JPH0239565A - Dielectric isolated substrate and manufacture thereof - Google Patents

Dielectric isolated substrate and manufacture thereof

Info

Publication number
JPH0239565A
JPH0239565A JP63188435A JP18843588A JPH0239565A JP H0239565 A JPH0239565 A JP H0239565A JP 63188435 A JP63188435 A JP 63188435A JP 18843588 A JP18843588 A JP 18843588A JP H0239565 A JPH0239565 A JP H0239565A
Authority
JP
Japan
Prior art keywords
substrate
single crystal
insulating film
region
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63188435A
Other languages
Japanese (ja)
Inventor
Tetsuro Mizoguchi
哲朗 溝口
Toshikatsu Shirasawa
白沢 敏克
Shigeki Sekine
茂樹 関根
Toru Ishikawa
透 石川
Yoshitaka Sugawara
良孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63188435A priority Critical patent/JPH0239565A/en
Publication of JPH0239565A publication Critical patent/JPH0239565A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an isolating structure having no parasitic thyristor and a substrate having the structure by forming a single-crystal region which passes the substrate in a structure in which the region is surrounded by an insulating film which passes the substrate. CONSTITUTION:Vertical MOS elements 1, 2 of complementary configuration and a signal processor 3 of complementary MOS configuration are formed on a substrate of a dielectric isolated structure made of Si. The elements and the processor are isolated by oxide films 4, 5 from each other. The sections of support layers isolated by the oxide films are composed only of n-type or p-type layers 7, 8 or 9, 10. That is, there is no p-n junction for isolating them, and no parasitic thyristor composed of the elements. A latchup phenomenon due to it does not occur. Simultaneously, since the elements 1, 2 are composed of the complementary type, its power consumption can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、モノリシックIC用の基板に係り、特に、大
電流かつ高耐圧の素子の形成に好適な誘電体分離基板の
構造及び製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a substrate for a monolithic IC, and in particular to a structure and manufacturing method of a dielectrically isolated substrate suitable for forming a large current and high withstand voltage element. .

〔従来の技術〕[Conventional technology]

現在、自動車用、モータドライブ用等に、大電流、かつ
高耐圧の素子を集積したモノリシックIC,いわゆるパ
ワーICの要求が強い。
Currently, there is a strong demand for monolithic ICs, so-called power ICs, in which large current and high voltage elements are integrated for use in automobiles, motor drives, and the like.

モノリシックICにおける素子分離方式は、誘電体分離
方式と接合分離方式に大別されるが、パワーICに関し
ては、誘電体分離方式が有利な点が多い。しかし、この
方式では、半導体単結晶領域に作製されたパワー素子は
、ICチップがマウントされるヒートシンクまでの間に
誘電体及び半導体多結晶領域が介在するため通常の縦型
個別素子に比べ熱放散が悪く大電流容量化が困難である
という問題があった。
Element isolation methods for monolithic ICs are broadly classified into dielectric isolation methods and junction isolation methods, but the dielectric isolation method has many advantages for power ICs. However, in this method, the power device fabricated in the semiconductor single crystal region has a dielectric material and a semiconductor polycrystal region between it and the heat sink on which the IC chip is mounted, so it has a higher heat dissipation than normal vertical individual devices. There was a problem that the current capacity was poor and it was difficult to increase the current capacity.

第2図に、大電流化のための改良を施した従来の基板に
素子が作製された例を示す。素子としては、縦型構造の
MO3素子11を搭載している。
FIG. 2 shows an example in which a device is fabricated on a conventional substrate that has been improved to accommodate a large current. As an element, an MO3 element 11 with a vertical structure is mounted.

基板の裏面にドレイン電極12が形、成されている。A drain electrode 12 is formed on the back surface of the substrate.

トレイン電極12は、ろう材を介してヒートシンクに直
結される。こうして、素子で発生した熱の放散は、改善
された。
The train electrode 12 is directly connected to the heat sink via a brazing material. Thus, the dissipation of heat generated in the device was improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術の問題点を以下説明する。 Problems with the above conventional technology will be explained below.

第2図で、11は基板に搭載された2個の縦型n M 
OS素子である。これらの素子は電気的に分離されなけ
ればならない。縦型MO8素子間はP型半導体領域14
であり、縦型MOS素子間はpn接合15と、絶縁膜4
により分離されている。
In Figure 2, 11 is two vertical nM mounted on the board.
It is an OS element. These elements must be electrically isolated. P-type semiconductor region 14 between vertical MO8 elements
There is a pn junction 15 and an insulating film 4 between the vertical MOS elements.
Separated by

P型半導体領域14を、縦型n M OS素子における
各部の電位より常に低い電位にバイアスしておけば、p
n接合15は逆バイアスされ、縦型MO3素子間は電気
的に分離される。ところが、この構造には次の様な問題
がある。ソースn土層16、ウェル2層17、単結晶領
域18のn型層、 n+層19、およびP層14は、電
極20と電極12の間にnpnp構造の寄生サイリスタ
を構成している。電極12,13、にノイズが入ったり
、電源の極性を誤って接続したりして、pn接合15に
順バイアスが印加されるとこの寄生サイリスタが動作す
る、いわゆるラッチアップ現象が起きる場合がある。こ
の結果、寄生サイリスタに永続的に過大電流が流れると
回路が誤動作するのみならず、素子が破壊する場合もあ
る。このように、従来方式は回路の信頼性に関して問題
があった。
If the P-type semiconductor region 14 is always biased at a potential lower than the potential of each part in the vertical nMOS device, the p-type semiconductor region 14
The n-junction 15 is reverse biased, and the vertical MO3 elements are electrically isolated. However, this structure has the following problems. The source n-soil layer 16, the well 2 layer 17, the n-type layer of the single crystal region 18, the n+ layer 19, and the p layer 14 constitute a parasitic thyristor with an npnp structure between the electrode 20 and the electrode 12. If forward bias is applied to the pn junction 15 due to noise entering the electrodes 12, 13 or incorrect connection of the polarity of the power supply, this parasitic thyristor may operate, a so-called latch-up phenomenon may occur. . As a result, if an excessive current continues to flow through the parasitic thyristor, not only will the circuit malfunction, but the device may also be destroyed. As described above, the conventional method has had problems regarding circuit reliability.

次に、回路の消費電力を小さくするため、大電流素子を
相補形の回路構成にすることが望まれており、第3(i
!に従来方式による縦型MO5素子を相補形構成にした
場合を示す。pn接合21゜22.23に逆バイアスを
印加することで、n型MO5FET 24とP形MO3
FET 25は電気的に分離される。しかし、この場合
も先に述べた様に寄生サイリスタが存在し、回路の信頼
性に関して問題がある。すなわち、従来方式は、回路の
低消費電力化に関しても難があった。
Next, in order to reduce the power consumption of the circuit, it is desired to configure the large current elements in a complementary circuit configuration.
! 2 shows a case where a conventional vertical MO5 element is configured in a complementary manner. By applying a reverse bias to the pn junction 21°22.23, the n-type MO5FET 24 and the p-type MO3
FET 25 is electrically isolated. However, in this case as well, as mentioned above, a parasitic thyristor exists and there is a problem regarding the reliability of the circuit. That is, the conventional method also has difficulty in reducing the power consumption of the circuit.

以上、縦型MO8素子間同志のラッチアップ現象に関し
て述べた。一方、パワーICでは通常、出力段の大電力
素子とともに、大電力素子への入力信号を処理する小電
力素子から成る回路も集積化される。従来方式による、
基板を貫通した単結晶Si領域に入力信号処理回路を作
製した場合も、同様に、支持体層に形成されたpn接合
に起因する寄生サイリスタのため、回路の信頼性が阻害
される。
The latch-up phenomenon between the vertical MO8 elements has been described above. On the other hand, in a power IC, a circuit consisting of a small power element that processes an input signal to the large power element is usually integrated together with a large power element in the output stage. By conventional method,
Even when an input signal processing circuit is fabricated in a single-crystal Si region that penetrates the substrate, the reliability of the circuit is similarly impaired due to the parasitic thyristor caused by the pn junction formed in the support layer.

以上述べたことから、相補形構成のMO8素子を出力段
とし、入力段に相補形MO5構成の信号処理回路を有す
るパワーICは第4図の様な構造にせざるを得ない。す
なわち、1個の縦型MO3素子29のみを基板を貫通し
た単結晶領域に形成し、残る1個の出力用MO8素子3
0、および信号処理回路31.は基板を貫通せず、多結
晶半導体領域32との間に絶縁膜4が介在した単結晶領
域26,33、に形成する。この構造では、先に述べた
様に、出力用MO3素子30の大電流容量化が困難であ
るという問題がある。また更に、次の様な問題が生じる
。すなわち、基板を貫通する単結晶領域が大電流MO3
素子下部の19の部分のみに限定される。そして他の基
板支持体は多結晶半導体32で構成しなければならない
。ところで、誘電体分離基板は、素子形成部が単結晶半
導体、基板支持体が多結晶半導体で構成されることに起
因する湾曲が大きい。このため、基板の大口径化や、作
製する素子の微細加工に難がある。基板の湾曲低減のた
め、支持体の単結晶領域の割合は極力大きくしたい。こ
の点からも、これを大きくできない従来方式は問題があ
った。
From the above, a power IC having a complementary MO8 element as an output stage and a complementary MO5 signal processing circuit as an input stage must have a structure as shown in FIG. 4. That is, only one vertical MO3 element 29 is formed in a single crystal region penetrating the substrate, and the remaining one output MO8 element 3
0, and a signal processing circuit 31. do not penetrate the substrate, but are formed in the single crystal regions 26 and 33 with the insulating film 4 interposed between them and the polycrystalline semiconductor region 32. This structure has the problem that it is difficult to increase the current capacity of the output MO3 element 30, as described above. Furthermore, the following problems arise. That is, the single crystal region penetrating the substrate carries a large current MO3.
It is limited to only the portion 19 at the bottom of the element. The other substrate support must then consist of polycrystalline semiconductor 32. By the way, the dielectric isolation substrate has a large curvature due to the fact that the element formation portion is made of a single crystal semiconductor and the substrate support is made of a polycrystalline semiconductor. For this reason, it is difficult to increase the diameter of the substrate and to microfabricate the devices to be manufactured. In order to reduce the curvature of the substrate, it is desirable to increase the proportion of the single crystal region of the support as much as possible. From this point of view as well, the conventional method that cannot increase this has a problem.

以上をまとめると、従来方式では、素子間分離のために
形成したpn接合による寄生サイリスタが生じ、回路の
信頼性に問題があった。また、このため、大電流容量化
素子を相補型構成にして消費電力を低減すること、支持
体層の単結晶領域の割合を増して基板湾曲を低減するこ
とに難があった。
To summarize the above, in the conventional system, a parasitic thyristor is generated due to a pn junction formed for isolation between elements, and there is a problem in circuit reliability. Further, for this reason, it is difficult to reduce power consumption by making the large current capacity elements have a complementary configuration, and to reduce substrate curvature by increasing the proportion of the single crystal region of the support layer.

本発明の目的は、以上の問題を解決するため、寄生サイ
リスタの無い素子間分離構造及びこれを有する基板の製
造方法を提供することにある。
SUMMARY OF THE INVENTION In order to solve the above problems, an object of the present invention is to provide an element isolation structure without a parasitic thyristor and a method of manufacturing a substrate having the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、基板を貫通する単結晶領域が、基板を貫通
する絶縁膜で囲まれた構造にすることで達成される。
The above object is achieved by forming a structure in which a single crystal region penetrating the substrate is surrounded by an insulating film penetrating the substrate.

また、この様な構造を実現するための製造工程は次の如
くである。すなわち、従来通り東結晶基板に分離溝を形
成し絶縁膜を形成し、所定の部分の絶縁膜を除去した後
、第一の支持体層を成長させる。次に第一の支持体層を
除去した後、露出した当層の側壁部に絶縁膜を形成する
。所定の部分の絶縁膜を除去した後、第二の支持体層を
成長させる。その後、基板の所定の部分を研磨除去する
Further, the manufacturing process for realizing such a structure is as follows. That is, a separation groove is formed in the east crystal substrate, an insulating film is formed, and a predetermined portion of the insulating film is removed as before, and then a first support layer is grown. Next, after removing the first support layer, an insulating film is formed on the exposed side wall portion of this layer. After removing a predetermined portion of the insulating film, a second support layer is grown. After that, a predetermined portion of the substrate is polished away.

〔作用〕[Effect]

基板を貫通した単結晶部は、基板を貫通した絶縁膜で囲
まれることにより、相互に絶縁分離される。こうして、
分離のためのpn接合は不要となり、これを構成要素と
していた寄生サイリスタも排除できる。よってラッチア
ップ現象が生じなくなる。
The single crystal portions penetrating the substrate are surrounded by an insulating film penetrating the substrate and are insulated from each other. thus,
A pn junction for isolation is no longer necessary, and a parasitic thyristor that uses this as a component can also be eliminated. Therefore, the latch-up phenomenon does not occur.

また、各製造工程の役割を述べると、第一の支持体層の
成長工程で、絶縁膜を除去した部分からは第一の基板を
貫通する単結晶領域が、その他の部分からは支持体多結
晶層が成長する。第一の支持体層を除去し、その側壁部
に絶縁膜を形成することにより、基板を貫通する絶縁膜
が形成される。
Also, to describe the role of each manufacturing process, in the growth process of the first support layer, a single crystal region that penetrates the first substrate is formed from the part where the insulating film is removed, and a multi-crystal region that penetrates the first substrate is formed from the other parts. A crystal layer grows. By removing the first support layer and forming an insulating film on the sidewall thereof, an insulating film that penetrates the substrate is formed.

次に、第二の支持体層の成長工程で、絶縁膜が除去され
た部分からは第一の基板を貫通する単結晶領域と分離さ
れた第二の単結晶領域が、その他の部分からは支持体多
結晶領域が成長する。その後、研磨を施すことで、基板
表面が平坦化されるとともに、各単結晶領域が絶縁膜に
よって分離された構造となる。
Next, in the growth step of the second support layer, a single crystal region penetrating the first substrate and a separated second single crystal region are formed from the part where the insulating film is removed, and a second single crystal region separated from the other part is formed. A support polycrystalline region is grown. Thereafter, by performing polishing, the substrate surface is planarized and a structure is created in which each single crystal region is separated by an insulating film.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。Si
を用いた本発明による構造の基板に相補型構成の縦型M
OS素子1,2、及び相補型MO5構成の信号処理回路
3を形成した例である。縦型MO3素子、信号処理回路
は、相互に酸化膜4及び5で分離されている。
An embodiment of the present invention will be described below with reference to FIG. Si
Vertical M of complementary configuration to the substrate of the structure according to the invention using
This is an example in which OS elements 1 and 2 and a signal processing circuit 3 having a complementary MO5 configuration are formed. The vertical MO3 element and the signal processing circuit are separated from each other by oxide films 4 and 5.

酸化膜で分離された支持体層の各部は、n型層7.8、
或いはP型層9,10のみで構成される。
Each part of the support layer separated by an oxide film has an n-type layer 7.8,
Alternatively, it is composed of only P-type layers 9 and 10.

すなわちこれらを相互に分離するためのpn接合は存在
せず、よって、これを構成要素とする寄生サイリスタも
存在しない。これが原因となるラッチアンプ現象は生じ
ない。同時に、縦型素子1゜2を相補型構成にできたの
で、消費電力は低減した。また、支持体層の大部分を単
結晶Siにできたので、基板の湾曲は、従来に較べ低減
できた。
That is, there is no pn junction for separating these from each other, and therefore there is no parasitic thyristor using this as a component. The latch amplifier phenomenon caused by this does not occur. At the same time, power consumption was reduced because the vertical elements 1°2 could be of complementary configuration. Furthermore, since most of the support layer can be made of single crystal Si, the curvature of the substrate can be reduced compared to the conventional method.

次に、本実施例で示した基板の作製プロセスを第5図に
より順次説明する。
Next, the manufacturing process of the substrate shown in this example will be sequentially explained with reference to FIG.

まずP型(100)基板34にホトエツチングを施し所
定の部分を除去し溝35を形成する(b)。
First, the P-type (100) substrate 34 is photo-etched to remove a predetermined portion to form a groove 35 (b).

次にn型車結晶S i l 36を気相成長させて溝を
埋め、−点鎖線で示した面まで研磨除去し、基板を平坦
化する(c)、(d)。次にホトエツチング法により分
離溝37を形成する(e)。シリコンナイトライド膜3
8を分離溝を形成した面に形成し、ホトエツチング法に
より所定の部具外を除去した後(f)・、熱酸化により
絶縁酸化膜4を形成する(g)。所定の部分の絶縁酸化
膜をホトエツチング法により除去した後(h)、低抵抗
のP型支持体Si層を気相成長させる(i)。絶縁酸化
膜を除去した部分からは単結晶Si層1oが成長し、そ
れ以外の部分からは多結晶Si層9が成長する。次に、
所定の部分の支持体層をホトエツチング法に除去する(
j)。次に熱酸化を施し、支持体が除去された部分の側
壁部に酸化膜5を形成する(k)。熱リン酸でシリコン
ナイトライド膜をエツチングして除去した後(1)、低
抵抗のn型Si層を気相成長させる(m)。酸化膜で覆
われていなかった部分からは単結晶Si層8が成長し、
それ以外の部分からは多結晶Si層7が成長する。その
後、基板を一点鎖線で示した面まで研磨除去し、4,5
、から成る酸化膜層が基板を貫通した構造にすることで
基板が完成する。
Next, an n-type wheel crystal S i I 36 is grown in a vapor phase to fill the groove, and is polished down to the surface indicated by the - dotted chain line to flatten the substrate (c) and (d). Next, separation grooves 37 are formed by photoetching (e). Silicon nitride film 3
8 is formed on the surface on which the isolation groove is formed, and after removing the portions outside of the predetermined parts by photo-etching (f), an insulating oxide film 4 is formed by thermal oxidation (g). After removing a predetermined portion of the insulating oxide film by photoetching (h), a low-resistance P-type support Si layer is grown in a vapor phase (i). A single crystal Si layer 1o grows from the portion where the insulating oxide film has been removed, and a polycrystalline Si layer 9 grows from the other portion. next,
Removal of the support layer at a predetermined portion using a photoetching method (
j). Next, thermal oxidation is performed to form an oxide film 5 on the side wall portion of the portion where the support has been removed (k). After removing the silicon nitride film by etching with hot phosphoric acid (1), a low resistance n-type Si layer is grown in vapor phase (m). A single crystal Si layer 8 grows from the part not covered with the oxide film,
A polycrystalline Si layer 7 grows from other parts. After that, the substrate was polished down to the surface indicated by the dashed line, and
The substrate is completed by creating a structure in which an oxide film layer consisting of , penetrates through the substrate.

本実施例ではP型及びn型の単結晶部を形成する場合に
ついて示したが、a)〜e)の工程を省き、m)でP型
の低抵抗Si層を成長させれば、P型のみの単結晶層が
得られることは容易にわかる。
This example shows the case of forming P-type and n-type single crystal parts, but if steps a) to e) are omitted and a P-type low resistance Si layer is grown in m), the P-type It is easy to see that a single crystal layer of only

また、単結晶Si基板としてn型のものを用いることも
できる。更に、第4図で31と印した様な埋込層領域と
併用することもできる。
Furthermore, an n-type single crystal Si substrate can also be used. Furthermore, it can also be used in combination with a buried layer region, such as the one marked 31 in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基板を貫通する単結晶Si領域を分離
するpn接合によって構成される寄生サイリスタを除去
できる。よって、これに起因するラッチアップは起こり
得なくなる。また、これにより回路の信頼性が向上した
縦形素子の相補形構成が可能となり、その結果、容量負
荷の場合スイッチング時以外の消費電力は殆んどOに低
減できる。
According to the present invention, a parasitic thyristor formed by a pn junction separating single crystal Si regions penetrating the substrate can be removed. Therefore, latch-up caused by this can no longer occur. Moreover, this enables a complementary configuration of vertical elements with improved circuit reliability, and as a result, in the case of a capacitive load, power consumption other than during switching can be reduced to almost 0.

また、支持体層の大部分を単結晶にできたので、基板の
湾曲量も数十%に低減できる。
Furthermore, since most of the support layer can be made of single crystal, the amount of curvature of the substrate can be reduced to several tens of percent.

【図面の簡単な説明】 第1図は、本発明の一実施例の基板を用いたICの縦断
面図、第2図乃至第4図は、従来の基板を用いたICの
一例の縦断面図、第5図は、本発明の基板の作製プロセ
スフローの一例を示す縦断面図である。 4・・・酸化膜、5・・・酸化膜、7・・・n型高濃度
多結晶層、8− n型高濃度単結晶層、9・・P型高濃
度多結晶層、10・・・P型高濃度単結晶層。 第 1 口 恭 3 口 第 4ffJ 第2 口 第
[Brief Description of the Drawings] Fig. 1 is a longitudinal cross-sectional view of an IC using a substrate according to an embodiment of the present invention, and Figs. 2 to 4 are longitudinal cross-sections of an example of an IC using a conventional substrate. FIG. 5 is a vertical cross-sectional view showing an example of the manufacturing process flow of the substrate of the present invention. 4... Oxide film, 5... Oxide film, 7... N-type high concentration polycrystalline layer, 8- N-type high concentration single crystal layer, 9... P-type high concentration polycrystalline layer, 10...・P-type high concentration single crystal layer. 1st mouth 3rd mouth 4ffJ 2nd mouth

Claims (1)

【特許請求の範囲】 1、基板の一方主表面から他方主表面にかけて延在し、
両主表面に主表面が露出する少なくとも2個の半導体単
結晶領域、半導体単結晶領域を支持する半導体多結晶領
域、および上記半導体単結晶領域相互を絶縁分離する誘
電体膜を有し、上記誘電体膜が基板の一方主表面から他
方主表面に延在していることを特徴とする誘電体分離基
板。 2、単結晶基板に分離溝を形成する工程、第一の絶縁膜
を形成し所定の部分の絶縁膜を除去する工程、分離溝を
形成した基板面上に半導体層を成長させ、第一の半導体
単結晶領域及び多結晶領域を形成する工程、所定の部分
の半導体層を、絶縁膜が露出するまで除去する工程、除
去後露出した半導体領域の側壁に第二の絶縁膜を形成す
る工程、所定の部分の絶縁膜を除去する工程、基板の半
導体層を成長させた側に半導体層を成長させ、第二の単
結晶半導体領域及び多結晶領域を成長させる工程、成長
させた半導体層を、第二の絶縁膜が露出するまで研磨し
除去する工程、単結晶基板を、単結晶領域が分離される
まで研磨し除去する工程から成ることを特徴とする誘電
体分離基板の製造方法。
[Claims] 1. Extending from one main surface to the other main surface of the substrate,
at least two semiconductor single crystal regions whose main surfaces are exposed on both main surfaces, a semiconductor polycrystalline region that supports the semiconductor single crystal regions, and a dielectric film that insulates and separates the semiconductor single crystal regions from each other; A dielectric isolation substrate characterized in that a body film extends from one main surface to the other main surface of the substrate. 2. A step of forming an isolation trench on a single crystal substrate, a step of forming a first insulating film and removing a predetermined portion of the insulating film, a step of growing a semiconductor layer on the surface of the substrate on which the isolation trench has been formed, and forming the first insulating film. a step of forming a semiconductor single crystal region and a polycrystalline region, a step of removing a predetermined portion of the semiconductor layer until the insulating film is exposed, a step of forming a second insulating film on the sidewall of the semiconductor region exposed after removal, A step of removing the insulating film in a predetermined portion, a step of growing a semiconductor layer on the side of the substrate on which the semiconductor layer was grown, a step of growing a second single crystal semiconductor region and a polycrystalline region, and a step of growing the grown semiconductor layer, A method for manufacturing a dielectric isolation substrate, comprising the steps of polishing and removing the second insulating film until it is exposed, and polishing and removing the single crystal substrate until the single crystal region is separated.
JP63188435A 1988-07-29 1988-07-29 Dielectric isolated substrate and manufacture thereof Pending JPH0239565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63188435A JPH0239565A (en) 1988-07-29 1988-07-29 Dielectric isolated substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63188435A JPH0239565A (en) 1988-07-29 1988-07-29 Dielectric isolated substrate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0239565A true JPH0239565A (en) 1990-02-08

Family

ID=16223626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63188435A Pending JPH0239565A (en) 1988-07-29 1988-07-29 Dielectric isolated substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0239565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135427A (en) * 2007-11-06 2009-06-18 Denso Corp Semiconductor device and its manufacturing method
US7911023B2 (en) 2007-11-06 2011-03-22 Denso Corporation Semiconductor apparatus including a double-sided electrode element and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135427A (en) * 2007-11-06 2009-06-18 Denso Corp Semiconductor device and its manufacturing method
US7911023B2 (en) 2007-11-06 2011-03-22 Denso Corporation Semiconductor apparatus including a double-sided electrode element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2974211B2 (en) SOI semiconductor device
JPH04106932A (en) Manufacture of bipolar transistor
JPH0671043B2 (en) Method for manufacturing silicon crystal structure
US6127701A (en) Vertical power device with integrated control circuitry
JP2526786B2 (en) Semiconductor device and manufacturing method thereof
JP3014012B2 (en) Method for manufacturing semiconductor device
US5994188A (en) Method of fabricating a vertical power device with integrated control circuitry
JPS6159852A (en) Manufacture of semiconductor device
EP0817257A1 (en) Integrated circuit containing devices dielectrically isolated and junction isloated from a substrate
US5844294A (en) Semiconductor substrate with SOI structure
JPH0239565A (en) Dielectric isolated substrate and manufacture thereof
JPH05121664A (en) Semiconductor device
JPH01251635A (en) Dielectric isolation type semiconductor device
JPH01112746A (en) Semiconductor device
JP3111294B2 (en) Dielectric separated type semiconductor integrated circuit device and method of manufacturing the same
JPH03105944A (en) Dielectric isolation substrate
JP2933509B2 (en) Semiconductor device
JPH10173040A (en) Semiconductor integrated circuit device
JPH0637099A (en) Semiconductor substrate and manufacture thereof
JPS6334949A (en) Semiconductor device
JP2971408B2 (en) Manufacturing method of dielectric isolation substrate
JPH1050823A (en) Dielectric isolation substrate and manufacture thereof
JPH0547914A (en) Dielectric isolation substrate and its manufacture
JPS61172347A (en) Manufacture of semiconductor integrated circuit device
JP2003179131A (en) Semiconductor device