mask 45 with the support portion interposed therebetween) (deposition mask mounting step). ).
As shown in FIG. 14, a metal thin film 43 is deposited on both main surfaces (crystal surface) of the large quartz substrate 40 exposed from the large vapor deposition mask 45 simultaneously or by vapor deposition on both main surfaces (electrodes). Thus, the plurality of crystal resonator elements 10 (including the large crystal substrate 40) in which the excitation electrodes and the lead electrodes are formed on both main surfaces of each crystal substrate 41, that is, a plurality of crystal resonator elements 10 connected in series are formed.
[0020]
As shown in FIG. 15 (a), the large-sized vapor deposition mask is removed, and each crystal resonator of the crystal resonator element group 51 arranged in a line in the short direction of the plurality of crystal resonator elements included in the crystal substrate is arranged. A folding mask 50 is placed in alignment with the boundary between the end portion in the longitudinal direction and the connecting portion 22 mechanically connected to each of the end portions, and as shown in FIG. A plurality of the crystal resonator elements 10 can be obtained by repeating the folding operation (folding step).
[0021]
In the method of simultaneously forming the excitation electrode and the lead electrode through the large evaporation mask 45, the positional error between the excitation electrodes that affect the vibration characteristics of the mesa-type crystal resonator element is caused by the processing accuracy of the large evaporation mask. Depending on the accuracy of mounting on a large quartz substrate, there is a risk of increased manufacturing variation (deteriorating yield). Therefore, a large photomask having an opening corresponding to at least the excitation electrode pattern is placed at a position corresponding to the plurality of quartz substrates 41 that are partitioned and formed on the large quartz substrate 40 with the large quartz substrate interposed therebetween. Each main surface is individually subjected to a photolithography process to form the excitation electrode, thereby suppressing manufacturing variations (position error) of the excitation electrode, and forming lead electrodes that do not affect the vibration characteristics by vapor deposition. Can be improved.
[0022]
Although the present invention has been described using an AT-cut crystal resonator element (quartz substrate), the present invention is not limited to the AT-cut, and cut angles such as BT-cut, CT-cut, DT-cut, SC-cut, and GT-cut are used. Needless to say, it can be applied to a quartz substrate.
[0023]
Needless to say, the present invention is not limited to a quartz resonator element (quartz substrate), and can be applied to a piezoelectric resonator element such as langasite, lithium tetragonal acid, lithium tantalate, lithium niobate, or the like.
[0024]
【The invention's effect】
According to the present invention, it is possible to obtain a method of manufacturing a piezoelectric vibration element that can cope with downsizing (thinning) and improve the yield.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a crystal resonator element according to an embodiment of the invention.
(A) Top view.
(B) Side view.
FIG. 2 is a configuration diagram of a large crystal substrate according to an embodiment of the present invention.
(A) Top view.
(B) AA longitudinal cross-sectional view.
FIG. 3 is an explanatory view of a protective film forming step according to the manufacturing method of the present invention.
FIG. 4 is an explanatory view of a first crystal etching process according to the manufacturing method of the present invention.
FIG. 5 is an explanatory diagram of a first photoresist stripping process according to the manufacturing method of the present invention.
FIG. 6 is an explanatory diagram of a first mask pattern etching process according to the manufacturing method of the present invention.
FIG. 7 is an explanatory diagram of a second crystal etching process according to the manufacturing method of the present invention.
FIG. 8 is an explanatory diagram of a second photoresist stripping process according to the manufacturing method of the present invention.
FIG. 9 is an explanatory diagram of a second mask pattern etching process according to the manufacturing method of the present invention.
FIG. 10 is an explanatory diagram of a third crystal etching process according to the manufacturing method of the present invention.
FIG. 11 is an explanatory diagram of a third photoresist stripping process according to the manufacturing method of the present invention.
FIG. 12 is an explanatory diagram of a third mask pattern etching process according to the manufacturing method of the present invention.
FIG. 13 is an explanatory diagram of a deposition mask mounting process according to the manufacturing method of the present invention.
FIG. 14 is an explanatory diagram of an electrode forming process according to the manufacturing method of the present invention.
FIG. 15 is an explanatory diagram of a folding process according to the manufacturing method of the present invention.
(A) Folding mask placement work.
(B) Folding work.
FIG. 16 is a perspective view of a conventional crystal resonator element.
FIG. 17 is a longitudinal sectional view for explaining a conventional electrode forming step.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Quartz substrate 1a ... Vibrating part 1b ... Step part 2 ... Excitation electrode 3 ... Lead electrode 10 ... Quartz vibrating element 21 ... Large crystal substrate 22 ... Connection part 23 ... Frame part 23a ... Protrusion part 24 ... Support part 25 ... Gap 31 ... large crystal substrates 32a to 32d ... mask pattern 33 ... first photoresist 34 ... second photoresist 40 ... large crystal substrate 43 ... metal thin film 45 ... large vapor deposition mask 46 ... magnet 50 ... folding mask 100 ... crystal Vibration element 101 ... Quartz substrate 102 ... Excitation electrode 103 ... Extraction electrode 104 ... Non-formed part 111 ... Inner plate 112 ... Upper plate 113 ... Lower plate 114 ... Frame plate

Claims (4)

圧電基板の周縁よりも中央部分の厚みを大きくして該厚肉部分を振動部とした圧電振動素子の製造方法であって、
大型の圧電基板の前記圧電振動素子に相当する素子領域と、該素子領域と第1の間隙を隔てて配置した支持部領域と、該支持部領域と第2の間隙を隔てて配置した枠部領域と、を保護膜で覆い、圧電基板の前記間隙にエッチングを施す第1のエッチング工程と、
前記振動部に相当する振動領域と前記支持部領域と前記枠部領域とを保護膜で覆い、圧電基板にエッチングを施す第2のエッチング工程と、
を有し、
前記第1及び第2のエッチング工程により前記素子領域と前記支持部領域とを繋ぐ細幅の連結部を残して前記第1の間隙を貫通した後、前記連結部を折り割ることにより個片の圧電振動素子を得ることを特徴とする圧電振動素子の製造方法。
A method for manufacturing a piezoelectric vibration element in which the thickness of the central portion is made larger than the peripheral edge of the piezoelectric substrate and the thick portion is used as a vibration portion,
An element region corresponding to the piezoelectric vibration element of a large-sized piezoelectric substrate, a support region disposed with the element region separated from the first gap, and a frame portion disposed with the support region separated from the second gap A first etching step of covering the region with a protective film and etching the gap of the piezoelectric substrate;
A second etching step of covering the vibration area corresponding to the vibration section, the support section area and the frame section area with a protective film, and etching the piezoelectric substrate;
Have
After the first and second etching steps pass through the first gap leaving a narrow connecting portion connecting the element region and the supporting portion region, the connecting portion is broken to divide the piece. A method of manufacturing a piezoelectric vibration element, comprising obtaining a piezoelectric vibration element.
前記枠部領域の一方の面を保護膜で覆い、圧電基板にエッチングを施す第3のエッチング工程と、
第3のエッチング工程にて保護膜で覆った前記枠部領域を位置合わせの基準として電極用マスクを圧電基板に装着する工程と、
電極用マスクを介して電極膜を成膜する成膜工程と、
を含むことを特徴とする請求項1に記載の圧電振動素子の製造方法。
A third etching step of covering one surface of the frame region with a protective film and etching the piezoelectric substrate;
Attaching the electrode mask to the piezoelectric substrate using the frame region covered with the protective film in the third etching step as a reference for alignment;
A film forming step of forming an electrode film through an electrode mask;
The method for manufacturing a piezoelectric vibration element according to claim 1, comprising:
前記保護膜として金属膜を用い、該金属膜を前記振動領域に主電極として残して他の金属膜を除去する工程と、
引き出し電極用マスクを用いて前記主電極から前記素子領域の端部まで延びる引き出し電極を蒸着若しくはスパッタリングにて成膜する工程と、
を含むことを特徴とする請求項1に記載の圧電振動素子の製造方法。
Using a metal film as the protective film, leaving the metal film as a main electrode in the vibration region, and removing other metal films;
Forming a lead electrode extending from the main electrode to the end of the element region by vapor deposition or sputtering using a lead electrode mask;
The method for manufacturing a piezoelectric vibration element according to claim 1, comprising:
前記素子領域に開口を有する折り割り用マスクを、前記素子領域と前記連結部との接続部に開口端部が位置するように圧電基板に装着して前記連結部を折り割ることを特徴とする請求項1乃至3のいずれかに記載の圧電振動素子の製造方法。A folding mask having an opening in the element region is attached to a piezoelectric substrate so that an opening end is located at a connection portion between the element region and the connecting portion, and the connecting portion is folded. The method for manufacturing a piezoelectric vibration element according to claim 1.
JP2003188196A 2003-06-30 2003-06-30 Method of manufacturing piezoelectric transducer element Pending JP2005026847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188196A JP2005026847A (en) 2003-06-30 2003-06-30 Method of manufacturing piezoelectric transducer element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188196A JP2005026847A (en) 2003-06-30 2003-06-30 Method of manufacturing piezoelectric transducer element

Publications (1)

Publication Number Publication Date
JP2005026847A true JP2005026847A (en) 2005-01-27

Family

ID=34186809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188196A Pending JP2005026847A (en) 2003-06-30 2003-06-30 Method of manufacturing piezoelectric transducer element

Country Status (1)

Country Link
JP (1) JP2005026847A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110488A (en) * 2012-11-30 2014-06-12 Kyocera Crystal Device Corp Piezoelectric vibration element, piezoelectric wafer, and manufacturing method of piezoelectric vibration element
JP2019075735A (en) * 2017-10-18 2019-05-16 株式会社村田製作所 Method for manufacturing piezoelectric vibration element and aggregate substrate
JP2019075737A (en) * 2017-10-18 2019-05-16 株式会社村田製作所 Method for manufacturing piezoelectric vibration element and aggregate substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110488A (en) * 2012-11-30 2014-06-12 Kyocera Crystal Device Corp Piezoelectric vibration element, piezoelectric wafer, and manufacturing method of piezoelectric vibration element
JP2019075735A (en) * 2017-10-18 2019-05-16 株式会社村田製作所 Method for manufacturing piezoelectric vibration element and aggregate substrate
JP2019075737A (en) * 2017-10-18 2019-05-16 株式会社村田製作所 Method for manufacturing piezoelectric vibration element and aggregate substrate
JP7045637B2 (en) 2017-10-18 2022-04-01 株式会社村田製作所 Manufacturing method of piezoelectric vibration element and assembly board

Similar Documents

Publication Publication Date Title
JP5239748B2 (en) Quartz crystal
JP2002033640A (en) Piezoelectric device
US8779652B2 (en) At-cut quartz-crystal vibrating pieces and devices, and methods for manufacturing same
US20100314355A1 (en) Ultrasonic probe
JP5251955B2 (en) Processing method of vibrating piece
JPH04322507A (en) Method of processing crystal resonator
JP3767425B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP5272651B2 (en) Manufacturing method of vibrating piece
JP2012029262A (en) Piezoelectric vibration piece and method of manufacturing the same
JP2007318350A (en) Piezoelectric vibrating reed and manufacturing method thereof
JP2005026847A (en) Method of manufacturing piezoelectric transducer element
JPS62266906A (en) Piezoelectric thin film resonator
JP2007096369A (en) Metal mask and method of cutting piezoelectric resonator element
JP4600140B2 (en) Method for manufacturing piezoelectric vibrating piece
JP6570388B2 (en) Piezoelectric vibrator element and piezoelectric vibrator
JP2004260695A (en) Quartz resonator and its manufacturing method
US20150145381A1 (en) Quartz vibrator and manufacturing method thereof
JP6611534B2 (en) Piezoelectric vibrator element and piezoelectric vibrator
JP3991304B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JP3734127B2 (en) Piezoelectric vibrator, piezoelectric oscillator, and method of manufacturing piezoelectric vibration element used therefor
JPH09181556A (en) Piezoelectric vibrator
JP4324948B2 (en) Manufacturing method of high-frequency piezoelectric vibration device
JP5024427B2 (en) Piezoelectric device
JP4016695B2 (en) Method for manufacturing piezoelectric vibration device and piezoelectric vibration device manufactured by the manufacturing method
JP2010010955A (en) Method for manufacturing piezoelectric vibrator, and piezoelectric vibrator