JPH0239162B2 - - Google Patents

Info

Publication number
JPH0239162B2
JPH0239162B2 JP56006699A JP669981A JPH0239162B2 JP H0239162 B2 JPH0239162 B2 JP H0239162B2 JP 56006699 A JP56006699 A JP 56006699A JP 669981 A JP669981 A JP 669981A JP H0239162 B2 JPH0239162 B2 JP H0239162B2
Authority
JP
Japan
Prior art keywords
frequency
pulse width
inverter
modulation
width modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56006699A
Other languages
Japanese (ja)
Other versions
JPS57122685A (en
Inventor
Nobuo Watanabe
Hiroyuki Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56006699A priority Critical patent/JPS57122685A/en
Publication of JPS57122685A publication Critical patent/JPS57122685A/en
Publication of JPH0239162B2 publication Critical patent/JPH0239162B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/08Controlling based on slip frequency, e.g. adding slip frequency and speed proportional frequency

Description

【発明の詳細な説明】 本発明は車両用誘導電動機の制御装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for an induction motor for a vehicle.

鉄道車両用の主電動機として、誘導電動機を使
用することは、小形、軽量化およびメンテナンス
フリーの点から大きな利点がある。
The use of an induction motor as a main motor for a railway vehicle has great advantages in terms of size, weight reduction, and maintenance-free nature.

ところで誘導電動機を効率よく速度制御するた
めには、可変電圧、可変周波数制御(以下
VVVFと呼ぶ)が必要で、通常サイリスタなど
を用いたVVVFインバータが使用されている。
このVVVF方式は制御そのものが複雑であると
いう点と、電源高調波低減のためにPWM変調を
行なわなければならないなどの点から高度な制御
技術が要求される。
By the way, in order to efficiently control the speed of an induction motor, variable voltage and variable frequency control (hereinafter referred to as variable frequency control) is required.
VVVF (VVVF) is required, and VVVF inverters using thyristors are usually used.
This VVVF method requires advanced control technology because the control itself is complex and PWM modulation must be performed to reduce power harmonics.

従来、このようなPWM変調VVVFインバータ
の制御部として第1図に示すような構成が採用さ
れている。
Conventionally, a configuration as shown in FIG. 1 has been adopted as a control section of such a PWM modulation VVVF inverter.

第1図はVVVFインバータの制御部をブロツ
ク回路で示したもので、1は誘導電動機の回転数
を検知するパルスジエネレータ、2はパルスジエ
ネレータ1の信号より回転周波数FRを算出する
回転周波数演算部、3はパルスジエネレータ1の
信号の時間変化率より空転および滑走を検知する
空転滑走検知部、4は走行指令MC及びノツチ指
令P/Bをあたえるマスコンおよびブレーキ弁、
5はマスコン指令MC、応荷重VL及び空転滑走
条件WSDに応じて電流指令値ICを算出する電流
指令値演算部、6はノツチ指令P/Bによつて力
行P、回生Bを判別する力行回生判別部、7は電
流指令値ICおよび力行Pまたは回生Bの条件よ
りすべり周波数FSを算出するすべり周波数演算
部、8は電流指令値ICと電動機電流IMの電流偏
差IUに応じて出力電圧を制御するための変調率
ALを算出する変調率演算部、9はインバータ周
波数Fより変調パルスモードNを算出する変調パ
ルスモード演算部、そして10はインバータ出力
周波数F、変調パルスモードNおよび変調率AL
にしたがつてPWM変調を行うPWM変調部であ
る。
Figure 1 shows the control section of the VVVF inverter as a block circuit, where 1 is a pulse generator that detects the rotation speed of the induction motor, and 2 is a rotation frequency calculator that calculates the rotation frequency FR from the signal of pulse generator 1. 3 is a slipping and skidding detection unit that detects slipping and skidding based on the time rate of change of the signal of the pulse generator 1; 4 is a master controller and brake valve that gives a running command MC and a notch command P/B;
5 is a current command value calculation unit that calculates a current command value IC according to the mass controller command MC, variable load VL, and slipping and sliding condition WSD; 6 is a power running regeneration unit that determines power running P and regeneration B based on the notch command P/B A discrimination section, 7 is a slip frequency calculation section that calculates the slip frequency FS from the current command value IC and the conditions of power running P or regeneration B, and 8 is a slip frequency calculation section that controls the output voltage according to the current deviation IU between the current command value IC and the motor current IM. Modulation rate for
9 is a modulation pulse mode calculation unit that calculates modulation pulse mode N from inverter frequency F, and 10 is inverter output frequency F, modulation pulse mode N, and modulation rate AL.
This is a PWM modulation section that performs PWM modulation according to the following.

さて誘導電動機のトルクTはすべり周波数FS
の小さい範囲では近似的に T=K1・(IM)2・r2/FS … (ただしr2は電動機の2次抵抗) であたえられる。第1図の制御回路ではすべり周
波数FSは電流指令値ICによつて一義的に決まり、
電動機電流IMの過渡現象には無関係であり、ま
た変調率演算部8に適当なフイードバツク補償回
路を設けることによりICIMなる定電流制御を
行うので、r2が変化しなければ式より明らかに
速度に関係なく一定トルクでの加減速性能を得る
ことができるというものである。
Now, the torque T of the induction motor is the slip frequency FS
In a small range, it can be approximately given by T=K 1・(IM) 2・r 2 /FS (where r 2 is the secondary resistance of the motor). In the control circuit shown in Figure 1, the slip frequency FS is uniquely determined by the current command value IC,
It is unrelated to the transient phenomenon of the motor current IM, and constant current control called ICIM is performed by providing an appropriate feedback compensation circuit in the modulation factor calculating section 8, so it is clear from the formula that the speed will change as long as r 2 does not change. It is possible to obtain acceleration/deceleration performance with constant torque regardless of the torque.

ところが実際にはr2は電動機の回転子の抵抗で
あるから運転時には大きなジユール熱を発生し、
従つて温度上昇による抵抗値の変動が避けられ
ず、故に上述したような定トルク特性を期待する
ことはできない。またこの方式では架線電圧EC
の変動などによる過渡現象は変調率演算部8の定
電流制御ループによりすべて吸収するので、この
制御ループには非常な速応性が要求され、従つて
ループの安定性を確保する特性設計が容易でない
という欠点があつた。
However, in reality, r2 is the resistance of the motor's rotor, so it generates a large amount of heat during operation.
Therefore, fluctuations in resistance due to temperature rise are unavoidable, and therefore constant torque characteristics as described above cannot be expected. In addition, in this method, the overhead line voltage EC
Since all transient phenomena caused by fluctuations in the modulation rate are absorbed by the constant current control loop of the modulation factor calculation section 8, this control loop is required to have extremely quick response, and therefore it is not easy to design the characteristics to ensure the stability of the loop. There was a drawback.

本発明は上述の点に鑑みてなされたもので、誘
導電動機の2次抵抗の温度変化によるトルク変動
を無くし、かつ安定で特性設計の容易な誘導電動
機の制御装置を提供することを目的としている。
The present invention has been made in view of the above points, and it is an object of the present invention to provide an induction motor control device that eliminates torque fluctuations due to temperature changes in the secondary resistance of the induction motor, and is stable and easy to design characteristics. .

以下本発明の一実施例を図面を参照して説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例のブロツク回路を示
したもので、第1図と同一部分には同一記号を付
してその説明を省略し、ここでは異なる点につい
てのみ述べる。本実施例では第2図に示すように
第1図のすべり周波数演算部7に代えて電流指令
値ICと力行Pまたは回生Bの条件および電流偏
差IUに応じてすべり周波数FSを算出するすべり
周波数演算部17を設け、また第1図の変調率演
算部8に代えてインバータ周波数Fおよび架線電
圧ECより変調率ALを算出する変調率演算部18
を設ける構成とするものである。
FIG. 2 shows a block circuit according to an embodiment of the present invention, and the same parts as those in FIG. 1 are given the same symbols and their explanation will be omitted, and only the different points will be described here. In this embodiment, as shown in FIG. 2, the slip frequency calculation unit 7 in FIG. A calculation unit 17 is provided, and a modulation rate calculation unit 18 that calculates the modulation rate AL from the inverter frequency F and the overhead wire voltage EC in place of the modulation rate calculation unit 8 in FIG.
The configuration is such that the following is provided.

次に第2図を用いて本発明の作用を説明する。 Next, the operation of the present invention will be explained using FIG. 2.

第2図において、パルスジエネレータ1の出力
パルスは回転周波数演算部2にとりこまれてカウ
ントされ回転周波数FRが求められる。また同時
にこのパルスは空転滑走検知部3にとりこまれ、
パルス数の時間変化により空転、滑走WSDが検
知される。電流指令値演算部5ではマスコン指令
MC及び応荷重VLに応じて電流指令値ICが演算
され、さらに空転、滑走条件WSDが高い時は指
令値の低減変更を行う。力行回生判別部6ではノ
ツチ指令P/Bより、力行Pか回生Bを判別し出
力する。すべり周波数演算部17では電流指令値
ICによつて一義的に決定される定数項FS1と電
流偏差IUに応じてあたえられる過渡項FS2を加
算してすべり周波数FSとして出力する。これを
式で示すと次のようになる。
In FIG. 2, the output pulses of the pulse generator 1 are taken into a rotational frequency calculating section 2 and counted to determine the rotational frequency FR. At the same time, this pulse is taken into the slipping/sliding detection section 3,
Slipping and skidding WSD are detected by the time change in the number of pulses. The current command value calculation unit 5 calculates the MASCON command.
A current command value IC is calculated according to MC and variable load VL, and when the slipping and sliding conditions WSD are high, the command value is reduced. The power running regeneration determining section 6 determines whether power running P or regeneration B is selected based on the notch command P/B and outputs the result. The slip frequency calculation unit 17 calculates the current command value.
A constant term FS1 uniquely determined by the IC and a transient term FS2 given according to the current deviation IU are added and output as a slip frequency FS. This can be expressed as an equation as follows.

FS=FS1+FS2 … S1=(IC) … FS2=G(S)・(IC−IM) … 電動機電圧EMが一定の時、すべり周波数FSの
小さい範囲ではすべり周波数FSと電動機電流IM
との間には近似的に IM=K2・FS+K3 … の関係があるので、過渡項RS2の伝達関数G
(S)の補償ゲインをある程度大きくとれば過渡
項FS2の作用によりICIMになり、すべり周波
数FSによる定電流制御が行なわれる。変調率演
算部18では2次抵抗r2をr2=r20一定とした時に
IM=IC、FS=FS1なる条件で全速度領域で定ト
ルク特性を発揮するようにあらかじめ計算記憶さ
れたパターンに従つて、インバータ出周波数Fに
応じて適当な出力電圧EMを発生するような変調
率ALを算定する。さらにこの時、架線電圧ECを
検知してこの架線電圧ECが変動しても出力電圧
EMが変わらないように変調率ALは演算制御さ
れる。
FS=FS1+FS2...S1=(IC)...FS2=G(S)・(IC-IM)...When the motor voltage EM is constant, the slip frequency FS and motor current IM are in the small range of the slip frequency FS.
There is an approximate relationship between IM=K 2・FS+K 3 ..., so the transfer function G of the transient term RS2
If the compensation gain of (S) is set to a certain degree, ICIM is achieved due to the effect of the transient term FS2, and constant current control is performed using the slip frequency FS. In the modulation factor calculation section 18, when the secondary resistance r 2 is constant r 2 = r 20 ,
Modulation that generates an appropriate output voltage EM according to the inverter output frequency F according to a pre-calculated and memorized pattern to exhibit constant torque characteristics in the entire speed range under the conditions of IM = IC and FS = FS1. Calculate the rate AL. Furthermore, at this time, the overhead line voltage EC is detected, and even if this overhead line voltage EC fluctuates, the output voltage remains unchanged.
The modulation rate AL is computationally controlled so that EM does not change.

従つてここでr2=r20一定とした時のトルクT
は T=K1・(IM)2・r2/FS =K1・(IC)2・r20/FS1 … で与えられる。この式の意味はr2=r20の時平衡
状態でIM=ICになるすべり周波数FSはFS=FS1
であることを示している。従つて今、r2が温度上
昇により抵抗値がK4倍に増加してかつFSがFS=
FS1で変化しないものとすると、等価的な2次抵
抗r2′は r2′=r2/FS … であたえられるから、r2′は増加しIMが減少して
しまう。この状態は過渡項FS2のループを作用
させないオープンループの状態を示し、過渡項
FS2のループが作用すると、IMICになるよう
に過渡項FS2がある正の値を有し、この時のFS
=FS1+FS2は次の式を満足 r2′=K4・r20/FSr20/FS1 … しているはずで、結局 FS=K4・FS1 … に制御されることになる。すなわちトルクTは T=K・(IM)2・r2′ … で与えられ、この制御方式ではr2′が一定に制御
されるのでr2が変動してもトルクは変動しない。
Therefore, here, the torque T when r 2 = r 20 is constant
is given by T= K1・(IM) 2r2 /FS= K1・(IC) 2r20 /FS1... The meaning of this equation is that when r 2 = r 20 , the slip frequency FS at which IM = IC in equilibrium is FS = FS1
It shows that. Therefore, now the resistance value of r 2 increases by K 4 times due to temperature rise and FS becomes FS=
Assuming that FS1 does not change, the equivalent secondary resistance r 2 ′ is given by r 2 ′=r 2 /FS..., so r 2 ′ increases and IM decreases. This state indicates an open loop state in which the loop of transient term FS2 does not act, and the transient term
When the loop of FS2 acts, the transient term FS2 has a certain positive value so that IMIC, and the FS at this time
= FS1 + FS2 should satisfy the following formula r 2 ′ = K 4 · r 20 /FSr 20 /FS1 ..., and in the end it will be controlled so that FS = K 4 · FS1 .... That is, the torque T is given by T=K・(IM) 2・r 2 ′... In this control method, r 2 ′ is controlled to be constant, so even if r 2 changes, the torque does not change.

また速応性が要求されるのは変調率演算部18
であり、フイードバツク制御を行つているすべり
周波数演算部は基本的にはr2の変動分を補償すれ
ば良いのでそれほど速い応答は要求されない。
Also, the modulation rate calculation section 18 is required to have quick response.
Basically, the slip frequency calculating section that performs feedback control only needs to compensate for the variation in r 2 , so a very fast response is not required.

以上説明したように本発明によれば、誘導電動
機の2次抵抗の温度変化によるトルク変動を無く
せるとともに、安定でかつ特性設計の容易な誘導
電動機の制御装置を提供することができる。
As described above, according to the present invention, it is possible to eliminate torque fluctuations due to temperature changes in the secondary resistance of the induction motor, and to provide a control device for an induction motor that is stable and whose characteristics can be easily designed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の鉄道車両用誘導電動機の制御装
置を構成するVVVFインバータの制御部のブロ
ツク回路図、第2図は本発明の一実施例を説明す
るためのブロツク回路図である。 1……パルスジエネレータ、2……回転周波数
演算部、3……空転、滑走検知部、4……マスコ
ン、ブレーキ弁、5……電流指令値演算部、6…
…力行、回生判別部、17……すべり周波数演算
部、18……変調率演算部、9……変調パルスモ
ード演算部、10……PWM変調部。
FIG. 1 is a block circuit diagram of a control section of a VVVF inverter constituting a conventional control device for an induction motor for a railway vehicle, and FIG. 2 is a block circuit diagram for explaining an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Pulse generator, 2...Rotation frequency calculation section, 3...Slip and skidding detection section, 4...Mascon, brake valve, 5...Current command value calculation section, 6...
...Power running/regeneration discrimination section, 17...Slip frequency calculation section, 18...Modulation rate calculation section, 9...Modulation pulse mode calculation section, 10...PWM modulation section.

Claims (1)

【特許請求の範囲】 1 車両用誘導電動機を駆動するパルス幅変調式
可変電圧・可変周波数制御インバータ装置と、 インバータ周波数信号と変調率信号とを入力
し、前記インバータ装置にパルス幅変調制御のた
めのゲートパルスを与えるパルス幅変調手段と、 前記電動機の回転数に比例した回転周波数を演
算する回転周波数演算手段と、 前記電動機の電動機電流の検出値と指令値との
偏差を演算する電流偏差演算手段と、 この電流偏差演算手段により求められた偏差と
前記電動機電流の指令値とによりすべり周波数を
決定するすべり周波数演算手段と、 このすべり周波数演算手段により求められたす
べり周波数と前記回転周波数演算手段により求め
られた回転周波数とによりインバータ周波数信号
を求め、前記パルス幅変調手段に与えるインバー
タ周波数演算手段と、 このインバータ周波数演算手段からのインバー
タ周波数信号と架線電圧に比例する電圧信号とに
より変調率信号を求め、前記パルス幅変調手段に
与えられる変調率演算手段とを 有する誘導電動機の制御装置。
[Claims] 1. A pulse width modulation type variable voltage/variable frequency control inverter device for driving a vehicle induction motor, an inverter frequency signal and a modulation rate signal being input to the inverter device for pulse width modulation control. pulse width modulation means for providing a gate pulse of; rotational frequency calculation means for calculating a rotational frequency proportional to the rotational speed of the motor; and current deviation calculation means for calculating a deviation between a detected motor current value and a command value of the motor. means, a slip frequency calculating means for determining a slip frequency based on the deviation calculated by the current deviation calculating means and the command value of the motor current, and the slip frequency calculated by the slip frequency calculating means and the rotational frequency calculating means. An inverter frequency calculation means calculates an inverter frequency signal based on the rotational frequency determined by and supplies it to the pulse width modulation means, and a modulation rate signal is generated using the inverter frequency signal from the inverter frequency calculation means and a voltage signal proportional to the overhead wire voltage. and a modulation factor calculation means for determining the pulse width modulation means and providing the modulation factor to the pulse width modulation means.
JP56006699A 1981-01-20 1981-01-20 Speed control for induction motor Granted JPS57122685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56006699A JPS57122685A (en) 1981-01-20 1981-01-20 Speed control for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56006699A JPS57122685A (en) 1981-01-20 1981-01-20 Speed control for induction motor

Publications (2)

Publication Number Publication Date
JPS57122685A JPS57122685A (en) 1982-07-30
JPH0239162B2 true JPH0239162B2 (en) 1990-09-04

Family

ID=11645572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56006699A Granted JPS57122685A (en) 1981-01-20 1981-01-20 Speed control for induction motor

Country Status (1)

Country Link
JP (1) JPS57122685A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113910A (en) * 1975-03-31 1976-10-07 Toshiba Corp Control device for electric car
JPS5442712A (en) * 1977-09-09 1979-04-04 Hitachi Ltd Electric car controlling system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113910A (en) * 1975-03-31 1976-10-07 Toshiba Corp Control device for electric car
JPS5442712A (en) * 1977-09-09 1979-04-04 Hitachi Ltd Electric car controlling system

Also Published As

Publication number Publication date
JPS57122685A (en) 1982-07-30

Similar Documents

Publication Publication Date Title
EP0022267B1 (en) Control system for induction motor-driven car
KR950015169B1 (en) Control system for induction motor driven electric car
US5677610A (en) Control apparatus for electric vehicles
US4463289A (en) Wheel slip control using differential signal
JP3840627B2 (en) Protective device for vehicle main motor
JP3933983B2 (en) Electric vehicle control device
JPH0239162B2 (en)
JPH07291542A (en) Speed control device of inverter for elevator
JP2844154B2 (en) Operation control system for electric vehicles
JP3706675B2 (en) Motor drive control device for electric vehicle
JP4313493B2 (en) Device for monitoring the frictional force of electric railway vehicle sets
JP3622410B2 (en) Control method of electric motor by inverter
JP2739951B2 (en) Electric car control device
JPH07267525A (en) Inverter device for elevator
JPS59123403A (en) Brake device for electric motor car
JPS6332002B2 (en)
JPH0591602A (en) Controller for electric vehicle
JPH0235523B2 (en)
US4651078A (en) Device for driving an induction motor
JPS644437B2 (en)
JPH055835Y2 (en)
JPH04236107A (en) Hill climbing controller for motor vehicle
JPH03198604A (en) Drive controller for electric motor vehicle
JPH0581517B2 (en)
JPH0832122B2 (en) Electric car control device