JPH024141B2 - - Google Patents
Info
- Publication number
- JPH024141B2 JPH024141B2 JP57063140A JP6314082A JPH024141B2 JP H024141 B2 JPH024141 B2 JP H024141B2 JP 57063140 A JP57063140 A JP 57063140A JP 6314082 A JP6314082 A JP 6314082A JP H024141 B2 JPH024141 B2 JP H024141B2
- Authority
- JP
- Japan
- Prior art keywords
- charge
- pulse
- detection section
- gate electrode
- clock pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims description 16
- 239000004065 semiconductor Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 9
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 238000012546 transfer Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/762—Charge transfer devices
- H01L29/765—Charge-coupled devices
- H01L29/768—Charge-coupled devices with field effect produced by an insulated gate
- H01L29/76816—Output structures
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Solid State Image Pick-Up Elements (AREA)
Description
【発明の詳細な説明】
現在電荷結合素子は光センサーとしてフアクシ
ミリ、T・V・カメラ、および計測等多方面に渡
り使用されている。特に最近高速動作の要望が強
まりつつある。しかるに、電荷結合素子は、転送
チヤンネル領域が全てゲート電極で形成されるも
のであり、メインクロツク系の入力容量は従来の
半導体装置に比べ非常に大きい。従つて高速動作
を行う上で前記入力容量が大きい為に入力波形の
半導体装置内でのなまりが制約となる。我々は前
記入力波形のなまりが高速動作に及ぼす原因を究
明し、前記入力波形のなまりに影響されない電荷
結合装置を発明するに至つた。DETAILED DESCRIPTION OF THE INVENTION At present, charge-coupled devices are used as optical sensors in a wide range of applications such as facsimiles, TV cameras, and measurement. In particular, the demand for high-speed operation has been increasing recently. However, in a charge-coupled device, the transfer channel region is entirely formed of the gate electrode, and the input capacitance of the main clock system is much larger than that of conventional semiconductor devices. Therefore, since the input capacitance is large, the rounding of the input waveform within the semiconductor device becomes a constraint for high-speed operation. We have investigated the cause of the effect of the input waveform rounding on high-speed operation, and have invented a charge-coupled device that is not affected by the input waveform roundness.
まず電荷結合装置の一般的な電荷検出動作を第
1図を用いて説明する。第1図aに電荷結合装置
の電荷検出部の断面図を示す。半導体基板1に埋
込み電荷転送用の半導体基板1とは異なる逆導電
型の不純物層2およびバリヤー用に前記不純物層
と反対導電型の不純物層3が形成される。次に第
1図bの電位の井戸を用いて簡単に説明する。 First, a general charge detection operation of a charge coupled device will be explained with reference to FIG. FIG. 1a shows a cross-sectional view of the charge detection section of the charge-coupled device. An impurity layer 2 of a conductivity type opposite to that of the semiconductor substrate 1 for charge transfer is embedded in a semiconductor substrate 1, and an impurity layer 3 of a conductivity type opposite to the impurity layer is formed for a barrier. Next, a brief explanation will be given using the potential well shown in FIG. 1b.
各ゲート電極には逆位相のクロツクパルスφ1,
φ2が交互に加えられて電荷がゲート電極下で転
送せしめられる。第1図bに最終ゲート電極にク
ロツクパルスφ1が与えられて電荷Qが蓄えられ
ている電位関係を時刻TAで示す。時刻TBでは時
刻TAとクロツクパルスφ2,φ1の位相関係は逆に
なり、従つてこれらクロツクパルスφ2,φ1の与
えられるゲート電極下の電位の深さの相対関係も
逆になる。即ち最終ゲート電極φ1下の電位の井
戸は電荷蓄積時においては深いが、電荷検出部5
への転送には前記ゲート電極下の電位の井戸がア
ウトプツトゲートVOG下の電位の井戸より浅く
なつた時点で始まる。 Each gate electrode receives a clock pulse φ 1 of opposite phase,
φ 2 is applied alternately to cause charge to be transferred under the gate electrode. FIG. 1b shows the potential relationship at time T A when the clock pulse φ 1 is applied to the final gate electrode and the charge Q is stored. At time T B , the phase relationship between time T A and clock pulses φ 2 and φ 1 is reversed, and therefore the relative relationship between the depths of the potentials under the gate electrodes to which these clock pulses φ 2 and φ 1 are applied is also reversed. In other words, the potential well under the final gate electrode φ1 is deep during charge accumulation, but the potential well under the final gate electrode φ1 is
Transfer to VOG begins when the potential well below the gate electrode becomes shallower than the potential well below the output gate VOG.
さて第2図を用いて最終ゲート電極下の電荷が
アウトプツトゲートを通つて電荷検出部5へ到達
するまでの遅れについて詳しく説明する。 Now, with reference to FIG. 2, the delay until the charge under the final gate electrode reaches the charge detection section 5 through the output gate will be explained in detail.
まず電荷がクロツクパルスφ1の与えられる最
終ゲート電極下に蓄えられている間に電荷検出部
5をリセツトパルスφRの与えられるリセツトゲ
ート電極を介して一定の電位にリセツトするt0〜
t1。その後t2でクロツクパルスφ1の電位が下がり
はじめアウトプツトゲートの電位と同じレベルに
なるt3から最終ゲート電極下の電荷は電荷検出部
へ流れはじめ時刻t4で終り、次のリセツトが始ま
るt5迄出力は保持される。t0〜t5で1サイクルが
完了する。ここで高速動作を行うにはt0〜t5の時
刻をできるだけ短くする必要がある。一方出力信
号の後処理を考えると出力保持時間t4〜t5間はで
きるだけ長い方が好ましい。即ちt0〜t4の時間を
できるだけ短くする必要がある。t0〜t4迄の各時
間について検対する。まずt0〜t1間は電荷検出部
5をリセツトする時間でデバイス設計により異る
が通常10n sec〜30n sec程度は最低必要とされ
る。またt1〜t2間はリセツトパルスとクロツクパ
ルスφ1が下がり始めるタイミングのマージンで
やはり10n sec〜30n sec程度は必要とされる。又
t2〜t3間はクロツクパルスφ1の波形のなまりで特
に電荷結合装置のように入力容量が大きい場合に
は大きくなる。この時間は入力容量により異るが
一般に50n secからものによつては数100n sec要
すものがある。t3〜t4間は電荷が第1図aにおい
てクロツクパルスφ1が与えられる最終ゲート電
極下からアウトプツトゲートVOG下を介して電
荷検出部へ転送するに要する時間であり、通常
20n sec〜50n sec程度要する。 First, while the charge is stored under the final gate electrode to which the clock pulse φ 1 is applied, the charge detection unit 5 is reset to a constant potential via the reset gate electrode to which the reset pulse φ R is applied .
t1 . After that, at t2 , the potential of the clock pulse φ1 begins to drop and becomes the same level as the output gate potential.At t3 , the charge under the final gate electrode begins to flow to the charge detection section, ending at time t4 , and the next reset begins at t3. Output is maintained until 5 . One cycle is completed from t0 to t5 . In order to perform high-speed operation here, it is necessary to make the time from t 0 to t 5 as short as possible. On the other hand, considering the post-processing of the output signal, it is preferable that the output holding time t 4 to t 5 be as long as possible. That is, it is necessary to make the time from t 0 to t 4 as short as possible. Verification is performed at each time from t 0 to t 4 . First, the time period between t 0 and t 1 is the time required to reset the charge detection section 5, and although it varies depending on the device design, a minimum of about 10 nsec to 30 nsec is usually required. Further, between t1 and t2, a margin of about 10nsec to 30nsec is required between the reset pulse and the timing at which the clock pulse φ1 starts to fall. or
Between t2 and t3 , the waveform of the clock pulse φ1 is rounded, which becomes large especially when the input capacitance is large, such as in a charge-coupled device. This time varies depending on the input capacity, but generally it takes from 50 nsec to several 100 nsec depending on the type. The period between t3 and t4 is the time required for the charge to be transferred from under the final gate electrode to which the clock pulse φ1 is applied to the charge detection section via the output gate VOG in Figure 1a, and is usually
It takes about 20n sec to 50n sec.
以上述べたようにt0〜t4の時間は100n secから
デバイスによつては数100n sec要す。 As mentioned above, the time from t 0 to t 4 takes from 100 ns to several 100 ns depending on the device.
これに対し、本発明は前記t0〜t4間の遅れのう
ちφRとφ1のタイミングマージンであるt1〜t2間お
よびφ1の波形のなまりによる遅れt2〜t3間を大幅
に改善して、入力容量が大きいにもかかわらず高
速動作を可能とする電荷結合装置を提供すること
にある。 In contrast, the present invention eliminates the delay between t 1 and t 2 which is the timing margin between φ R and φ 1 and the delay between t 2 and t 3 due to the rounding of the waveform of φ 1 among the delays between t 0 and t 4 . The object of the present invention is to provide a charge-coupled device that is significantly improved and can operate at high speed despite having a large input capacitance.
本発明によれば、半導体基板上に薄い絶縁膜を
介してゲート電極を多数くり返し配置し、それぞ
れの電極にはクロツクパルスが供給されて前記ゲ
ート電極下の半導体基板を電荷が電荷検出部に転
送されるようにし、この電荷検出部に転送された
電荷はリセツトパルスによりこの電荷検出部から
除去されるようにした電荷結合装置において、前
記ゲート電極の電荷検出部に最も近いものには、
立ち上がりが前記クロツクパルスに同期し、その
立ち下がりが前記リセツトパルスの後縁に同期し
たパルスが与えられている電荷結合装置を得る。 According to the present invention, a large number of gate electrodes are repeatedly arranged on a semiconductor substrate with thin insulating films interposed therebetween, and a clock pulse is supplied to each electrode so that charges are transferred from the semiconductor substrate under the gate electrode to the charge detection section. In a charge-coupled device in which the charge transferred to the charge detection section is removed from the charge detection section by a reset pulse, the charge detection section of the gate electrode closest to the charge detection section includes:
A charge-coupled device is provided in which a pulse is provided whose rising edge is synchronized with the clock pulse and whose falling edge is synchronized with the trailing edge of the reset pulse.
次に第3図を用いて本発明の動作を説明する。 Next, the operation of the present invention will be explained using FIG.
まず電荷転送電極の最終ゲート電極に与えられ
るクロツクパルスφ1Lを従来の装置とは異り第3
図に示す波形を半導体基板上で形成し、これを最
終のゲート電極に供給する。該波形を形成する論
理回路の一例を第4図に示す。クロツクパルス
φ1をフリツプフロツプのクロツク端子CKに供給
し、一方フリツプフロツプのリセツト端子Rには
リセツトパルスφRの立ち下りに応じた信号が与
えられる。この立ち下りに応じた信号はリセツト
パルス後縁に同期したパルス幅の短かいパルスと
して、抵抗とコンデンサとの積分回路とインバー
タとANDゲートとで形成される。この結果、フ
リツプフロツプの出力端子Qに得られるクロツク
パルスは、立ち上りがクロツクパルスφ1により
決められ、立ち下りがリセツトパルスφRの立ち
下りで決まる波形となる。得られたクロツクパル
スは最終ゲート電極に他のゲート電極とは別個に
与えられるので、信号供給系の容量は最終ゲート
電極の容量だけであるので、極めて微少容量であ
り、得られた急峻な波形がそのまま維持される。 First, unlike conventional devices, the clock pulse φ 1L applied to the final gate electrode of the charge transfer electrode is
The waveform shown in the figure is formed on a semiconductor substrate and supplied to the final gate electrode. An example of a logic circuit that forms the waveform is shown in FIG. A clock pulse φ 1 is supplied to the clock terminal CK of the flip-flop, while a signal corresponding to the fall of the reset pulse φ R is applied to the reset terminal R of the flip-flop. A signal corresponding to this falling edge is formed as a short pulse in synchronization with the trailing edge of the reset pulse by an integrating circuit including a resistor and a capacitor, an inverter, and an AND gate. As a result, the clock pulse obtained at the output terminal Q of the flip-flop has a waveform whose rising edge is determined by the clock pulse φ1 and whose falling edge is determined by the falling edge of the reset pulse φR . Since the obtained clock pulse is applied to the final gate electrode separately from other gate electrodes, the capacitance of the signal supply system is only that of the final gate electrode, which is extremely small, and the resulting steep waveform is It will remain as is.
さて第3図の方式においては従来型の第2図に
おけるリセツトパルスφRおよびクロツクパルス
φ1Lに相当するタイミングマージンは、クロツク
パルスφ1Lの立下がりはリセツトパルスφRのタイ
ミングを用いて形成するから理論的には零とな
る。又クロツクパルスφ1の立ち下がりのなまり
はクロツクパルスφ1Lが最終ゲート電極だけに供
給するものであるから負荷容量が小さく急峻にす
ることが可能となる。このようにして本発明にお
いてはt1〜t4迄の遅れ時間を極めて短くすること
ができる。 Now , in the system shown in FIG. 3 , the timing margin corresponding to the reset pulse φ R and clock pulse φ 1L in the conventional type shown in FIG. It becomes zero. Furthermore, since the clock pulse φ 1L is supplied only to the final gate electrode, the fall of the clock pulse φ 1 can be made steep because the load capacitance is small. In this way, in the present invention, the delay time from t1 to t4 can be extremely shortened.
第1図aは電荷結合装置の検出部の断面図であ
る。第1図bは電荷転送装置の電荷転送動作を電
位の井戸を用いて説明した図である。第2図は従
来型電荷結合装置の出力波形の各タイミングを説
明した図である。第3図は本発明の電荷結合装置
の出力波形の各タイミングを説明した図である。
第4図は本発明の一実施例による論理回路を示す
図である。
尚、図において1……半導体基板、2,3……
不純物層である。
FIG. 1a is a cross-sectional view of the detection section of the charge-coupled device. FIG. 1b is a diagram illustrating the charge transfer operation of the charge transfer device using a potential well. FIG. 2 is a diagram illustrating each timing of an output waveform of a conventional charge-coupled device. FIG. 3 is a diagram illustrating each timing of the output waveform of the charge coupled device of the present invention.
FIG. 4 is a diagram showing a logic circuit according to an embodiment of the present invention. In the figure, 1...semiconductor substrate, 2, 3...
This is an impurity layer.
Claims (1)
極を多数くり返し配置し、それぞれの電極にはク
ロツクパルスが供給されて前記ゲート電極下の前
記半導体基板を電荷が該半導体基板の電荷検出部
に転送されるようにし、該電荷検出部に転送され
た前記電荷はリセツトパルスにより該電荷検出部
から除去されるようにした電荷結合装置におい
て、前記ゲート電極の前記電荷検出部に最も近い
ものには、立ち上がりが前記クロツクパルスに同
期し、その立ち下がりが前記リセツトパルスの後
縁に同期したパルスが前記ゲート電極の他のもの
に与えられるクロツクパルスとは独立して作成さ
れて与えられていることを特徴とする電荷結合装
置。1. A large number of gate electrodes are repeatedly arranged on a semiconductor substrate with a thin insulating film interposed therebetween, and a clock pulse is supplied to each electrode so that charges are transferred from the semiconductor substrate under the gate electrode to a charge detection section of the semiconductor substrate. In the charge-coupled device, the charge transferred to the charge detection section is removed from the charge detection section by a reset pulse. is synchronized with the clock pulse, and a pulse whose falling edge is synchronized with the trailing edge of the reset pulse is generated and applied independently of the clock pulses applied to other gate electrodes. Charge coupled device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57063140A JPS58180060A (en) | 1982-04-15 | 1982-04-15 | Charge coupled device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57063140A JPS58180060A (en) | 1982-04-15 | 1982-04-15 | Charge coupled device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58180060A JPS58180060A (en) | 1983-10-21 |
JPH024141B2 true JPH024141B2 (en) | 1990-01-26 |
Family
ID=13220652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57063140A Granted JPS58180060A (en) | 1982-04-15 | 1982-04-15 | Charge coupled device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58180060A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62190876A (en) * | 1986-02-18 | 1987-08-21 | Matsushita Electronics Corp | Charge transfer device |
JPS63296276A (en) * | 1987-05-27 | 1988-12-02 | Nec Corp | Method of driving charge transfer device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS503789A (en) * | 1973-05-15 | 1975-01-16 | ||
JPS5619666A (en) * | 1979-07-27 | 1981-02-24 | Nec Corp | Driving means of charge coupled element |
-
1982
- 1982-04-15 JP JP57063140A patent/JPS58180060A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS503789A (en) * | 1973-05-15 | 1975-01-16 | ||
JPS5619666A (en) * | 1979-07-27 | 1981-02-24 | Nec Corp | Driving means of charge coupled element |
Also Published As
Publication number | Publication date |
---|---|
JPS58180060A (en) | 1983-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4112456A (en) | Stabilized charge injector for charge coupled devices with means for increasing the speed of propagation of charge carriers | |
EP0093411A2 (en) | Solid state image-sensing device | |
JPH084136B2 (en) | Charge transfer device | |
US3876989A (en) | Ccd optical sensor storage device having continuous light exposure compensation | |
JPH024141B2 (en) | ||
US4135104A (en) | Regenerator circuit | |
JP3259573B2 (en) | Charge transfer device and driving method thereof | |
JPH0322055B2 (en) | ||
US5303053A (en) | Charge coupled device for overcoming an output voltage difference between different shift registers | |
US4862275A (en) | Readout of charge packets from area imager CCD using an inverter-chain shift register | |
US5283451A (en) | Optical sensor exhibiting a reduced smearing effect | |
JP3658178B2 (en) | Driving method of charge transfer device | |
JP2652258B2 (en) | CCD output circuit | |
JPS6138624B2 (en) | ||
JP2570296B2 (en) | Charge transfer device | |
JP2745125B2 (en) | Charge storage device | |
US3602736A (en) | Mos ratioless register stage | |
JP2540060B2 (en) | CCD delay line | |
JPS5946424B2 (en) | charge transfer device | |
SU400976A1 (en) | DEVICE COMPARISON | |
JPH0719887B2 (en) | Output circuit of charge-coupled device and method for discharging signal charge thereof | |
JPH09107504A (en) | Solid-state image pickup element and its drive method | |
JPS622400B2 (en) | ||
JP2534042B2 (en) | Charge transfer device | |
JPS6214946B2 (en) |