JPS59123403A - Brake device for electric motor car - Google Patents

Brake device for electric motor car

Info

Publication number
JPS59123403A
JPS59123403A JP22804682A JP22804682A JPS59123403A JP S59123403 A JPS59123403 A JP S59123403A JP 22804682 A JP22804682 A JP 22804682A JP 22804682 A JP22804682 A JP 22804682A JP S59123403 A JPS59123403 A JP S59123403A
Authority
JP
Japan
Prior art keywords
braking
electric
braking force
command
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22804682A
Other languages
Japanese (ja)
Inventor
Katsu Maekawa
克 前川
Kihei Nakajima
中島 喜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22804682A priority Critical patent/JPS59123403A/en
Publication of JPS59123403A publication Critical patent/JPS59123403A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

PURPOSE:To obtain smooth brake force with respect to a brake command value by altering the operating conditions of electric brake means with respect to a brake command in response to the braking conditions of the brake force of the brake means. CONSTITUTION:Electric power from a battery 1 is supplied to an induction motor 3 through an inverter 2. A brake instruction unit 4 generates a command value by the operation of an operator and is used to obtain mechanical brake force. A temperature detector 5 detects the temperature of the motor 3. The maximum brake force calculator 6 calculates the maximum brake force on the basis of the output of the detector 5 and applies it to a multiplier 7. The multiplier 7 multiplies the command value as the output of the unit 4 by the maximum brake force as the output of the calculator 6 and delivers a brake force reference value T* to an inverter control circuit.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電気車制動装置に係り、特に電気的な制動と機
械的な制動を併用して、電気車を円滑に制動するに好適
な電気車制動装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an electric vehicle braking device, and particularly to an electric vehicle suitable for smoothly braking an electric vehicle by using both electrical braking and mechanical braking. Regarding a braking device.

〔発明の技術的背景〕[Technical background of the invention]

近年、バッテリをエネルギー源として電動機駆動によシ
走行する電気車は低公害、低騒音等の理由から屋内走行
や近距離走行の用途に広く用いられる様になって来てい
る。この種の電気車は、−般にバッテリの電気エネルギ
ーをチョッパやインバータなどの変換装置によシミ力変
換し、直流電動機や交流電動機を駆動して所定の駆動力
や制動力を得る如く構成される。つまシ、加速時や通常
の走行時にはバッテリからのエネルギーにより電動機を
駆動し、一方減速時や坂の下降時などは制動エネルギー
をバッテリに回生ずるか抵抗器で消費させる等の構成が
一般的に採られる。
2. Description of the Related Art In recent years, electric vehicles that run by driving an electric motor using batteries as an energy source have come to be widely used for indoor driving and short distance driving because of their low pollution and low noise. This type of electric vehicle is generally constructed in such a way that the electric energy of the battery is converted into a force using a conversion device such as a chopper or an inverter, and then a DC motor or an AC motor is driven to obtain a predetermined driving force or braking force. Ru. Generally, the electric motor is driven by energy from the battery during acceleration and normal driving, while braking energy is regenerated into the battery or consumed by a resistor when decelerating or descending a slope. taken.

ここで、電気的な駆動力や制動力は電動機や電力変換装
置の容量によシ決定されるが、電動機がある回転数で回
転している場合の最大駆動トルクと最大制動トルクは一
般にほぼ同一と考えてよい。
Here, the electrical driving force and braking force are determined by the capacity of the electric motor and power converter, but the maximum driving torque and the maximum braking torque when the electric motor is rotating at a certain rotation speed are generally almost the same. You can think that.

一方、電気車としての性能から見れは、加速トルクは電
動機と電力変換装置の容量で定まるが、反面、制動力と
しては安全上駆動時よシも大きな制動力を必要とする。
On the other hand, in terms of performance as an electric vehicle, acceleration torque is determined by the capacity of the electric motor and power converter, but on the other hand, a large braking force is required for safety reasons, even when driving.

この為、一般的には電気的制動力に加えて機械的な制動
力を得るべく、機械的制動機構が併用されることとなる
。ちなみに、制動時の電気的制動エネルギーをバッテリ
に回生させる如き構成は、エネルギーの有効利用の観点
から抵抗器で消費させる方式よシ有利な方式と云えよう
For this reason, a mechanical braking mechanism is generally used in combination to obtain a mechanical braking force in addition to the electrical braking force. Incidentally, a configuration in which electrical braking energy during braking is regenerated into a battery can be said to be more advantageous than a system in which the electrical braking energy is consumed by a resistor from the viewpoint of effective energy utilization.

上述した如き特性上の考え方から、電気車のブレーキペ
ダルの踏込み量に対応する制動指令値と制動力つまシ制
動トルクの関係は、第1図の特性図に示すように、所定
の制動指令値までは電気的制動をそれ以上の指令値に対
しては電気的制動と機械的制動の両者を作動させる方式
が好ましい。
From the viewpoint of characteristics as described above, the relationship between the braking command value corresponding to the amount of depression of the brake pedal of an electric vehicle and the braking force/braking torque is determined by the predetermined braking command value as shown in the characteristic diagram of Fig. 1. It is preferable to use a system in which electrical braking is applied up to a command value, and both electrical braking and mechanical braking are operated for a command value higher than that.

〔背景技術の問題点〕[Problems with background technology]

上述した如き制動機構を有する電気車で運転を持続し、
例えば電動機の温度が所定のレベル以上に上昇したと仮
定する。このような状態では、一般に電動機の巻線の絶
縁を保護するために電動機への通電電流値の最大値を制
限して温度上昇を制限する必要がある。その結果、電気
的制動時の制動電流の最大値も通常の電動機温度におけ
る値よシも少なくなることとなる。したがって、電動機
が高温になった場合に単に制動力の最大値を減少させる
だけの制御を行うと、第1図の特性図に示すような制動
指令値対制動力の関係となる。この場合、A点からB点
までの制動指令値の変化に対して制動力が変化しないと
いう問題を生ずる。ちなみに、制動指令値は一般に操作
者がブレーキペダルやハンドルを操作して変化させるが
、上述の様な場合操作量に対して不感帯が存在する事と
なるため、円滑な制動操作ができなくな)危険を伴う事
となる。
Continue driving an electric car with a braking mechanism as described above,
For example, assume that the temperature of the electric motor rises above a predetermined level. In such a state, it is generally necessary to limit the maximum value of current supplied to the motor in order to protect the insulation of the windings of the motor, thereby limiting the temperature rise. As a result, the maximum value of the braking current during electrical braking is also smaller than the value at normal motor temperature. Therefore, if control is performed to simply reduce the maximum value of the braking force when the electric motor becomes high in temperature, the relationship between the braking command value and the braking force will be as shown in the characteristic diagram of FIG. In this case, a problem arises in that the braking force does not change with respect to changes in the braking command value from point A to point B. By the way, the braking command value is generally changed by the operator operating the brake pedal or steering wheel, but in the case described above, there is a dead zone with respect to the amount of operation, making it impossible to perform smooth braking operations.) It will be dangerous.

〔発明の目的〕[Purpose of the invention]

従って、本発明の目的は上記従来技術の問題点を解消し
、電気的制動と機械的制動機能を併用した電気車の制動
に当り制動指令値に対して円滑な制動力を得る事を可能
ならしめた電気車制動装置を提供するにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to make it possible to obtain a smooth braking force in response to a braking command value when braking an electric vehicle using both electrical braking and mechanical braking functions. To provide a brake system for electric vehicles.

〔発明の概要〕[Summary of the invention]

上記目的を達成する為に、本発明は電源から電力変換器
を介して電力供給を受は電気車を駆動する電動機と、電
動機からの回生電力を電力変換器を介して電源に回生ず
ることにより制動力を得る電気的制動手段と、電気車に
機械的に制動力を与える機械的制動手段と、制動力を指
令する制動指令を出力すると共に機械的制動手段に直接
的に制動動作を行なわせる指令手段と、電気的制動手段
の制動力の制限条件を検出する制限検出手段と、制限検
出手段の出力に応じて制動指令に対する電気的制動手段
の動作条件を変更する演算手段を備える電気車制動装置
を提供するものである。
In order to achieve the above object, the present invention provides an electric motor that receives power supply from a power source via a power converter and drives an electric vehicle, and regenerates regenerated power from the electric motor to the power source via the power converter. An electric braking means that obtains braking force, a mechanical braking means that mechanically applies braking force to the electric vehicle, and a braking command that commands the braking force is output and the mechanical braking means directly performs a braking operation. Electric vehicle braking comprising a command means, a limit detection means for detecting a limit condition of the braking force of the electric braking means, and a calculation means for changing the operating condition of the electric braking means in response to a braking command according to the output of the limit detecting means. It provides equipment.

〔発明の実施例〕[Embodiments of the invention]

以下、メ面を参照しながら本発明の詳細な説明す゛る。 Hereinafter, the present invention will be described in detail with reference to the front page.

第3図は本発明の一実施例に係る電気車制動装置の概略
構成図である。同図に於めて、バッテリlからの電力は
インバータ2を介して誘導電動機3に供給されこれを駆
動する。制動指令器≠は操作員の操作により指令値を発
生すると共に機械的制動力を得るべく用いられる。温度
検出器!は誘導電動機3の温度を検出し最大制動力演算
器乙に入力する。最大制動力演算器2は温度検出器夕の
出力に基いて最大制動力を演算し、これを掛算器7に与
える。掛算器7は制動指令器グの出力である指令値と最
大制動力演算器乙の出力である最大制動力を掛算して制
動力基準値T を発生しこれをインバータ制御回路に送
出する〇 かかる構成に於いては、バッテリ/からの直流電源を電
圧形トランジスタ式のインバーターで直流/交流変換し
、誘導電動機3を駆動するという主回路が構成される。
FIG. 3 is a schematic configuration diagram of an electric vehicle braking device according to an embodiment of the present invention. In the figure, electric power from a battery 1 is supplied to an induction motor 3 via an inverter 2 to drive it. The brake command device ≠ is used to generate a command value and obtain a mechanical braking force when operated by an operator. Temperature detector! detects the temperature of the induction motor 3 and inputs it to the maximum braking force calculator B. The maximum braking force calculator 2 calculates the maximum braking force based on the output of the temperature sensor 2, and supplies this to the multiplier 7. The multiplier 7 multiplies the command value output from the braking command device G by the maximum braking force output from the maximum braking force calculator B to generate a braking force reference value T and sends this to the inverter control circuit. In the configuration, a main circuit is configured in which DC power from a battery is converted to DC/AC using a voltage type transistor inverter to drive the induction motor 3.

一方、制御回路ブロックは本発明にかかわる部分のみを
図示した。また、制動力を減少させる検出値として、こ
こでは誘導電動機3の温度を考える。
On the other hand, in the control circuit block, only the portions related to the present invention are illustrated. Moreover, the temperature of the induction motor 3 is considered here as a detected value for reducing the braking force.

ここで、最大制動力演算器6は、例えばサーミスタで構
成される温度検出器jからの抵抗値を人力として、第7
図(a)の特性図に示すように、第1の温度T1までは
最大出力を、第7の温度T1から第1の温度T2までの
間は温度に比例して出力を減少させるように、また第2
の温度72以上では出力をゼロとする様な値を出力する
。ちなみに、この様な人出力関係を有する回路は演算増
幅器を組合わせた周知の構成が適用可能である。一方、
制動指令器グから掛算器7へ入力される信号は第7図(
b)の特性図に示すように、機械的制動が加わるまでの
制動指令値に対して比例的に上昇し、それ以上の制動指
令値に対しては一定出力を持つ。
Here, the maximum braking force calculator 6 calculates the resistance value from the temperature sensor j made of a thermistor as human power, and
As shown in the characteristic diagram of FIG. Also the second
At a temperature of 72 or higher, a value that makes the output zero is output. Incidentally, a well-known configuration combining operational amplifiers can be applied to a circuit having such a human output relationship. on the other hand,
The signal input from the brake command device to the multiplier 7 is shown in Fig. 7 (
As shown in the characteristic diagram b), the output increases proportionally to the braking command value until mechanical braking is applied, and remains constant for braking command values beyond that value.

最大制動力演算器乙の出力と制動指令器lの出力は掛算
器7に入力〜され、ここで掛算されて制動力基準値T 
として出力される。この制動力基準値T を入力された
インバータ制御回路ざは所定の制動トルクを出すべくイ
ンバータlのトランジスタに導通制御信号を送出する。
The output of the maximum braking force calculator B and the output of the braking command unit L are input to the multiplier 7, where they are multiplied to obtain the braking force reference value T.
is output as The inverter control circuit to which this braking force reference value T is input sends a conduction control signal to the transistor of the inverter I in order to produce a predetermined braking torque.

ちなみに、インバータ制御回路の構成としてはインバー
タを用いた誘導電動機の駆動装置としての周知の構成が
適用可能である。
Incidentally, as the configuration of the inverter control circuit, a well-known configuration as an induction motor drive device using an inverter can be applied.

いま、誘導電動機3の温度が温度T1と温度T2の中間
にあるものとすると、制動力基準値T は第弘図(b)
の半分となる。この理由は温度T1とT2の中間温度で
は最大制動力演算器tの出力が、第グ図(8)にも示す
如く、低温での値の%となり、従って制動指令器弘の出
力信号が%倍されてインバータ制御回路rへ入力される
からである。第1図はこのような制御を行なった場合の
制動指令値に対する制動力特性図であるが、同図にも示
す如く、機械的ttill動が開始される寸での制動指
令値とそれ以上の制動指令値の間では制動力のかだむき
は異なるものの、連続的な変化が得られ、従って第2図
の特性図に示したような不感帯を生じる事なく制動力を
変化させることができる。
Now, assuming that the temperature of the induction motor 3 is between temperature T1 and temperature T2, the braking force reference value T is as shown in Fig. 1 (b).
will be half of that. The reason for this is that at an intermediate temperature between T1 and T2, the output of the maximum braking force calculator t becomes % of the value at low temperature, as shown in Figure 8 (8), and therefore the output signal of the brake command unit t becomes %. This is because the signal is multiplied and input to the inverter control circuit r. Figure 1 is a diagram of braking force characteristics with respect to the braking command value when such control is performed, and as shown in the figure, the braking command value at the point where mechanical ttill movement starts and the Although the magnitude of the braking force differs between the braking command values, a continuous change is obtained, and therefore the braking force can be changed without producing a dead zone as shown in the characteristic diagram of FIG.

第2図は本発明の他の実施例に係る電気車制動装置の概
略構成図である。同図に於いて、加算器りは最大制動力
演算器乙の出力と制動指令器≠の出力を加算すべく設け
られ、IJ ミッタ10は加算器りの出力のゼロレベル
以下をカットする作用を有するものであり、この出力が
制動力基準値T となる。
FIG. 2 is a schematic configuration diagram of an electric vehicle braking device according to another embodiment of the present invention. In the same figure, the adder is provided to add the output of the maximum braking force calculator O and the output of the brake commander ≠, and the IJ mitter 10 has the function of cutting the output of the adder below the zero level. This output becomes the braking force reference value T.

かかる構成に於いて、最大制動力演算器6は、第7図(
a)の特性図に示す如く、第1の温度T1まではゼロ出
力を、第1の温度T1から第2の温度T2−!では温度
に比例した負の方向の出力を、第2の温度72以上では
負の一定値の出力を送出する特性を有する。この最大制
動力演算器乙の出力信号と制動指令器≠からの信号を加
算器りで加算し、リミッタ10でゼロ以下の人力に対し
てはゼロ値を、正の値の入力に対してはそのまま出力し
て制動力基準値T とする。このときの制動指令値に対
する制動力特性を第7図(b)の特性図に示す。ちなみ
に。
In such a configuration, the maximum braking force calculator 6 is configured as shown in FIG.
As shown in the characteristic diagram a), the output is zero up to the first temperature T1, and from the first temperature T1 to the second temperature T2-! It has a characteristic of sending out an output in a negative direction proportional to the temperature, and sending out an output of a constant negative value at a second temperature 72 or higher. The output signal of this maximum braking force calculator B and the signal from the brake command device ≠ are added by an adder, and the limiter 10 gives a zero value for human force less than zero, and a zero value for input of a positive value. It is output as is and set as the braking force reference value T. The braking force characteristics with respect to the braking command value at this time are shown in the characteristic diagram of FIG. 7(b). By the way.

この様な制動特性は誘導電動機3の温度が温度T1とT
2の中間にある場合の例であることは云うまでもない。
Such braking characteristics are obtained when the temperature of the induction motor 3 is T1 and T1.
It goes without saying that this is an example of a case between the two.

そして、誘導電動機3の温度上昇とともに制動指令値を
ゼロから増加させても制動力がかからないCいわゆる遊
びが生じるが、制動力が働き始めればそれ以降は制動指
令値に比例した制動力が得られるため、制動途中で発生
する不感帯よりは影響が少なく、円滑な制動の上では効
果的である。
As the temperature of the induction motor 3 rises, even if the braking command value is increased from zero, no braking force is applied (so-called play occurs), but once the braking force starts working, from then on a braking force proportional to the braking command value can be obtained. Therefore, it has less influence than the dead zone that occurs during braking, and is effective for smooth braking.

なお、上記各実施例では、制動力の最大値を変化させる
ための人力として誘導電動機3の温度を採用する場合を
例示したが、その他の要因としてインバー・夕2やバッ
テリl゛の温度、バッテリlの電圧などが考えられ、こ
れらの要因をひっくるめた形で制動力の最大値を制限す
ることにより更に精度のよい制動が可能となる。また、
電気車の駆動方式としてここではインバータに゛よる誘
導電動機駆動を例示したが、インバータと同期機、チョ
ッパと直流機等の方式であっても本発明はそのまま適用
可能である。
In each of the above embodiments, the temperature of the induction motor 3 is used as the human power to change the maximum value of the braking force, but other factors include the temperature of the inverter 2, the temperature of the battery 1, By limiting the maximum value of the braking force in consideration of these factors, more accurate braking becomes possible. Also,
Although induction motor drive using an inverter has been exemplified here as a driving method for an electric vehicle, the present invention is also applicable to systems such as an inverter and a synchronous machine, a chopper and a DC machine, etc.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、温度上昇等の理由か
ら電動機の制動力の最大値を減少せざるを得ない場合で
あっても、制動指令値に対する制動力を制動途中で不感
帯を生じることなく連動させることを可能とすることに
より円滑な制動性能を実現した電気車制動装置を得るこ
とが出来るものである。
As described above, according to the present invention, even if the maximum value of the braking force of the electric motor has to be reduced due to a rise in temperature, etc., a dead zone occurs in the middle of braking the braking force relative to the braking command value. By making it possible to interlock without any friction, it is possible to obtain an electric vehicle braking device that achieves smooth braking performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は制動指令値に対する制動力の関係を示す特性図
、 第2図は電動機が高温になりだ場合の制動指令値に対す
る制動力の関係を示す特性図、第3図は本発明の一実施
例に係る電気車制動装置の概略構成図。 第弘図は第3図構成の動作を説明する特性図、第!図は
第3図構成に於ける制動指令値に対する制動力の関係を
示す特性図、 第を図は本発明の他の実施例に係る電気車制動装置の概
略構成図。 第7図は第を床構成の動作を説明する特性図である。 l・・・バッテリ、1・・・インパーク、3・・・誘導
電動機、≠・・・制動指令器、!・・・温度検出器、t
・・・最大制動力演算器、7・・・掛算器 出願人代理人   猪 股    潰 瘍1図 宅2図 シ11JルノJ泪fI’ イIM 第6図 艷的制動 第7図 (α) 「 (b) ↑
Figure 1 is a characteristic diagram showing the relationship between braking force and braking command value, Figure 2 is a characteristic diagram showing the relationship between braking force and braking command value when the motor starts to get hot, and Figure 3 is a characteristic diagram showing the relationship between braking force and braking command value. 1 is a schematic configuration diagram of an electric vehicle braking device according to an embodiment. Figure 3 is a characteristic diagram explaining the operation of the configuration shown in Figure 3. 3 is a characteristic diagram showing the relationship between braking force and braking command value in the configuration shown in FIG. 3; and FIG. 3 is a schematic configuration diagram of an electric vehicle braking device according to another embodiment of the present invention. FIG. 7 is a characteristic diagram illustrating the operation of the second floor configuration. l...Battery, 1...Impark, 3...Induction motor, ≠...Brake command device,! ...Temperature detector, t
...Maximum braking force calculator, 7... Multiplier Applicant's agent Boar Crotch Ulcer Figure 1 House 2 Figure 11 J Runo J Tears fI' IM Figure 6 Braking Figure 7 (α) " ( b) ↑

Claims (4)

【特許請求の範囲】[Claims] (1)電源から電力変換器を介して電力供給を受は電気
車を駆動する電動機と、電動機からの回生電力を電力変
換器を介して電源に回生ずることによシ制動力を得る電
気的制動手段と、電気車に機械的に制動力を与える機械
的制動手段ζ、制動力を指令する制動指令を出力すると
共に機械的制動手段に直接的に制動動作を行なわせる指
令手段と、電気的制動手段の制動力Ω制限条件を検出す
る釉]限検出手段と、制限検出手段の出力に応じて制動
指令に対する電気的制動手段の動作条件を変更する演算
手段を備えることを特徴とする電気車制動装置。
(1) An electric motor that receives power from a power source via a power converter to drive an electric car, and an electric motor that obtains braking force by regenerating regenerative power from the motor to the power source via a power converter. A braking means, a mechanical braking means ζ that mechanically applies braking force to the electric vehicle, a command means that outputs a braking command that commands the braking force and causes the mechanical braking means to directly perform a braking operation, and an electrical An electric vehicle characterized by comprising: a limit detection means for detecting a braking force Ω limit condition of the braking means, and a calculation means for changing the operating condition of the electric braking means in response to a braking command according to the output of the limit detection means. Braking device.
(2)制限検出手段が電動機及び電力変換器の少なくと
も一方の温度を検出する温度検出手段から構成される事
を特徴とする特許請求の範囲第1項に記載の電気車制動
装置。
(2) The electric vehicle braking device according to claim 1, wherein the limit detection means comprises temperature detection means for detecting the temperature of at least one of the electric motor and the power converter.
(3)演算手段が電気的制動手段の制動力を制動指令に
対して比例的に減少させる手段から構成される事を特徴
とする特許請求の範囲第1項に記載の電気車制動装置。
(3) The electric vehicle braking device according to claim 1, wherein the calculation means comprises means for reducing the braking force of the electric braking means in proportion to the braking command.
(4)演算手段が電気制動手段の制動力を制動指令に対
して等差的に減少させる手段から構成される事を特徴と
する特許請求の範囲第2項に記載の電気車制動装置。
(4) The electric vehicle braking device according to claim 2, wherein the calculating means comprises means for reducing the braking force of the electric braking means arithmetic with respect to the braking command.
JP22804682A 1982-12-28 1982-12-28 Brake device for electric motor car Pending JPS59123403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22804682A JPS59123403A (en) 1982-12-28 1982-12-28 Brake device for electric motor car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22804682A JPS59123403A (en) 1982-12-28 1982-12-28 Brake device for electric motor car

Publications (1)

Publication Number Publication Date
JPS59123403A true JPS59123403A (en) 1984-07-17

Family

ID=16870348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22804682A Pending JPS59123403A (en) 1982-12-28 1982-12-28 Brake device for electric motor car

Country Status (1)

Country Link
JP (1) JPS59123403A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230379A (en) * 1985-12-11 1987-10-09 Canon Inc Damping device for motor
JPS63118908A (en) * 1986-11-07 1988-05-23 Toyota Autom Loom Works Ltd Braking device for unmanned vehicle
JPH02303302A (en) * 1989-05-16 1990-12-17 Fuji Electric Co Ltd Power converter for ac electric vehicle and operating method thereof
JPH02303301A (en) * 1989-05-18 1990-12-17 Sanyo Electric Co Ltd Motor car
JPH0461497U (en) * 1990-10-05 1992-05-26
JPH0539101U (en) * 1992-11-05 1993-05-25 スズキ株式会社 Braking control device for electric vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230379A (en) * 1985-12-11 1987-10-09 Canon Inc Damping device for motor
JPS63118908A (en) * 1986-11-07 1988-05-23 Toyota Autom Loom Works Ltd Braking device for unmanned vehicle
JPH02303302A (en) * 1989-05-16 1990-12-17 Fuji Electric Co Ltd Power converter for ac electric vehicle and operating method thereof
JPH02303301A (en) * 1989-05-18 1990-12-17 Sanyo Electric Co Ltd Motor car
JPH0461497U (en) * 1990-10-05 1992-05-26
JPH0539101U (en) * 1992-11-05 1993-05-25 スズキ株式会社 Braking control device for electric vehicle

Similar Documents

Publication Publication Date Title
KR950015169B1 (en) Control system for induction motor driven electric car
JP2752539B2 (en) Control device for vehicle electric motor
JP3232823B2 (en) Regenerative braking control method for electric vehicles
US9321370B2 (en) Control method of electric vehicle
JP2008301598A (en) Apparatus and method for controlling vehicle, program for implementing this method, and recording medium with the program recorded therein
JPS58130703A (en) Controller for induction motor driven vehicle
JP6605031B2 (en) Electric vehicle moving direction detection
JPH0880082A (en) Controller of electric rolling stock
JPS59123403A (en) Brake device for electric motor car
JP7459752B2 (en) Regenerative control method and regenerative control device
JP4735076B2 (en) Motor control device
JP2016005291A (en) vehicle
JP3167880B2 (en) Hybrid car power generator
JPH07118841B2 (en) Braking method of electric car
WO2015001849A1 (en) Electric-vehicle braking control device
JP2003070107A (en) Motor controller for electric vehicle
JP2019083660A (en) Deceleration control device of electric automobile
JP6137045B2 (en) Vehicle drive motor control device
JPH06217406A (en) Driver for electric automobile
JP2844154B2 (en) Operation control system for electric vehicles
JP6649478B2 (en) Electric vehicle
US20240190291A1 (en) Control device for vehicle
JPH0424957B2 (en)
JP2561554B2 (en) Electric braking and auxiliary accelerators for vehicles
JP2528885B2 (en) Electric vehicle control device