JPH0240371B2 - - Google Patents

Info

Publication number
JPH0240371B2
JPH0240371B2 JP57148992A JP14899282A JPH0240371B2 JP H0240371 B2 JPH0240371 B2 JP H0240371B2 JP 57148992 A JP57148992 A JP 57148992A JP 14899282 A JP14899282 A JP 14899282A JP H0240371 B2 JPH0240371 B2 JP H0240371B2
Authority
JP
Japan
Prior art keywords
gas
reaction
reaction chamber
reaction gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57148992A
Other languages
Japanese (ja)
Other versions
JPS5939339A (en
Inventor
Shinji Nishiura
Masakazu Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP14899282A priority Critical patent/JPS5939339A/en
Publication of JPS5939339A publication Critical patent/JPS5939339A/en
Publication of JPH0240371B2 publication Critical patent/JPH0240371B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、例えば薄膜半導体装置などの製造に
用いられる気相成長反応装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth reaction apparatus used, for example, in manufacturing thin film semiconductor devices.

第1図はそのような薄膜半導体装置の一例の太
陽電池の典型的構造を示し、ガラス等の透明絶縁
基板1の上にすず、インジユウムなどの酸化物か
らなる透明導電膜2、非晶質シリコン層3、アル
ミニウムなどからなる裏面電極膜4が順次積層さ
れている。非晶質シリコン層3は透明導電膜2に
接するp層3a、裏面電極膜4に接するn層3c
およびこれらの両層間のi層3bからなり、p層
3aは族不純物、n層3cは族不純物を含む
シランガス、i層3bは不純物を含まないシラン
ガス中でのプラズマ反応により堆積形成される。
FIG. 1 shows a typical structure of a solar cell as an example of such a thin film semiconductor device, in which a transparent conductive film 2 made of an oxide such as tin or indium, and amorphous silicon are deposited on a transparent insulating substrate 1 made of glass or the like. A layer 3 and a back electrode film 4 made of aluminum or the like are sequentially laminated. The amorphous silicon layer 3 includes a p layer 3a in contact with the transparent conductive film 2 and an n layer 3c in contact with the back electrode film 4.
and an i-layer 3b between these two layers, the p-layer 3a being deposited by a plasma reaction in group impurities, the n-layer 3c in silane gas containing group impurities, and the i-layer 3b in silane gas not containing impurities.

第2図はこのような非晶質シリコン層を形成す
るための従来のプラズマ反応装置を示す。第一反
応室11、第二反応室12、第三反応室13は互
に開閉可能なシヤツタ5を介して分離された反応
室で、それぞれガス導入用バルブ21,22,2
3および排気用バルブ31,32,33を備え、
真空排気後バルブ21を通じてシラン(SiH4
ガスとジボラン(B2H6)ガスの混合物、バルブ
22を通じてシランガス、バルブ23を通じてシ
ランガスとフオスフイン(PH3)ガスの混合物が
それぞれ供給される。このような反応装置を用
い、基板を図示しない予備加熱室から第一反応室
11へ右側より導入されるローラコンベヤ6の上
を各反応室11,12,13を順次通し、各反応
室内の高周波電源7に接続された電極8,9によ
りグロー放電を発生させて反応ガスを分解し、p
層、i層、n層を連続的に積層形成し、第三反応
室の左側より図示しないとり出し室を介して取り
出す。
FIG. 2 shows a conventional plasma reactor for forming such an amorphous silicon layer. The first reaction chamber 11, the second reaction chamber 12, and the third reaction chamber 13 are reaction chambers separated from each other via a shutter 5 that can be opened and closed, and have gas introduction valves 21, 22, and 2, respectively.
3 and exhaust valves 31, 32, 33,
After evacuation, silane (SiH 4 ) is applied through valve 21.
A mixture of gas and diborane (B 2 H 6 ) gas, silane gas through valve 22 , and a mixture of silane gas and phosphine (PH 3 ) gas through valve 23 are supplied, respectively. Using such a reaction apparatus, the substrate is sequentially passed through the reaction chambers 11, 12, and 13 on the roller conveyor 6 introduced from the right side into the first reaction chamber 11 from the preheating chamber (not shown), and the high-frequency waves in each reaction chamber are heated. Glow discharge is generated by electrodes 8 and 9 connected to a power source 7 to decompose the reactive gas and p
A layer, an i-layer, and an n-layer are successively formed and taken out from the left side of the third reaction chamber through a take-out chamber (not shown).

かかる反応装置で導入される反応ガスは反応速
度およびドーピング濃度の制御上、第二反応室1
2に導入されるのは100%のSiH4ガスであるが、
第一反応室11、第三反応室13に導入されるガ
スは水素などで稀釈されたSiH4ガスにB2H6ガス
あるいはPH3ガスを添加して用いることができ
る。これらのガスは反応後排気用バルブ31,3
2,33を通じて排棄される。SiH4ガスの分解
後、それが基板上に堆積される量の比率(収率)
は比較的悪く50%以下である。このような収率の
向上は製造される太陽電池などの薄膜半導体装置
の価格低減のために極めて重要である。
In order to control the reaction rate and doping concentration, the reaction gas introduced in such a reactor is transferred to the second reaction chamber 1.
2, 100% SiH4 gas is introduced,
The gas introduced into the first reaction chamber 11 and the third reaction chamber 13 may be SiH 4 gas diluted with hydrogen or the like and B 2 H 6 gas or PH 3 gas added thereto. These gases are discharged through exhaust valves 31 and 3 after the reaction.
2,33 to be discarded. After decomposition of SiH4 gas, the proportion of the amount it is deposited on the substrate (yield)
is relatively poor, at less than 50%. Such improvement in yield is extremely important for reducing the cost of manufactured thin film semiconductor devices such as solar cells.

本発明は従つてこの反応ガスの収率の向上が可
能な気相成長反応装置を提供することを目的とす
る。
It is therefore an object of the present invention to provide a vapor phase growth reactor capable of improving the yield of this reaction gas.

この目的は互に分離された反応室内で第1の反
応ガスと、前記第1の反応ガスと同一種の反応ガ
スに更に不純物を添加した第2の反応ガスとをそ
れぞれ適宜用いて各異なる所望の性質の薄膜を気
相成長反応により成長させるものにおいて、前記
第1の反応ガスを用いた一反応室と、前記第1の
反応ガスと同一種の反応ガスに更に不純物を添加
した第2の反応ガスを用いた他反応室とが、一反
応室の第1の反応ガスの未反応ガスを他反応室の
第2の反応ガスの少なくとも一部に充当するよう
に供給する導管によつて連結されることによつて
達成される。
The purpose of this is to use a first reaction gas and a second reaction gas, which is the same type of reaction gas as the first reaction gas to which impurities are added, in reaction chambers separated from each other as appropriate to achieve different desired results. In the device for growing a thin film having the properties of the above by a vapor phase growth reaction, one reaction chamber uses the first reaction gas, and a second reaction chamber uses the same type of reaction gas as the first reaction gas and further adds impurities. Other reaction chambers using a reaction gas are connected by a conduit that supplies unreacted gas of the first reaction gas in one reaction chamber to at least part of the second reaction gas in the other reaction chamber. This is achieved by being

以下図を引用して本発明の実施例について説明
する。第3図においてシランガスを導入用バルブ
22から導入して、非晶質シリコンi層を形成す
る。未反応のSiH4ガスはバルブ32によつてポ
ンプ34を介してフレーク等除去器35に送ら
れ、ここで固体の塵状物質を除去する。この除去
器には排気用バルブ36を設けて図示されないポ
ンプにより必要な場合ガスを排気し、圧力調整な
どを実施できるようになつている。固形浮遊物が
除去されたガスは導管10を介してガス混合器1
4,15に送り、それぞれバルブ16より導入さ
れたB2H6、バルブ17より導入されたPH3と混
合してバルブ21,23を通じてそれぞれ第一反
応室11、第三反応室13に導入して、p形非晶
質シリコン層、n形非晶質シリコン層の形成に用
いられる。反応室11,12,13の反応条件が
異なり、特に圧力が第二反応室12が他よりかな
り高い場合はポンプ34を省略して圧力差のみに
よつて反応室12から反応室11へ、反応室12
から反応室13へのガス流を形成することができ
る。なおポンプ34はこのポンプ内をガスが流れ
た場合、油等の不純物が混合しないものでなけれ
ばならないことは当然である。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 3, silane gas is introduced from the introduction valve 22 to form an amorphous silicon i-layer. The unreacted SiH 4 gas is sent by a valve 32 via a pump 34 to a flake remover 35, where solid dust-like substances are removed. This remover is provided with an exhaust valve 36 so that the gas can be exhausted by a pump (not shown) and the pressure can be adjusted if necessary. The gas from which solid suspended matter has been removed is passed through a conduit 10 to a gas mixer 1.
4 and 15, mixed with B 2 H 6 introduced through valve 16 and PH 3 introduced through valve 17, and introduced into the first reaction chamber 11 and third reaction chamber 13 through valves 21 and 23, respectively. This is used to form a p-type amorphous silicon layer and an n-type amorphous silicon layer. If the reaction conditions in the reaction chambers 11, 12, and 13 are different, and the pressure in the second reaction chamber 12 is considerably higher than in the other, the pump 34 may be omitted and the reaction can be carried out from the reaction chamber 12 to the reaction chamber 11 only by the pressure difference. room 12
A gas flow can be formed from to the reaction chamber 13. It goes without saying that the pump 34 must be of a type that does not mix impurities such as oil when gas flows through the pump.

第4図は本発明の他の実施例を示し、以下の各
図と同様第2、第3図と共通の部分には同一の符
号が付されている。この場合は反応室12で用い
られた残りのガスをポンプ34でフレーク等除去
室35に送つて固体浮遊物除去した後、成分分析
器37でガス成分の分析を行い、この情報をガス
補給器18に送つて、必要なガスの補給を行つた
上で反応室11,13の反応に用いようとするも
ので、反応の精密な制御に必要な措置である。こ
のガス成分分析器37には、質量分析器、赤外吸
収分析器などを用いることができる。また第二反
応室12に光学多重分析器をとりつけ、そこでの
ガス分解状態をとらえてガス成分分析器37での
ガスの成分の適確な判定およびガス補給器18で
の精密な補給処理を行うこともできる。
FIG. 4 shows another embodiment of the present invention, and like the following figures, parts common to those in FIGS. 2 and 3 are given the same reference numerals. In this case, the remaining gas used in the reaction chamber 12 is sent to the flake removal chamber 35 by the pump 34 to remove solid suspended matter, and then the gas components are analyzed by the component analyzer 37, and this information is sent to the gas replenisher. 18 and replenish the necessary gas before being used for the reaction in the reaction chambers 11 and 13, which is a necessary measure for precise control of the reaction. As this gas component analyzer 37, a mass spectrometer, an infrared absorption analyzer, or the like can be used. In addition, an optical multiplex analyzer is attached to the second reaction chamber 12, and the gas decomposition state there is captured, and the gas component analyzer 37 accurately determines the gas components, and the gas replenisher 18 performs precise replenishment processing. You can also do that.

第5図は、本発明の実施例の別の例である。こ
の特徴は反応室12で用いられた残りのガスをポ
ンプ34でフレーク等除去室35に送つて固体浮
遊物を除去した後、ガス貯蔵庫38に一時的に蓄
積するものである。ガス貯蔵庫38はボンベのよ
うな構造をし又加圧用ポンプも併用していること
が望ましい。ガス貯蔵庫38を設けることにより
ガスの一時的な停止状態をつくり出すことがで
き、ここで固体浮遊物の除去をより完全に行うこ
とができる。一時蓄積されたガスはバルブ39、
導管10を通つてガス混合器14,15で、ドー
ピングガスと混合後、反応室11,13へそれぞ
れ送られる。この場合も第4図に示したガス分析
器37をガス貯蔵庫に併設し、ガス分析と補給を
行えばガスの制御をより精密に行うことができ
る。
FIG. 5 is another example of an embodiment of the invention. This feature is such that the remaining gas used in the reaction chamber 12 is sent by a pump 34 to a flake removal chamber 35 to remove solid suspended matter, and then temporarily accumulated in a gas storage 38. It is desirable that the gas storage 38 has a cylinder-like structure and also uses a pressurizing pump. By providing the gas storage 38, a temporary stoppage of the gas can be created, where solid suspended matter can be removed more completely. Temporarily accumulated gas is removed by valve 39,
After being mixed with a doping gas in gas mixers 14 and 15 through a conduit 10, it is sent to reaction chambers 11 and 13, respectively. In this case as well, if the gas analyzer 37 shown in FIG. 4 is attached to the gas storage and performs gas analysis and replenishment, the gas can be controlled more precisely.

第6図は本発明のさらに別の実施例を示す。こ
れは複数個の反応室例を有する小工場等において
実施されるもので第一反応室列61内のi層反応
室12で用いられたシランガスはフレーク等除去
室35で固体の浮遊物を除去後、第二反応室列6
2内のi層反応室12に送られ、非晶質シリコン
i層を形成する。バルブ36は圧力調節などのた
めに設けられている。必要に応じてフレーク等除
去室35に第4図に示したガス分析器を併設し、
ガス補給をバルブ36を通じて行うこともでき
る。第二反応室列62の反応室12で反応したガ
スが再び固体浮遊物除去後、第三反応室列63の
i層反応室12に送られる。反応済のガスはフレ
ーク等除去室35で固体浮遊物除去後、第3図と
同じくガス混合器14,15に送られ、ドーパン
トガスと混合された後、それぞれ各反応列61,
62,63の反応室11,13に送られ、n形非
晶質シリコン層、p形非晶質シリコン層を形成す
る。
FIG. 6 shows yet another embodiment of the invention. This is carried out in a small factory or the like having a plurality of reaction chambers, and the silane gas used in the i-layer reaction chamber 12 in the first reaction chamber row 61 is used to remove solid suspended matter in the flake removal chamber 35. After, second reaction chamber row 6
2 to form an amorphous silicon i-layer. A valve 36 is provided for pressure regulation and the like. If necessary, a gas analyzer shown in FIG. 4 is installed in the flake removal chamber 35,
Gas replenishment can also take place through valve 36. The gas reacted in the reaction chambers 12 of the second reaction chamber row 62 is sent to the i-layer reaction chamber 12 of the third reaction chamber row 63 after solid suspended matter is removed again. The reacted gas is sent to the gas mixers 14 and 15 after removing solid suspended matter in the flake removal chamber 35, as shown in FIG.
It is sent to the reaction chambers 11 and 13 of 62 and 63 to form an n-type amorphous silicon layer and a p-type amorphous silicon layer.

本発明は上記のようなpin型非晶質シリコン層
を有する薄膜装置の製造に限らず第7図に示す
MIS型非晶質半導体装置(太陽電池)の製造にも
適用できる。第7図において導電性基板71の上
に非晶質シリコン層7a、非晶質シリコンi層7
bからなる半導体層72、絶縁膜73、接触金属
膜74が積層され、その上に集電電極75が設け
られている。この構造を例えば第3図に示した反
応装置において形成するには、導電性基板71を
先ず反応室13に入れて非晶質シリコンn層7a
を生成し、次に反応室12でi層7bを生成し、
さらに反応室11で酸化シリコン膜73を生成す
る。この場合の酸化シリコン膜は、反応室12で
反応したガスの残りにバルブ16から酸素ガスを
混入し、ガス混合器14で混合した後反応室11
でグロー放電分解することにより形成される。酸
素ガスの代りにアンモニアを用いればSi3N4膜が
できる。このようにドーピングされた半導体層ば
かりでなく、シランガスを用いる絶縁膜作成の際
も本発明を適用できる。なお各反応室を用いて別
個の薄膜半導体装置を製造する際にも本発明は適
用可能である。
The present invention is not limited to manufacturing a thin film device having a pin-type amorphous silicon layer as described above, as shown in FIG.
It can also be applied to the manufacture of MIS type amorphous semiconductor devices (solar cells). In FIG. 7, an amorphous silicon layer 7a and an amorphous silicon i layer 7 are provided on a conductive substrate 71.
A semiconductor layer 72 made of B, an insulating film 73, and a contact metal film 74 are laminated, and a current collecting electrode 75 is provided thereon. To form this structure, for example, in the reaction apparatus shown in FIG.
is produced, and then an i-layer 7b is produced in the reaction chamber 12,
Furthermore, a silicon oxide film 73 is produced in the reaction chamber 11. In this case, the silicon oxide film is formed by mixing oxygen gas into the remaining gas reacted in the reaction chamber 12 from the valve 16 and mixing it in the gas mixer 14.
It is formed by glow discharge decomposition. If ammonia is used instead of oxygen gas, a Si 3 N 4 film can be formed. The present invention can be applied not only to such doped semiconductor layers but also to the formation of insulating films using silane gas. Note that the present invention is also applicable to manufacturing separate thin film semiconductor devices using each reaction chamber.

以上述べたように本発明は一つの反応室で反応
しなかつた反応ガスの残りを他の反応室で利用す
ることにより高価なシランガスのような反応ガス
の収率を向上させることができ、資源を十分活用
することができる。従つて特に低価格化の要望の
強い太陽電池の製造などに極めて有効に利用でき
る。
As described above, the present invention can improve the yield of expensive reactive gases such as silane gas by using the remaining reactive gas that has not reacted in one reaction chamber in another reaction chamber, and can improve the yield of reactive gases such as expensive silane gas. can be fully utilized. Therefore, it can be used extremely effectively, especially in the production of solar cells, for which there is a strong demand for lower prices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は典型的なpin構造太陽電池の断面図、
第2図はそのような太陽電池製造のための反応装
置の従来例の模式図、第3図は本発明による反応
装置の一実施例の模式図、第4、第5、第6図
は、それぞれ異なる実施例を示す模式図、第7図
は典型的なMIS構造太陽電池の断面図である。 10…導管、11,12,13…反応室、1
4,15…ガス混合器、21,22,23…ガス
導入バルブ、31,32,33…排気バルブ、3
5…フレーク等除去器、37…ガス成分分析器、
38…ガス貯蔵庫。
Figure 1 is a cross-sectional view of a typical pin structure solar cell.
FIG. 2 is a schematic diagram of a conventional example of a reaction apparatus for manufacturing such a solar cell, FIG. 3 is a schematic diagram of an embodiment of a reaction apparatus according to the present invention, and FIGS. 4, 5, and 6 are: FIG. 7 is a schematic diagram showing different embodiments, and FIG. 7 is a cross-sectional view of a typical MIS structure solar cell. 10... Conduit, 11, 12, 13... Reaction chamber, 1
4, 15... Gas mixer, 21, 22, 23... Gas introduction valve, 31, 32, 33... Exhaust valve, 3
5...Flake remover, 37...Gas component analyzer,
38...Gas storage.

Claims (1)

【特許請求の範囲】 1 互に分離された反応室内で第1の反応ガス
と、前記第1の反応ガスと同一種の反応ガスに更
に不純物を添加した第2の反応ガスとをそれぞれ
適宜用いて各異なる所望の性質の薄膜を気相成長
反応により成長させるものにおいて、前記第1の
反応ガスを用いた一反応室と、前記第1の反応ガ
スと同一種の反応ガスに更に不純物を添加した第
2の反応ガスを用いた他反応室とが、一反応室の
第1の反応ガスの未反応ガスを他反応室の第2の
反応ガスの少なくとも一部に充当するように供給
する導管によつて連結されたことを特徴とする気
相成長反応装置。 2 特許請求の範囲第1項記載の装置において、
導管に第1の反応ガスの浄化手段が挿入されたこ
とを特徴とする気相成長反応装置。 3 特許請求の範囲第1項または第2項記載の装
置において、導管にガス成分分析装置が挿入され
たことを特徴とする気相成長反応装置。
[Scope of Claims] 1. In reaction chambers separated from each other, a first reaction gas and a second reaction gas, which is the same type of reaction gas as the first reaction gas further added with impurities, are used as appropriate. in which thin films with different desired properties are grown by vapor phase growth reaction, one reaction chamber using the first reaction gas and further impurities added to the same type of reaction gas as the first reaction gas. A conduit for supplying a second reaction gas to another reaction chamber using a second reaction gas such that the unreacted gas of the first reaction gas in one reaction chamber is used as at least a part of the second reaction gas in the other reaction chamber. 1. A vapor phase growth reaction device characterized by being connected by. 2. In the device according to claim 1,
A vapor phase growth reaction apparatus characterized in that a first reaction gas purifying means is inserted into a conduit. 3. A vapor phase growth reaction device according to claim 1 or 2, characterized in that a gas component analyzer is inserted into the conduit.
JP14899282A 1982-08-27 1982-08-27 Vapor growth reaction apparatus Granted JPS5939339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14899282A JPS5939339A (en) 1982-08-27 1982-08-27 Vapor growth reaction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14899282A JPS5939339A (en) 1982-08-27 1982-08-27 Vapor growth reaction apparatus

Publications (2)

Publication Number Publication Date
JPS5939339A JPS5939339A (en) 1984-03-03
JPH0240371B2 true JPH0240371B2 (en) 1990-09-11

Family

ID=15465274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14899282A Granted JPS5939339A (en) 1982-08-27 1982-08-27 Vapor growth reaction apparatus

Country Status (1)

Country Link
JP (1) JPS5939339A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9162209B2 (en) * 2012-03-01 2015-10-20 Novellus Systems, Inc. Sequential cascading of reaction volumes as a chemical reuse strategy
JP5867204B2 (en) * 2012-03-16 2016-02-24 株式会社アルバック Vacuum processing equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159493A (en) * 1974-05-20 1975-12-24
JPS51131813A (en) * 1975-05-07 1976-11-16 Mitsubishi Gas Chem Co Inc Process for methanol production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159493A (en) * 1974-05-20 1975-12-24
JPS51131813A (en) * 1975-05-07 1976-11-16 Mitsubishi Gas Chem Co Inc Process for methanol production

Also Published As

Publication number Publication date
JPS5939339A (en) 1984-03-03

Similar Documents

Publication Publication Date Title
CN103718276B (en) Make the method for amorphous silicon hydride and amorphous silane alloy stabilisation
JPS61287176A (en) Substrate and photovoltaic device having the same
JPH0434314B2 (en)
JP2566914B2 (en) Thin film semiconductor device and method of forming the same
CN101836299A (en) Microcrystalline silicon deposition for thin film solar applications
US5151255A (en) Method for forming window material for solar cells and method for producing amorphous silicon solar cell
US20120325284A1 (en) Thin-film silicon tandem solar cell and method for manufacturing the same
JPS6257270B2 (en)
CN101265573A (en) Thin film deposition method
JPH0240371B2 (en)
Hsieh et al. Improved process stability on an extremely thin amorphous/crystalline silicon interface passivation layer by using predeposition on the chamber wall
JPH0817738A (en) Formation method for crystalline semiconductor thin film
JPH08195348A (en) Semiconductor device manufacturing equipment
JPH0831413B2 (en) Method for manufacturing PIN photoelectric conversion element
JPS58132983A (en) Preparation of solar battery
JPS6057617A (en) Manufacture of semiconductor device
JP2723548B2 (en) Formation method of carbon-containing silicon microcrystalline thin film
JPH0691010B2 (en) Amorphous thin film manufacturing method
JP2977686B2 (en) Method for manufacturing photovoltaic device and apparatus for manufacturing the same
JPS61256625A (en) Manufacture of thin film semiconductor element
JPS60111414A (en) Plasmic vapor-phase reaction method and manufacturing equipment thereof
JPH02177371A (en) Manufacture of amorphous solar cell
JPH05343713A (en) Manufacture of amorphous solar cell
JP2680702B2 (en) Method for producing amorphous alloy semiconductor thin film
JP2575397B2 (en) Method for manufacturing photoelectric conversion element