JP5867204B2 - Vacuum processing equipment - Google Patents

Vacuum processing equipment Download PDF

Info

Publication number
JP5867204B2
JP5867204B2 JP2012059994A JP2012059994A JP5867204B2 JP 5867204 B2 JP5867204 B2 JP 5867204B2 JP 2012059994 A JP2012059994 A JP 2012059994A JP 2012059994 A JP2012059994 A JP 2012059994A JP 5867204 B2 JP5867204 B2 JP 5867204B2
Authority
JP
Japan
Prior art keywords
space
vacuum
chamber
gas
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012059994A
Other languages
Japanese (ja)
Other versions
JP2013194253A (en
Inventor
剛 吉元
剛 吉元
東豪 細矢
東豪 細矢
一新 楊
一新 楊
善之 三橋
善之 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012059994A priority Critical patent/JP5867204B2/en
Publication of JP2013194253A publication Critical patent/JP2013194253A/en
Application granted granted Critical
Publication of JP5867204B2 publication Critical patent/JP5867204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、真空処理装置に関し、より詳しくは、処理対象物に対して所定の真空処理を行う空間を第1空間、この第1空間に隣接する空間を第2空間とし、互いに連通する第1空間と第2空間との間に圧力差を設けて(他の空間と)ガス雰囲気分離し得るように構成したものに関する。   The present invention relates to a vacuum processing apparatus, and more specifically, a space for performing predetermined vacuum processing on a processing object is a first space, and a space adjacent to the first space is a second space, and the first communicates with each other. The present invention relates to a configuration in which a gas atmosphere can be separated by providing a pressure difference between the space and the second space (with other space).

例えば長尺で樹脂製のシート状の基材は可撓性を有し、加工性も良いことから、その表面に所定の金属膜や酸化物膜等の所定の薄膜を成膜したり、熱処理や施したりして電子部品や光学部品とすることが一般に知られている。従来、真空チャンバ内に回転自在に設けたドラムに長尺のシート状の基材を巻き掛け、ドラムの回転によりシート状の基材を走行させながらシート状の基材の一方の面に、真空処理としてのプラズマCVD法による成膜を行うものが例えば特許文献1で知られている。   For example, a long and resin sheet-like base material has flexibility and good workability, so a predetermined thin film such as a predetermined metal film or oxide film is formed on its surface, or heat treatment It is generally known that it is applied to make an electronic component or an optical component. Conventionally, a long sheet-like base material is wound around a drum that is rotatably provided in a vacuum chamber, and a vacuum is applied to one surface of the sheet-like base material while the sheet-like base material is driven by rotation of the drum. For example, Patent Document 1 discloses that a film is formed by a plasma CVD method as a treatment.

上記従来例のものは、真空ポンプが接続された真空チャンバ内に、シート状の基材を繰り出す繰出手段と、処理後のシート状の基材を巻き取る巻取手段とを備え、繰出手段から繰り出されたシート状の基材が巻き掛けられているドラムの周面部分を利用してプラズマCVD法による成膜を行う放電空間(成膜室)が画成されるようにしている。そして、放電空間を臨むようにシート状の基材が巻回されているドラムの周面部分に対向配置されたシャワー電極を通して成膜室内に成膜しようとする薄膜の組成に応じて選択される原料ガスを導入し、このシャワー電極に、プラズマ発生用の高周波電力(例えば、13.56MHz)を投入することで、放電空間にプラズマを形成し、原料ガスを分解して基材の一方の面に付着、堆積させて成膜される。   The above-mentioned conventional example includes a feeding means for feeding a sheet-like base material in a vacuum chamber connected to a vacuum pump, and a winding means for winding the processed sheet-like base material. A discharge space (film formation chamber) for forming a film by the plasma CVD method is defined using the peripheral surface portion of the drum around which the sheet-like base material that has been fed is wound. And it selects according to the composition of the thin film which is going to form into a film-forming chamber through the shower electrode arrange | positioned facing the peripheral surface part of the drum by which the sheet-like base material is wound so that the discharge space may be faced A raw material gas is introduced, and high frequency power for plasma generation (for example, 13.56 MHz) is input to the shower electrode, thereby forming plasma in the discharge space and decomposing the raw material gas to one side of the substrate. Is deposited and deposited on the film.

ここで、シート状の基材に所定の真空処理を施して製品とする場合、この基材に多層膜を形成したり、成膜処理を施した後にエッチングやプラズマ処理を施したりする場合がある。このような場合、真空チャンバ内に隔絶板を設けてドラムの周方向に沿って各種処理を施す複数の空間が設けられる。このように単一の真空チャンバ内で複数の隔絶された空間を設けるとき、各空間を完全に隔絶することは装置の構成上できず、しかも、真空中における各種の処理は、同じガス圧力や同じガス成分で行われるとは限られない。このため、比較的高圧となる空間から比較的低圧となる空間にガス(プロセスガス等)が混入し、所謂ガスコンタミネーションが生じて、成膜時の膜質に悪影響を及ぼす等の問題がある。   Here, when a predetermined vacuum treatment is performed on the sheet-like base material to obtain a product, a multilayer film may be formed on the base material, or etching or plasma processing may be performed after the film formation processing is performed. . In such a case, a plurality of spaces for providing various processes along the circumferential direction of the drum by providing an isolation plate in the vacuum chamber are provided. Thus, when a plurality of isolated spaces are provided in a single vacuum chamber, it is impossible to completely isolate each space due to the configuration of the apparatus. It is not necessarily performed with the same gas component. For this reason, there is a problem that gas (process gas or the like) is mixed from a relatively high pressure space to a relatively low pressure space, so-called gas contamination occurs, which adversely affects the film quality during film formation.

上記問題を解決するために、ドラムの周囲に配置される各処理空間の間に差圧室を介在させ、各処理空間をガス雰囲気分離することが知られている(例えば、上記特許文献1参照)。ところで、例えば、CVD法やスパッタリング法による成膜処理を施すとき、例えば残留ガスの影響で膜質が変化することを防止するため、成膜を行う空間、ひいては真空チャンバ内のバックグランド圧力を低く保持(例えば、10−5Pa)することが望ましい。このことから、ドラムの周囲に配置される空間毎に、ターボ分子ポンプやクライオポンプ等の高真空用の真空ポンプを夫々接続することが好ましく、その中でも、ターボ分子ポンプは比較的使い勝手がよいことから、この種の真空処理装置には広く利用されている。 In order to solve the above problem, it is known that a differential pressure chamber is interposed between the processing spaces arranged around the drum, and each processing space is separated into a gas atmosphere (see, for example, Patent Document 1). ). By the way, for example, when performing a film forming process by a CVD method or a sputtering method, for example, to prevent the film quality from being changed due to the influence of residual gas, the background pressure in the space in which the film is formed and thus the vacuum chamber is kept low (For example, 10 −5 Pa) is desirable. For this reason, it is preferable to connect a vacuum pump for high vacuum such as a turbo molecular pump or a cryopump to each space arranged around the drum, and among them, the turbo molecular pump is relatively easy to use. Therefore, this type of vacuum processing apparatus is widely used.

ここで、ターボ分子ポンプのように、回転翼の前後に生じる圧力差で気体を圧縮して排気する真空ポンプは、圧力差をつくるためにその背圧側に、大気圧から真空排気し得る所謂バックポンプ(例えば、ロータリーポンプ)が接続される。然し、空間毎に、ターボ分子ポンプとその背圧側のバックポンプとを設ける構成では、真空排気すべき空間が増えるのに従い、バックポンプの数もまた増加させる必要があり、これでは、製造コストやメンテナンスコストが多大となるばかりか、装置構成も複雑になる。   Here, a vacuum pump that compresses and exhausts gas with a pressure difference generated before and after the rotor blade, such as a turbo molecular pump, is a so-called back that can be evacuated from atmospheric pressure to the back pressure side in order to create a pressure difference. A pump (eg, a rotary pump) is connected. However, in the configuration in which the turbo molecular pump and the back pressure side back pump are provided for each space, as the space to be evacuated increases, the number of back pumps also needs to be increased. Not only does the maintenance cost increase, but the apparatus configuration becomes complicated.

特開2011−42848号公報JP 2011-42848 A

本発明は、以上の点に鑑み、互いに連通する空間に圧力差を設けるという機能を損なうことなく、使用する真空ポンプの数を少なくできて低コストの真空処理装置を提供することをその課題とするものである。   In view of the above points, it is an object of the present invention to provide a low-cost vacuum processing apparatus that can reduce the number of vacuum pumps to be used without impairing the function of providing a pressure difference in spaces communicating with each other. To do.

上記課題を解決するために、処理対象物に対して所定の真空処理を行う空間を第1空間、2つの第1空間の間に介在される空間を第2空間とし、第1空間と第2空間との間に圧力差をつけ、第2空間を介して互いに連通する各第1空間の間をガス雰囲気分離し得るように構成した本発明の真空処理装置は、第1空間と第2空間とに夫々接続されて内部を真空引きする真空ポンプを備え、各真空ポンプは、吸気口と排気口とを備えてこれら吸気口と排気口との間で生じる圧力差で気体を圧縮して排気するものであり、第1空間と第2空間とのうち、比較的低圧にするいずれか一方を真空引きする真空ポンプの排気口を、いずれか他方に接続する接続管を更に有することを特徴とする。
In order to solve the above-mentioned problem, a space for performing a predetermined vacuum process on a processing object is a first space, a space interposed between the two first spaces is a second space, and the first space and the second space The vacuum processing apparatus of the present invention configured to create a pressure difference between the first space and the first space communicating with each other via the second space, the first atmosphere and the second space. The vacuum pumps are connected to each other and evacuate the inside, and each vacuum pump includes an intake port and an exhaust port, and compresses gas by a pressure difference generated between the intake port and the exhaust port to exhaust It is characterized by further comprising a connecting pipe for connecting one of the first space and the second space to the other of the exhaust ports of a vacuum pump that evacuates one of the first and second spaces. To do.

本発明によれば、接続管により比較的低圧となる空間に接続される真空ポンプの吸気側を、比較的高圧にする空間に接続する構成とし、比較的低圧となる空間に混入した(漏れ出た)ガスを比較的高圧になる空間へと汲み戻すことで、第1空間と第2空間との間に確実に圧力差を生じさせることが可能となる。この場合、真空ポンプとして、例えば、回転翼を有してこの回転翼の前後であるガスの吸気口とその排気口との間に生じる圧力差で気体を圧縮して排気するターボ分子ポンプを用いるとき、圧力差を発生させるためのバックポンプは、比較的高圧となる空間に接続される真空ポンプの背圧側となる排気口にのみに備えておけば、他の空間には、バックポンプを必要としない。このため、使用するバックポンプの数を少なくして低コスト化を図ることができ、装置の複雑化も抑制できる。このことは、圧力差を設ける空間の数が増加するときより有利となる。また、プロセス実行の圧力によっては、ターボ分子ポンプではなく、メカニカルブースターポンプ等の差圧をつくってバックポンプを必要とするポンプを用いてガスの雰囲気分離を行うことも有効である。   According to the present invention, the suction side of the vacuum pump connected to the relatively low pressure space by the connecting pipe is connected to the relatively high pressure space, and is mixed into the relatively low pressure space (leakage). It is possible to reliably generate a pressure difference between the first space and the second space by pumping the gas back into the relatively high pressure space. In this case, as a vacuum pump, for example, a turbo molecular pump that has a rotating blade and compresses and exhausts gas with a pressure difference generated between a gas inlet and a gas outlet before and after the rotor is used. When the back pump for generating the pressure difference is prepared only at the exhaust port on the back pressure side of the vacuum pump connected to the relatively high pressure space, the back pump is required in the other space And not. For this reason, the number of back pumps to be used can be reduced to reduce the cost, and the complexity of the apparatus can also be suppressed. This is more advantageous when the number of spaces providing the pressure difference increases. Depending on the process execution pressure, it is also effective to separate the gas atmosphere using a pump that requires a back pump by creating a differential pressure, such as a mechanical booster pump, instead of a turbo molecular pump.

なお、本発明は、真空チャンバを備え、この真空チャンバ内にシート状の基材が巻き掛けられるドラムを配置すると共に、ドラムの周方向に沿って第1空間と第2空間とが連設されているようなものに適用することができ、ドラムの周方向に沿って、所定の真空処理を行う処理空間と、差圧室とを交互に複数連設するような場合に特に有利となる。   The present invention includes a vacuum chamber, a drum around which a sheet-like base material is wound is disposed in the vacuum chamber, and the first space and the second space are continuously provided along the circumferential direction of the drum. This is particularly advantageous when a plurality of processing spaces for performing a predetermined vacuum processing and a plurality of differential pressure chambers are alternately arranged along the circumferential direction of the drum.

本発明においては、前記比較的低圧にするいずれか一方を真空引きする真空ポンプの実効排気速度を調節する調整手段を更に有し、第1空間と第2空間との間で発生する圧力差を調整可能とすることが好ましい。これにより、各空間で実施される真空処理時の圧力に応じて、差圧室の圧力を調整して各処理空間でのガス雰囲気分離を確実に行う構成が実現できる。   In the present invention, there is further provided an adjusting means for adjusting an effective exhaust speed of a vacuum pump that evacuates one of the relatively low pressures, and a pressure difference generated between the first space and the second space is reduced. It is preferable that adjustment is possible. Thereby, the structure which adjusts the pressure of a differential pressure chamber according to the pressure at the time of the vacuum processing implemented in each space, and performs gas atmosphere separation in each processing space reliably is realizable.

本発明の実施形態の真空処理装置の構成を説明する模式的断面図。The typical sectional view explaining the composition of the vacuum processing device of the embodiment of the present invention.

以下、図面を参照して、真空処理装置をプラズマCVD装置とし、樹脂製のシート状の基材Sの一方の面に多層膜を成膜処理するものを例として本発明の実施形態を説明する。以下においては、図1を基準に、真空チャンバ側面に設けられる電極ユニットCUの装着方向を左、右とし、上、下といった方向を示す用語を用いるものとする。   Hereinafter, with reference to the drawings, an embodiment of the present invention will be described by taking a vacuum processing apparatus as a plasma CVD apparatus and forming a multilayer film on one surface of a resin sheet-like substrate S as an example. . In the following, with reference to FIG. 1, the mounting direction of the electrode unit CU provided on the side surface of the vacuum chamber is defined as left, right, and terms indicating directions such as up and down.

図1を参照して、PMは、2箇所の位置でプラズマCVD法による成膜処理を基材Sに対して夫々施すことができるようにした本実施形態のプラズマCVD装置である。プラズマCVD装置PMは真空チャンバ1を備える。真空チャンバ1の上側内壁に傾斜して夫々設けた仕切板2により上下の空間に区間され、上側空間1aには、シート状の基材Sが巻回され、一定の速度でこのシート状の基材Sを繰り出す繰出ローラ3と、成膜済みのシート状の基材Sを巻き取る巻取ローラ4とが収納され、その下側空間には、その上部が上側空間に位置するように、基材Sが巻き掛きられるドラム5が回転自在に設けられている。なお、基材Sを繰り出して巻き取るまでの機構は公知のものが利用できるため、ここでは詳細な説明を省略する。そして、繰出ローラ3から繰り出された基材Sは、ガイドローラ31を経て仕切板2とドラム5の周面との間の隙間を通して下側空間に引き出され、ドラム5に巻き掛きられた後、仕切板2とドラム5の周面との間の他の隙間を通して、ガイドローラ41を経て巻取ローラ4に巻き取られる。なお、ドラム5には、基材Sを加熱または冷却する手段を内蔵していてもよい。   Referring to FIG. 1, PM is a plasma CVD apparatus according to this embodiment in which film forming processing by plasma CVD method can be performed on a substrate S at two positions. The plasma CVD apparatus PM includes a vacuum chamber 1. The upper and lower spaces are divided into upper and lower spaces by partition plates 2 provided on the upper inner wall of the vacuum chamber 1 so as to be inclined, and a sheet-like base material S is wound around the upper space 1a. A feeding roller 3 for feeding the material S and a take-up roller 4 for winding the film-formed sheet-like substrate S are accommodated, and the lower space has a base so that the upper portion is located in the upper space. A drum 5 around which the material S is wound is rotatably provided. In addition, since a well-known thing can utilize the mechanism until it unwinds and winds up the base material S, detailed description is abbreviate | omitted here. Then, after the base material S fed from the feed roller 3 is drawn through the gap between the partition plate 2 and the peripheral surface of the drum 5 through the guide roller 31 and wound around the drum 5. Then, it is wound around the winding roller 4 through the guide roller 41 through another gap between the partition plate 2 and the peripheral surface of the drum 5. The drum 5 may incorporate a means for heating or cooling the substrate S.

真空チャンバ1の左側面及び右側面には、ドラム5の母線方向の長さより長い横幅(図1の前後方向)を有する矩形の透孔11が開設され、この透孔11の外周縁部を囲うようにして真空チャンバ1の両側面には、同一の構造を有する電極ユニットCUが着脱自在に夫々装着される。真空チャンバ1の左側面に取り付けられた電極ユニットCUを例に説明すると、この電極ユニットCUは、導電性板材を断面視皿状に成形してなる電極ホルダ6を備える。電極ホルダ6の右端のフランジ61に図示省略のOリング等の真空シールを介して真空チャンバ1の左側面に当接させ、この状態で図外のボルト等で締結されることで装着される。電極ホルダ6は、基材Sが巻き掛けられているドラム5の周面部分に放電空間CSを存して対向配置される第1電極(カソード電極)7を保持する。   A rectangular through hole 11 having a width (longitudinal direction in FIG. 1) longer than the length in the generatrix direction of the drum 5 is formed on the left side surface and the right side surface of the vacuum chamber 1, and surrounds the outer peripheral edge of the through hole 11. In this way, the electrode units CU having the same structure are detachably mounted on both side surfaces of the vacuum chamber 1. The electrode unit CU attached to the left side surface of the vacuum chamber 1 will be described as an example. The electrode unit CU includes an electrode holder 6 formed by forming a conductive plate into a dish shape in cross-section. The electrode holder 6 is attached by being brought into contact with the left side surface of the vacuum chamber 1 through a vacuum seal such as an O-ring (not shown) on the right end flange 61 and fastened with a bolt or the like not shown in this state. The electrode holder 6 holds a first electrode (cathode electrode) 7 that is opposed to the peripheral surface portion of the drum 5 around which the base material S is wound with the discharge space CS interposed therebetween.

第1電極7は、導電性を有する底有の筒状部材71と、右側開口面に取り付けられた、複数個のガス噴射口72aが開設された同一材質のシャワープレート72とで構成され、その底部にはガス供給管73が接続されている。この場合、ガス供給管73は、後述のマッチングボックスの壁面までのび、ガス源からのガス管74が着脱自在に接続できるようになっている。そして、ガス供給管73から所定の原料ガスを供給すると、筒状部材71内で一旦拡散され、各ガス噴射口72aを介して放電空間CSに原料ガスが導入される。原料ガスとしては、例えば、シリコン窒化膜やシリコン酸化膜を形成するような場合、SiH、NH、NO、Ar、HやN等のガスが用いられる。 The first electrode 7 is composed of a bottomed cylindrical member 71 having conductivity, and a shower plate 72 made of the same material and provided with a plurality of gas injection ports 72a attached to the right opening surface. A gas supply pipe 73 is connected to the bottom. In this case, the gas supply pipe 73 extends to the wall surface of a matching box described later, and the gas pipe 74 from the gas source can be detachably connected. When a predetermined source gas is supplied from the gas supply pipe 73, it is once diffused in the cylindrical member 71, and the source gas is introduced into the discharge space CS through each gas injection port 72a. As the source gas, for example, when a silicon nitride film or a silicon oxide film is formed, a gas such as SiH 4 , NH 3 , N 2 O, Ar, H 2 or N 2 is used.

また、電極ホルダ6内には、第1電極7の周囲に同心に接続部材8が設けられている。接続部材8は導電性を有する筒状部材で構成され、接続部材8の内周面に筒状の絶縁体Iを介して第1電極7を保持するようになっている。なお、第1電極7の保持方法としては、ねじによる締結や嵌合等公知の方法を用いることができる。この場合、接続部材8の左端には、径方向内方(図1中、上下方向)に向かって延出させたフランジ81が形成され、フランジ81を介して電極ホルダ6の内面に固定される。これにより、電極ホルダ6を真空チャンバ1の左側面に装着するだけで、シート状の基材Sが巻き掛けられているドラム5の周面部分に放電空間CSを存して対向する位置に第1電極7、具体的にはシャワープレート72が位置決め保持される。   In the electrode holder 6, a connection member 8 is provided concentrically around the first electrode 7. The connecting member 8 is formed of a cylindrical member having conductivity, and the first electrode 7 is held on the inner peripheral surface of the connecting member 8 via a cylindrical insulator I. In addition, as a holding method of the 1st electrode 7, well-known methods, such as fastening with a screw and fitting, can be used. In this case, a flange 81 is formed at the left end of the connection member 8 so as to extend radially inward (vertical direction in FIG. 1), and is fixed to the inner surface of the electrode holder 6 via the flange 81. . As a result, the electrode holder 6 is simply mounted on the left side surface of the vacuum chamber 1, so that the discharge space CS is opposed to the peripheral surface portion of the drum 5 around which the sheet-like substrate S is wound. One electrode 7, specifically, the shower plate 72 is positioned and held.

電極ホルダ6の左側面にはマッチングボックスMBが固定されている。アース接地のマッチングボックスMB内には、マッチング可変コンデンサ、チューニング可変コンデンサやコイル等、公知の構成を有する整合回路(図示せず)が備えられ、この整合回路からの給電線MWが、電極ホルダ6及び接続部材8を通して第1電極7に接続されている。この場合、給電線MWは、例えば金属ブスバーで構成され、電極ホルダ6及び接続部材8に設けた真空シール兼用の碍子MGで支持されている。なお、ガス供給管73もまた、上記碍子MGで支持されるようにしている。そして、マッチングボックスMBは、公知の構造の高周波電源HEに接続され、第1電極7に高周波電力を投入できるようになっている。   A matching box MB is fixed to the left side surface of the electrode holder 6. A matching circuit (not shown) having a known configuration, such as a matching variable capacitor, a tuning variable capacitor, and a coil, is provided in the grounding matching box MB. A feeder line MW from the matching circuit is connected to the electrode holder 6. And connected to the first electrode 7 through the connection member 8. In this case, the power supply line MW is made of, for example, a metal bus bar, and is supported by an insulator MG that also serves as a vacuum seal provided on the electrode holder 6 and the connection member 8. The gas supply pipe 73 is also supported by the insulator MG. The matching box MB is connected to a high-frequency power supply HE having a known structure so that high-frequency power can be supplied to the first electrode 7.

真空チャンバ1内には、放電空間CSの周方向両側(図1中、上下方向)でドラム5の周面部分を、隙間を存して夫々覆う上下一対の第2電極9(アノード電極)が設けられている。第2電極9は、ドラム5の母線方向の長さより長い横幅を有する導電性の板材で構成され、ドラム5の周面に対応して湾曲され、特に図示して説明しないが、真空チャンバ1の内壁面に絶縁体を介在させて固定されている。この場合、第2電極9の面積は、投入電力の周波数等を考慮してリターン電流を多く回収し得るように設定される。また、上記隙間は、ドラム5の周面と第2電極9とで画成される空間が、放電空間にプラズマを形成したときにプラズマが回り込まない非放電空間USとなるように設定されている。この場合、第2電極9とドラム5との間に、ドラム5の径方向に所定の長さでのびる非放電空間USたる隙間が形成されるため、放電空間CSからの排気コンダクタンスが高くなってガス雰囲気分離にも有効となる。そして、電極ホルダ6を真空チャンバ1の左側壁に装着した状態では、第2電極9が接続部材8に直結される。   In the vacuum chamber 1, there are a pair of upper and lower second electrodes 9 (anode electrodes) that cover the circumferential surface portions of the drum 5 with gaps on both sides of the discharge space CS in the circumferential direction (vertical direction in FIG. 1). Is provided. The second electrode 9 is made of a conductive plate material having a lateral width longer than the length of the drum 5 in the generatrix direction, and is curved corresponding to the peripheral surface of the drum 5. The insulator is fixed on the inner wall surface. In this case, the area of the second electrode 9 is set so that a large amount of return current can be recovered in consideration of the frequency of input power and the like. Further, the gap is set so that the space defined by the peripheral surface of the drum 5 and the second electrode 9 becomes a non-discharge space US in which plasma does not enter when plasma is formed in the discharge space. . In this case, a gap as the non-discharge space US extending in a radial direction of the drum 5 is formed between the second electrode 9 and the drum 5, so that the exhaust conductance from the discharge space CS is increased. It is also effective for gas atmosphere separation. When the electrode holder 6 is mounted on the left side wall of the vacuum chamber 1, the second electrode 9 is directly connected to the connection member 8.

第2電極9の放電空間CS側の端部には、左方向に向けてのびる複数本のピン部材91が立設されている。この場合、ピン部材91は、バナナプラグのように、接触抵抗が低い所謂他面接触式の接点を持つものとして構成されている。他方、接続部材8の右側面には、周方向外側(図2中、上下方向)に向かって延出する、第2電極9の放電空間CS側の端部に対応させて湾曲させた延出部82が設けられている。この延出部82には、ピン部材91の位置に対応させてこのピン部材91が嵌着される受入れ凹部83が形成されている。この場合、特に図示して説明しないが、接続部材8の延出部82には、この延出部82と第2電極9との当接面に、弾性を有する無端状の接触子(図示せず)が設けられている。このような接触子としては、例えば、ゴム製のOリングの表面をメッシュ金属で被覆したようなものを用いることができる。   A plurality of pin members 91 extending in the left direction are provided upright at the end of the second electrode 9 on the discharge space CS side. In this case, the pin member 91 is configured to have a so-called other surface contact type contact having a low contact resistance like a banana plug. On the other hand, the right side surface of the connecting member 8 extends toward the outer side in the circumferential direction (vertical direction in FIG. 2) and is curved corresponding to the end of the second electrode 9 on the discharge space CS side. A portion 82 is provided. The extension 82 is formed with a receiving recess 83 into which the pin member 91 is fitted in correspondence with the position of the pin member 91. In this case, although not specifically illustrated and described, the extending portion 82 of the connecting member 8 has an endless contact (not shown) having elasticity on the contact surface between the extending portion 82 and the second electrode 9. Z). As such a contact, for example, a rubber O-ring whose surface is covered with a mesh metal can be used.

ところで、上記プラズマCVD装置PMにおいて、基材Sに多層膜を形成するとき、例えば組成の異なる膜を成膜する場合がある。このため、真空チャンバ1内の下方空間には、空間を仕切る複数の隔絶板10a〜10dが設けられ、上側空間1aから反時計周りに、互いに隔絶される、放電空間CSを含む、処理空間としての第1の成膜室11aと、第1〜第3の各差圧室11b〜11dと、他の放電空間CSを含む、処理空間としての第2の成膜室11eが連設されるようにしている。ここで、真空チャンバ1の上側空間1aと、第1の成膜室11aと、第1〜第3の各差圧室11b〜11dと、第2の成膜室11eとを完全に隔絶する(即ち、各室を夫々気密空間にする)ことは装置の構成上できず、しかも、両成膜室11a、11eで実施される成膜処理時、同じガス圧力や同じガス成分で行われるとは限られない。このため、比較的高圧となる空間から比較的低圧となる空間にガス(プロセスガス等)が混入し、所謂ガスコンタミネーションが生じて、成膜時の膜質に悪影響を及ぼさないようにする必要がある。   By the way, in the plasma CVD apparatus PM, when forming a multilayer film on the substrate S, for example, films having different compositions may be formed. For this reason, a plurality of isolation plates 10a to 10d for partitioning the space are provided in the lower space in the vacuum chamber 1, and as a processing space including the discharge space CS that is isolated from each other counterclockwise from the upper space 1a. The first film forming chamber 11a, the first to third differential pressure chambers 11b to 11d, and the second film forming chamber 11e as a processing space including the other discharge space CS are connected. I have to. Here, the upper space 1a of the vacuum chamber 1, the first film formation chamber 11a, the first to third differential pressure chambers 11b to 11d, and the second film formation chamber 11e are completely isolated (see FIG. That is, it is impossible to make each chamber an airtight space due to the configuration of the apparatus, and the film forming process performed in both the film forming chambers 11a and 11e is performed with the same gas pressure and the same gas component. Not limited. For this reason, it is necessary that gas (process gas, etc.) is mixed from a relatively high pressure space into a relatively low pressure space, so-called gas contamination occurs, and the film quality during film formation is not adversely affected. is there.

本実施形態では、第1の成膜室11aと、第1〜第3の各差圧室11b〜11dと、第2の成膜室11eとに夫々通じる真空チャンバ1の壁面に排気口12a〜12eを開設すると共に、上側空間1aに通じる真空チャンバ1の壁面に排気口12f,12gを開設した。そして、成膜時に所定の原料ガスを導入することで比較的高圧になる、第1空間としての第1成膜室11a及び第2成膜室11eに排気管EP1を介して、回転翼を有してこの回転翼の前後たる吸気口P1と排気口P2とに生じる圧力差で気体を圧縮して排気する真空ポンプとしてのターボ分子ポンプTMP1とその背圧側のバックポンプたるロータリーポンプRPとを接続した。それに加えて、両成膜室11a,11eに隣接して連通している第2空間としての上側空間1a、第1差圧室11b及び第3差圧室11dに排気管EP2を介して、上記同様、吸気口P1と排気口P2とに生じる圧力差で気体を圧縮して排気する真空ポンプとしてのターボ分子ポンプTMP2を夫々接続した。なお、第2差圧室11cには、ターボ分子ポンプTMP3とその背圧側のロータリーポンプRPとを接続してもよい。   In the present embodiment, the exhaust ports 12a to 12a are formed on the wall surface of the vacuum chamber 1 that communicates with the first film forming chamber 11a, the first to third differential pressure chambers 11b to 11d, and the second film forming chamber 11e. 12e was opened, and exhaust ports 12f and 12g were opened on the wall surface of the vacuum chamber 1 leading to the upper space 1a. In addition, a rotary blade is provided in the first film forming chamber 11a and the second film forming chamber 11e as the first space through the exhaust pipe EP1 and becomes a relatively high pressure by introducing a predetermined source gas at the time of film formation. Then, a turbo molecular pump TMP1 serving as a vacuum pump that compresses and exhausts gas by a pressure difference generated between the intake port P1 and the exhaust port P2 before and after the rotor blades and a rotary pump RP serving as a back pump on the back pressure side are connected. did. In addition, the upper space 1a, the first differential pressure chamber 11b, and the third differential pressure chamber 11d as the second space communicating adjacent to both the film forming chambers 11a and 11e are connected to the above-mentioned through the exhaust pipe EP2. Similarly, a turbo molecular pump TMP2 serving as a vacuum pump for compressing and exhausting gas with a pressure difference generated between the intake port P1 and the exhaust port P2 was connected. Note that a turbo molecular pump TMP3 and a rotary pump RP on the back pressure side may be connected to the second differential pressure chamber 11c.

排気管EP1,EP2には、調整手段としての閉止機能付きのコンダクタンスバルブCVが夫々設けられ、ターボ分子ポンプTMP1,TMP2の実効排気速度を変えることができるようにしている。また、ターボ分子ポンプTMP1,TMP2,TMP3としては、真空チャンバ1や空間の容積に応じて同一の排気能力を有するものを用いることができる。そして、上側空間1a、第1差圧室11b及び第3差圧室11dを夫々排気するターボ分子ポンプTMP2の背圧側が、接続管CPを介して第1及び第2の両成膜室11a,11eに夫々接続されている。   The exhaust pipes EP1 and EP2 are each provided with a conductance valve CV having a closing function as an adjusting means so that the effective exhaust speed of the turbo molecular pumps TMP1 and TMP2 can be changed. In addition, as the turbo molecular pumps TMP1, TMP2, and TMP3, those having the same exhaust capability according to the vacuum chamber 1 and the volume of the space can be used. The back pressure side of the turbo molecular pump TMP2 that exhausts the upper space 1a, the first differential pressure chamber 11b, and the third differential pressure chamber 11d is connected to both the first and second film formation chambers 11a, 11e, respectively.

上記実施形態によれば、第1及び第2の両成膜室11a,11eに原料ガスを夫々導入してプラズマCVD法により成膜する場合、両成膜室11a,11eから漏れ出たガスは、比較的圧力となる上側空間1a、第1差圧室11b及び第3差圧室11dに混入し、ターボ分子ポンプTMP2へと排気された後、第1の成膜室11a及び第2の成膜室11eへと汲み戻される。これにより、両成膜室11a,11eと、上側空間1a、第1差圧室11b及び第3差圧室11dとの間に確実に圧力差を生じさせることが可能となり、両成膜室11a,11e間でガス雰囲気分離することができる。この場合、第1及び第2の両成膜室11a,11eに接続されターボ分子ポンプTMP1の背圧側である排気口のみにロータリーポンプRPを接続しておけばよいため、使用するロータリーポンプRPの数を少なくして低コスト化を図ることができ、装置の複雑化も抑制できる。また、コンダクタンスバルブCVを設けたことで、ターボ分子ポンプTMP1,TMP2の実効排気速度を夫々調整し、第1及び第2の両成膜室11a,11eと、上側空間1a、第1差圧室11b及び第3差圧室11dとの間に発生させる圧力差を変化させることができてよい。   According to the above embodiment, when the source gas is introduced into both the first and second film forming chambers 11a and 11e and the film is formed by the plasma CVD method, the gas leaking from both the film forming chambers 11a and 11e is After mixing into the upper space 1a, the first differential pressure chamber 11b and the third differential pressure chamber 11d, which are relatively pressured, and exhausted to the turbo molecular pump TMP2, the first film formation chamber 11a and the second component Pumped back into the membrane chamber 11e. As a result, it is possible to reliably generate a pressure difference between the film forming chambers 11a and 11e and the upper space 1a, the first differential pressure chamber 11b, and the third differential pressure chamber 11d. , 11e can be separated into a gas atmosphere. In this case, the rotary pump RP only needs to be connected to the exhaust port on the back pressure side of the turbo molecular pump TMP1 connected to both the first and second film forming chambers 11a and 11e. The cost can be reduced by reducing the number, and the complexity of the apparatus can also be suppressed. Further, by providing the conductance valve CV, the effective pumping speeds of the turbo molecular pumps TMP1 and TMP2 are adjusted, respectively, and both the first and second film forming chambers 11a and 11e, the upper space 1a, and the first differential pressure chamber. It may be possible to change the pressure difference generated between 11b and the third differential pressure chamber 11d.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態では、ドラム5の周囲にシート状の基材Sを巻き掛け、このシート状の基材Sを走行させながら多層膜を成膜するものを例に説明したが、特に図示して説明しないが、コンベア等の搬送手段によりシリコンウエハ等の処理基板を順次(間欠)搬送し、コンベアの搬送経路に設けた成膜源により真空雰囲気下で成膜処理を行う所謂インライン式成膜装置に本発明を適用してガス雰囲気分離することもできる。   As mentioned above, although embodiment of this invention was described, this invention is not limited above. In the above-described embodiment, the sheet-like base material S is wound around the drum 5 and the multilayer film is formed while the sheet-like base material S is run. However, in a so-called in-line type film forming apparatus in which a processing substrate such as a silicon wafer is sequentially (intermittently) transferred by a transfer means such as a conveyor, and a film forming process is performed in a vacuum atmosphere by a film forming source provided in the transfer path of the conveyor. Gas atmosphere separation can also be performed by applying the present invention.

また、上記実施形態では、ドラム5の周囲に第1空間と第2空間とが交互に連設されるものを例に説明したが、相互に連通する少なくとも2つの空間があり、両空間で圧力差をつけたいような場合であれば、本発明は広く適用でき、空間の数も限定されるものではない。更に、上記実施形態では、成膜室11a,11eが比較的高圧になるため、これに隣接する上側空間1aや差圧室11b,11dのターボ分子ポンプTMP2の背圧側を接続管CPにより成膜室11a,11eに接続するものを例にしたが、成膜室11a,11eを比較的低圧にしたい場合には、この成膜室11a,11eのターボ分子ポンプTMP1の背圧側を接続管CPにより差圧室等に接続すればよい。   In the above embodiment, the first space and the second space are alternately arranged around the drum 5 as an example. However, there are at least two spaces communicating with each other, and pressure is applied to both spaces. If it is desired to make a difference, the present invention can be widely applied, and the number of spaces is not limited. Furthermore, in the above embodiment, since the film forming chambers 11a and 11e have a relatively high pressure, the back pressure side of the turbo molecular pump TMP2 adjacent to the upper space 1a and the differential pressure chambers 11b and 11d is formed by the connecting pipe CP. Although an example of connecting to the chambers 11a and 11e is taken as an example, when it is desired to make the film forming chambers 11a and 11e relatively low in pressure, the back pressure side of the turbo molecular pump TMP1 of the film forming chambers 11a and 11e is connected by a connecting pipe CP. What is necessary is just to connect to a differential pressure chamber etc.

また、上記実施形態では、排気管EP1,EP2に設けたコンダクタンスバルブCVで調整手段を構成したものを例に説明したが、これに限定されるものではなく、例えば、真空ポンプとして排気能力の異なるものを選定して、その能力差のあるポンプ自体で調整手段を構成してもよい。更に、上記実施形態では、真空ポンプとしてターボ分子ポンプを備えたものを例に説明したが、吸気口と排気口とを備えてこれら吸気口と排気口との間で生じる圧力差で気体を圧縮して排気するものであればよく、例えば、揺動ピストンを備えた真空ポンプが挙げられる。   Further, in the above-described embodiment, the example in which the adjusting means is configured by the conductance valve CV provided in the exhaust pipes EP1 and EP2 has been described as an example. However, the present invention is not limited to this. The adjusting means may be configured by selecting pumps having different capacities. Furthermore, in the above embodiment, the turbo pump provided as a vacuum pump has been described as an example. However, the suction pump and the exhaust port are provided, and the gas is compressed by the pressure difference generated between the intake port and the exhaust port. For example, a vacuum pump provided with a swinging piston can be used.

更に、上記実施形態では、真空処理としてプラズマCVD法による成膜を例に説明したが、真空処理は上記に限定されるものではなく、例えば、スパッタリング法による成膜、反応性イオンエッチングや真空加熱/冷却処理としてもよく、また、第1の成膜室をプラズマCVD法による成膜、第2の成膜室をスパッタリング法により成膜としてもよい。   Furthermore, in the above-described embodiment, the film formation by the plasma CVD method has been described as an example of the vacuum processing. However, the vacuum processing is not limited to the above, for example, film formation by the sputtering method, reactive ion etching, or vacuum heating. Alternatively, the first film formation chamber may be formed by plasma CVD, and the second film formation chamber may be formed by sputtering.

PM…プラズマCVD装置(真空処理装置)、1…真空チャンバ、1a…上側空間、10a〜10d…隔絶板、11a,11e…成膜室(第1空間)、11b,11c,11d…差圧室(第2空間)、TMP1,TMP2…ターボ分子ポンプ(真空ポンプ)、RP…ロータリーポンプ(バックポンプ)、CP…接続管、EP…排気管、CV…コンダクタンスバルブ(調整手段)、5…ドラム、S…シート状の基材。   PM ... plasma CVD apparatus (vacuum processing apparatus), 1 ... vacuum chamber, 1a ... upper space, 10a to 10d ... isolation plate, 11a, 11e ... deposition chamber (first space), 11b, 11c, 11d ... differential pressure chamber (Second space), TMP1, TMP2 ... turbo molecular pump (vacuum pump), RP ... rotary pump (back pump), CP ... connecting pipe, EP ... exhaust pipe, CV ... conductance valve (adjusting means), 5 ... drum, S: Sheet-like substrate.

Claims (3)

処理対象物に対して所定の真空処理を行う空間を第1空間、2つの第1空間の間に介在される空間を第2空間とし、第1空間と第2空間との間に圧力差をつけ、第2空間を介して互いに連通する各第1空間の間をガス雰囲気分離し得るように構成した真空処理装置であって、
第1空間と第2空間とに夫々接続されて内部を真空引きする真空ポンプを備え、各真空ポンプは、吸気口と排気口とを備えてこれら吸気口と排気口との間で生じる圧力差で気体を圧縮して排気するものであり、第1空間と第2空間とのうち、比較的低圧にするいずれか一方を真空引きする真空ポンプの排気口を、いずれか他方に接続する接続管を更に有することを特徴とする真空処理装置。
A space for performing a predetermined vacuum process on the object to be processed is a first space, a space interposed between the two first spaces is a second space, and a pressure difference is generated between the first space and the second space. A vacuum processing apparatus configured to separate the gas atmosphere between the first spaces communicating with each other via the second space ,
A vacuum pump connected to each of the first space and the second space and evacuating the inside is provided, and each vacuum pump includes an intake port and an exhaust port, and a pressure difference generated between the intake port and the exhaust port. A connecting pipe that connects an exhaust port of a vacuum pump that evacuates either one of the first space and the second space to a relatively low pressure to either one of the first space and the second space. The vacuum processing apparatus further comprising:
請求項1記載の真空処理装置であって、真空チャンバを備え、この真空チャンバ内にシート状の基材が巻き掛けられるドラムを配置すると共に、ドラムの周方向に第1空間と第2空間とが連設されていることを特徴とする真空処理装置。   2. The vacuum processing apparatus according to claim 1, further comprising a vacuum chamber, wherein a drum around which a sheet-like base material is wound is disposed in the vacuum chamber, and the first space and the second space are arranged in a circumferential direction of the drum. Is a vacuum processing apparatus characterized by being provided continuously. 前記比較的低圧にするいずれか一方を真空引きする真空ポンプの実効排気速度を調節する調整手段を更に有し、第1空間と第2空間との間で発生する圧力差を調整可能としたことを特徴とする請求項1または請求項2記載の真空処理装置。   An adjusting means for adjusting an effective exhaust speed of a vacuum pump that evacuates one of the relatively low pressures is further provided, and a pressure difference generated between the first space and the second space can be adjusted. The vacuum processing apparatus according to claim 1, wherein:
JP2012059994A 2012-03-16 2012-03-16 Vacuum processing equipment Active JP5867204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012059994A JP5867204B2 (en) 2012-03-16 2012-03-16 Vacuum processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012059994A JP5867204B2 (en) 2012-03-16 2012-03-16 Vacuum processing equipment

Publications (2)

Publication Number Publication Date
JP2013194253A JP2013194253A (en) 2013-09-30
JP5867204B2 true JP5867204B2 (en) 2016-02-24

Family

ID=49393583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012059994A Active JP5867204B2 (en) 2012-03-16 2012-03-16 Vacuum processing equipment

Country Status (1)

Country Link
JP (1) JP5867204B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347662B2 (en) 2014-05-09 2018-06-27 東レエンジニアリング株式会社 Thin film forming equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939339A (en) * 1982-08-27 1984-03-03 Fuji Electric Corp Res & Dev Ltd Vapor growth reaction apparatus
JPH09251981A (en) * 1996-03-14 1997-09-22 Toshiba Corp Semiconductor manufacturing equipment
JP3695865B2 (en) * 1996-10-16 2005-09-14 株式会社荏原製作所 Vacuum exhaust device
JP2004095677A (en) * 2002-08-29 2004-03-25 Mitsubishi Heavy Ind Ltd Substrate treatment device
JP5665290B2 (en) * 2009-08-24 2015-02-04 富士フイルム株式会社 Deposition equipment

Also Published As

Publication number Publication date
JP2013194253A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
US11443926B2 (en) Substrate processing apparatus
US11430640B2 (en) Substrate processing apparatus
JP4602532B2 (en) Plasma processing equipment
KR101104536B1 (en) Plasma processing apparatus
JP5231441B2 (en) Plasma processing system and plasma processing method
KR101708938B1 (en) Film deposition method
CN101740298B (en) Plasma processing apparatus and constituent part thereof
EP3127145A1 (en) Deposition system with multi-cathode and method of manufacture thereof
KR20190066593A (en) Exhausting apparatus, processing apparatus and exhausting method
JP3964951B2 (en) Equipment for coating substrates
JP6502591B2 (en) Film deposition system
WO2020146047A1 (en) Pumping apparatus and method for substrate processing chambers
JP5330896B2 (en) Dry vacuum pump
JP2005085917A (en) Plasma treatment apparatus
KR20050031064A (en) Multi-chamber installation for treating objects under vacuum, method for evacuating said installation and evacuation system therefor
JP5867204B2 (en) Vacuum processing equipment
JP2004327767A (en) Plasma processing apparatus
US20040007247A1 (en) Plasma film-forming apparatus and cleaning method for the same
WO2021095295A1 (en) Film formation device
JP3472456B2 (en) Vacuum processing equipment
WO2016180444A1 (en) Radio frequency (rf) - sputter deposition source, connector for retrofitting a sputter deposition source, apparatus and method of operating thereof
JPS6124467B2 (en)
CN220012796U (en) Film feeding chamber device of film plating equipment
JP7154086B2 (en) Deposition equipment
JP2008192802A (en) Semiconductor manufacturing device, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5867204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250