JPH04236107A - Hill climbing controller for motor vehicle - Google Patents

Hill climbing controller for motor vehicle

Info

Publication number
JPH04236107A
JPH04236107A JP3017183A JP1718391A JPH04236107A JP H04236107 A JPH04236107 A JP H04236107A JP 3017183 A JP3017183 A JP 3017183A JP 1718391 A JP1718391 A JP 1718391A JP H04236107 A JPH04236107 A JP H04236107A
Authority
JP
Japan
Prior art keywords
current
limit value
current limit
detects
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3017183A
Other languages
Japanese (ja)
Inventor
Keizo Nishikawa
西川 敬三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Seisakusho KK
Original Assignee
Shikoku Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Seisakusho KK filed Critical Shikoku Seisakusho KK
Priority to JP3017183A priority Critical patent/JPH04236107A/en
Publication of JPH04236107A publication Critical patent/JPH04236107A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To enhance the climbing ability of a motor vehicle while ensuring safety. CONSTITUTION:A current detector 4 is inserted into a control circuit and current supply is controlled such that the detected current does not exceed a limit level (I) being set for the purpose of protection of control machine and the limit level (I) is lowered when an inclination angle detector 5 detects a specific angle (alpha) which may cause trouble in safety traveling. Current is normally fed upto the limit level (I) which is set at a maximum level within safety range of the control machine thus realizing quick traveling. When a motor vehicle travels on a hill with the specific angle (alpha) which may cause trouble in safety traveling, the inclination angle detector 5 detects the fact and lowers the limit level (I) thus ensuring safety.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、電動車椅子等の電動
車に関するものであって、電動車の登坂性能の向上と安
全性の確保とを合わせて具現しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electric vehicles such as electric wheelchairs, and is intended to improve the hill-climbing performance of electric vehicles and ensure safety.

【0002】0002

【従来の技術】電動車にあっては過負荷時における過電
流から制御機器を保護する為一般的に供給電流の制限を
行っている。しかしながら、この供給電流によって駆動
トルクが決定される為、この電流制限値を低く設定する
と、該電流制限値を越える過負荷状態の登坂走行時にそ
の走行速度が極端に低下し走行性能が劣るものであり、
又、この電流制限値を制御機器が破損しない範囲で最高
に設定すると登坂走行時において走行速度の低下が少な
く走行性能は向上するが、同時に最大登坂角度も大きく
なり、特に電動車椅子等の小型車輌にあっては機体バラ
ンスを失う恐れが増大するものである。
2. Description of the Related Art In electric vehicles, supply current is generally limited in order to protect control equipment from overcurrent during overload. However, since the drive torque is determined by this supplied current, if this current limit value is set low, the running speed will be extremely reduced when driving uphill with an overload that exceeds the current limit value, resulting in poor running performance. can be,
In addition, if this current limit value is set to the highest value within the range that does not damage the control equipment, the running speed will not decrease when running uphill and the running performance will improve, but at the same time the maximum climbing angle will also increase, which is particularly difficult for small vehicles such as electric wheelchairs. In this case, the risk of losing the balance of the aircraft increases.

【0003】0003

【発明が解決しようとする課題】この発明は、上記の如
き従来技術の欠点を解消し、安全走行に支障のない一定
角度までの登坂走行にあっては、速度低下を少なくして
迅速に走行させ、又、機体バランス上安全走行に支障の
ある一定角度以上の登坂走行にあっては安全性を優先さ
せる制御を行わせようとするものである。
[Problems to be Solved by the Invention] The present invention solves the drawbacks of the prior art as described above, and makes it possible to quickly run with less speed reduction when climbing uphill up to a certain angle that does not hinder safe driving. In addition, when the vehicle is climbing a hill at a certain angle or more, which poses a problem to safe travel due to the balance of the aircraft, control is performed to give priority to safety.

【0004】0004

【課題を解決するための手段】電源1からの電流を駆動
トランジスタ2を介してモータ3へ印加して走行する電
動車において、制御回路中に供給電流を検出する電流検
出器4を設け該電流検出器4が制御機器保護の為設定さ
れる電流制限値(I)以上を検出した際に駆動パルスの
割合であるデューティ比を下げて供給電流を電流制限値
(I)以下に制御可能に構成すると共に、走行路面の傾
斜角度検出装置5が一定角度(α)以上の登坂走行を検
出した際に、上記電流制限値(I)を低下補正すること
を特徴とする電動車の登坂制御装置の構成とする。
[Means for Solving the Problems] In an electric vehicle that runs by applying current from a power source 1 to a motor 3 via a drive transistor 2, a current detector 4 for detecting a supplied current is provided in a control circuit to detect the current. When the detector 4 detects a current exceeding the current limit value (I) set for protection of control equipment, the duty ratio, which is the ratio of drive pulses, is lowered to control the supplied current to below the current limit value (I). At the same time, the hill climbing control device for an electric vehicle is characterized in that when the running road surface inclination angle detection device 5 detects running uphill at a certain angle (α) or more, the current limit value (I) is corrected to decrease. composition.

【0005】[0005]

【発明の作用効果】通常走行時にあっては、制御機器が
破損しない範囲で最大に設定される電流制限値(I)ま
で電流を供給でき、安全走行に支障のない一定角度(α
)以下の登坂走行にあっては大きなトルクで駆動し、速
度の低下を少なくして迅速な走行が行えるものであり、
又、機体バランス上安全走行に支障のある一定角度(α
)以上の登坂走行時にあっては、傾斜角度検出装置5に
よってこれを検出すると共に、上記電流制限値(I)を
低く補正し、これによって走行速度を低下させて安全性
を確保できるものである。なお、電流制限値(I)の補
正値を極端に低くして危険な角度の登坂走行を完全に停
止させてもよい。
Effects of the invention: During normal driving, current can be supplied up to the maximum current limit value (I) without damaging the control equipment, and the current can be supplied at a constant angle (α) that does not hinder safe driving.
) When driving uphill as described below, the vehicle is driven with a large torque and can be driven quickly with less reduction in speed.
Also, due to the balance of the aircraft, there is a certain angle (α
) When traveling uphill, the inclination angle detection device 5 detects this and corrects the current limit value (I) to a lower value, thereby reducing the traveling speed and ensuring safety. . Incidentally, the correction value of the current limit value (I) may be made extremely low to completely stop running uphill at a dangerous angle.

【0006】[0006]

【実施例】図例は電動車椅子に本発明を実施したもので
あって、図2は入力手段及び制御手段の接続状態を示す
ブロック図であって、6は中央演算装置としてのCPU
、7は速度指令信号発生器であって、具体的にはアクセ
ルによって回動調節される可変抵抗器によって構成され
、その出力電圧をA/D変換器を介してCPU6へ入力
する。8は変速スイッチであって、高・中・低速の三段
階の速度を選択してCPU6へ入力する。
[Embodiment] The illustrated example is an electric wheelchair in which the present invention is implemented, and FIG. 2 is a block diagram showing the connection state of input means and control means, and 6 is a CPU as a central processing unit.
, 7 is a speed command signal generator, specifically constituted by a variable resistor whose rotation is adjusted by an accelerator, and inputs its output voltage to the CPU 6 via an A/D converter. Reference numeral 8 denotes a speed change switch, which selects three speeds, high, medium, and low, and inputs the selected speed to the CPU 6.

【0007】電源1は直流バッテリであって、このバッ
テリ電圧をバッテリ電圧検出器9により検出しCPU6
へ入力して演算処理し、バッテリー残量を5連のLED
からなるバッテリメータ10により表示する。電動車の
車輪を駆動するモータ3は、前後進切替リレー11を介
して電源1へ接続され、又、前後進切替リレー11は前
進指令回路12及び後進指令回路13によってCPU6
に接続してある。
The power source 1 is a DC battery, and the battery voltage is detected by a battery voltage detector 9 and sent to the CPU 6.
The data is input to the computer, the calculation is processed, and the remaining battery level is displayed on 5 LEDs.
It is displayed by a battery meter 10 consisting of: The motor 3 that drives the wheels of the electric vehicle is connected to the power source 1 via a forward/reverse switching relay 11, and the forward/reverse switching relay 11 is connected to the CPU 6 by a forward command circuit 12 and a reverse command circuit 13.
It is connected to.

【0008】駆動トランジスタ2は、前述の速度指令信
号発生器7から入力されCPU6によって演算処理され
て出力される駆動パルス(A)によって駆動され、電源
1からの電流をモータ駆動回路14へ供給する。16は
制動トランジスタであって、同じくCPU6から出力さ
れる制動パルス(B)によって駆動されモータ駆動回路
14を閉回路に構成して発電制動作用を働かせるもので
ある。
The drive transistor 2 is driven by a drive pulse (A) that is input from the speed command signal generator 7 mentioned above, processed by the CPU 6, and output, and supplies current from the power source 1 to the motor drive circuit 14. . Reference numeral 16 denotes a braking transistor which is similarly driven by a braking pulse (B) outputted from the CPU 6, configures the motor drive circuit 14 into a closed circuit, and performs a dynamic braking operation.

【0009】15は回転数検出器であって、CPU6か
ら指令されるニュートラルパルス(N)時、即ち、モー
タ3の惰性回転によって発生する電圧を測定し、A/D
変換器を介してCPU6へ入力し走行速度を演算するも
のである。なお、上記のパルス編成列は、図3に示す如
く1サイクルが50ステップより成るものであって、そ
の1ステップは1万分の5秒(0.5ms)あたり1パ
ルス発信される駆動パルス(A)、制動パルス(B)、
ニュートラルパルス(N)のそれぞれによって歩進する
。(従って1サイクルの所要時間は25msである。)
そして、ニュートラル信号(N)は、必ず、パルス編成
列の始端又は終端に設けられており、2〜3パルス連続
させてある。
Reference numeral 15 denotes a rotation speed detector, which measures the voltage generated by the inertial rotation of the motor 3 during the neutral pulse (N) commanded by the CPU 6, and measures the voltage generated by the inertial rotation of the motor 3.
The data is input to the CPU 6 via a converter to calculate the traveling speed. As shown in FIG. 3, one cycle of the above-mentioned pulse formation train consists of 50 steps, and one step is a drive pulse (A ), braking pulse (B),
Step by step with each neutral pulse (N). (Therefore, the time required for one cycle is 25 ms.)
The neutral signal (N) is always provided at the beginning or end of the pulse formation train, and has two to three consecutive pulses.

【0010】又、図4に示す如く、パルス編成列全体に
占める駆動パルス(A)の割合をデューティ比と言いこ
のデューティ比が高い程高速走行を行うことができる。 17は負作動の電磁ブレーキであって走行中は通電によ
り制動を解除し停止中はバネ力により復帰してモータ軸
に制動力を付与する。18は温度センサであって、制御
部、特に駆動トランジスタ2近傍の温度を測定してA/
D変換器を介してCPU6へ入力し、温度上昇時にモー
タ3への供給電流を制限、又は停止させモータ3及び制
御部を保護する。
Further, as shown in FIG. 4, the ratio of the drive pulses (A) to the entire pulse train is called the duty ratio, and the higher the duty ratio, the higher the speed of the vehicle. Reference numeral 17 denotes a negative-actuating electromagnetic brake, which releases braking by applying electricity while the vehicle is running, and returns to its original state by spring force while the vehicle is stopped, applying braking force to the motor shaft. 18 is a temperature sensor that measures the temperature near the control section, especially the drive transistor 2, and
It is input to the CPU 6 via the D converter, and when the temperature rises, the current supplied to the motor 3 is limited or stopped to protect the motor 3 and the control section.

【0011】電流検出器4はモータ駆動回路14中に設
けられ、モータ3への供給電流を検出し、A/D変換器
を介してCPU6へ入力し、負荷状態を検出するもので
ある。傾斜角度検出装置5は機体適所に設ける公知の傾
斜センサーであって、その検出値をA/D変換器を介し
てCPU6へ入力する。
The current detector 4 is provided in the motor drive circuit 14 and detects the current supplied to the motor 3 and inputs it to the CPU 6 via the A/D converter to detect the load state. The inclination angle detection device 5 is a known inclination sensor provided at a suitable location on the aircraft, and inputs its detected value to the CPU 6 via an A/D converter.

【0012】次に、その作動を説明すると、アクセル操
作により速度指令信号発生器7の指令電圧がA/D変換
器を介してCPU6へ入力されると、その指令値に応じ
てCPU6から所定の割合の駆動パルス(A)と制動パ
ルス(B)とニュートラルパルス(N)が出力され、駆
動パルス(A)により駆動トランジスタ2が駆動され電
源1から供給される電流をモータ3へ印加して走行を開
始する。又、この走行開始と同時にニュートラルパルス
(N)時のモータ3の惰性回転によって生じる電圧を回
転数検出器15によって検出し、この検出値をA/D変
換器を介してCPU6へ入力して走行速度を演算し、こ
の走行速度と指令速度とを比較し、その差に応じて駆動
パルス(A)の割合であるデューティ比を変更し指令速
度にて走行する。なお、モータ駆動回路14を閉回路に
構成し発電制動を行う制動パルス(B)は、特に法定速
度が6〓/Hと決められている電動車椅子にあって、下
り坂走行時の重力加速を防止する為に、又、一定速走行
の為に重要なものである。
Next, to explain its operation, when the command voltage of the speed command signal generator 7 is input to the CPU 6 via the A/D converter by operating the accelerator, a predetermined signal is output from the CPU 6 in accordance with the command value. A proportional drive pulse (A), a braking pulse (B), and a neutral pulse (N) are output, and the drive transistor 2 is driven by the drive pulse (A), and the current supplied from the power supply 1 is applied to the motor 3 to run. Start. Also, at the same time as this running starts, the rotation speed detector 15 detects the voltage generated by the inertial rotation of the motor 3 during the neutral pulse (N), and this detected value is input to the CPU 6 via the A/D converter to start running. The speed is calculated, the running speed is compared with the commanded speed, and the duty ratio, which is the ratio of the drive pulse (A), is changed according to the difference, and the vehicle travels at the commanded speed. In addition, the braking pulse (B) that configures the motor drive circuit 14 as a closed circuit and performs dynamic braking is particularly suitable for electric wheelchairs whose legal speed is set at 6〓/H, and is used to reduce gravitational acceleration when traveling downhill. This is important for preventing this and for driving at a constant speed.

【0013】次に、登坂走行時にあっては、走行負荷が
大きく、従って検出される実速度が低下する為、上記指
令速度との比較によって駆動パルス(A)の割合である
デューティ比を徐々に高め、最終的にはニュートラルパ
ルス(N)を除く全てを駆動パルス(A)となし、更に
、この状態でモータ負荷により大電流が供給消費される
。この状態を長く続けると制御機器やモータ3が熱等に
より破損する恐れがあり、従って、これを防止する目的
で設定される電流制限値(I)に達すると、これを電流
検出器4が検出すると共にA/D変換器を介してCPU
6へ入力し、該CPU6から出力される駆動パルス(A
)の割合であるデューティ比を下げて供給電流を電流制
限値(I)以下に抑制する。又、この電流制限値(I)
は制御機器が破損しない範囲で最大に設定される為、通
常の登坂走行にあっては負荷による速度低下を極力少な
くして迅速な走行が行える。
Next, when running uphill, the running load is large and the detected actual speed decreases, so the duty ratio, which is the ratio of the drive pulse (A), is gradually adjusted by comparing it with the commanded speed. Finally, all pulses except the neutral pulse (N) are used as drive pulses (A), and in this state, a large current is supplied and consumed by the motor load. If this state continues for a long time, the control equipment and motor 3 may be damaged due to heat, etc. Therefore, when the current limit value (I) set for the purpose of preventing this is reached, the current detector 4 detects this. At the same time, the CPU via the A/D converter
The drive pulse (A
) to suppress the supplied current to below the current limit value (I). Also, this current limit value (I)
is set to the maximum value within a range that does not damage the control equipment, so during normal uphill driving, speed reduction due to load is minimized and speedy driving is possible.

【0014】この様に電流制限値(I)を比較的高く設
定してある為、軽量小型の電動車椅子にあっては機体バ
ランス上安全走行に支障のある一定角度(α)以上の走
行も可能であり極めて危険である。この様な状態になる
と、傾斜角度検出装置5が一定角度(α)以上を検出す
ると共にA/D変換器を介してCPU6へ入力し、CP
U6からの演算指令に基づいて電流制限値(I)を低く
補正する。従ってモータ3への供給電流が制限され、駆
動トルクが低下すると共に走行速度が遅くなり安全に走
行できる。なお、この制御される走行速度を実走行に供
し得ない程度に遅くすれば危険な角度の登坂を防止でき
る。
[0014] Since the current limit value (I) is set relatively high in this way, it is possible for a light and small electric wheelchair to travel at a certain angle (α) or more, which would impede safe travel due to body balance. and is extremely dangerous. In such a state, the inclination angle detection device 5 detects a certain angle (α) or more and inputs it to the CPU 6 via the A/D converter.
The current limit value (I) is corrected to a lower value based on the calculation command from U6. Therefore, the current supplied to the motor 3 is limited, the drive torque is reduced, and the running speed is slowed down, allowing safe running. Incidentally, climbing at a dangerous angle can be prevented by slowing down the controlled running speed to a level that cannot be used for actual running.

【0015】上記の制御結果を示すと図5の如くであっ
て、走行路面の傾斜角度に対し、比較の為電流制限値(
I)を35A(アンペア)に設定した場合のフルスロッ
トル時の走行速度の変化を(X)で示し、同様に本発明
の実施例である電流制限値(I)を40Aに設定した場
合の走行速度の変化を(Y)で示し、更に、走行に支障
のある一定角度(α)を18°に設定すると共にこの一
定角度(α)を越えた際の電流制限値(I)の補正値を
35Aに設定した場合の走行速度の変化を(Z)で示し
てある。
The above control results are shown in FIG. 5, and for comparison, the current limit value (
(X) shows the change in running speed at full throttle when I) is set to 35A (ampere), and similarly the running speed when the current limit value (I) is set to 40A, which is an embodiment of the present invention. The change in speed is indicated by (Y), and the fixed angle (α) that hinders running is set to 18°, and the correction value of the current limit value (I) when this fixed angle (α) is exceeded is The change in running speed when set to 35A is shown by (Z).

【0016】同様に、電流制限値(I)が35A時のモ
ータ供給電流の変化を(XI)、電流制限値(I)が4
0A時のモータ供給電流の変化を(YI)で示し、更に
、電流制限値(I)を40Aから35Aに補正した際の
モータ供給電流の変化を(ZI)で示してある。同様に
、それぞれの駆動パルス(A)の割合であるデューティ
比の変化を(XD),(YD),(ZD)で示し図6に
記載する。
Similarly, the change in motor supply current when the current limit value (I) is 35A is expressed as (XI), and the change in the motor supply current when the current limit value (I) is 4A.
The change in the motor supply current at 0A is shown as (YI), and the change in the motor supply current when the current limit value (I) is corrected from 40A to 35A is shown as (ZI). Similarly, changes in the duty ratio, which is the ratio of each drive pulse (A), are shown as (XD), (YD), and (ZD) and are shown in FIG.

【0017】この結果から明らかな如く、電流制限値(
I)を40Aに設定し、かつ、危険防止の為の一定角度
(α)を18°に、更に電流制限値(I)の補正値を3
5Aに設定してある為、安全走行に支障のない一定角度
(α)、即ち傾斜角度18°以下では最大40Aの電流
を供給し大きなトルクで負荷による速度の低下を少なく
して迅速に走行し、機体バランス上安全走行に支障のあ
る傾斜角18°以上の登坂走行時にあっては電流制限値
(I)を35Aに補正して供給電流を抑制し走行速度を
低下させて安全性を確保できる。この制御の作動をフロ
ーチャートで示したものが図1であり、図1においては
電流制限値(I)の補正値である35Aから通常の電流
制限値(I)、即ち40Aへの復帰を傾斜角度がα−2
°(16°)になった時点で行っているが、これはハン
チング現象を防止するためである。
As is clear from this result, the current limit value (
I) is set to 40A, the constant angle (α) for danger prevention is set to 18°, and the correction value of the current limit value (I) is set to 3.
Since it is set to 5A, at a certain angle (α) that does not interfere with safe driving, that is, at an inclination angle of 18° or less, a maximum current of 40A is supplied, and the large torque reduces the speed drop due to load and runs quickly. When traveling uphill with an inclination angle of 18° or more, which may impede safe travel due to aircraft balance, the current limit value (I) can be corrected to 35A to suppress the supplied current and reduce the traveling speed to ensure safety. . Figure 1 is a flowchart showing the operation of this control. is α−2
This is done when the temperature reaches 16°, and this is to prevent the hunting phenomenon.

【0018】なお、温度センサ18による電流制限は、
傾斜角度の小さい登坂走行にあってもこの登坂走行が長
時間継続すると供給電流が比較的低くいにもかかわらず
制御機器が発熱する恐れがあり、これを防止する為に用
いられるものである。又、実施例にあっては傾斜角度検
出装置5を機体に取付ける傾斜センサによって構成して
あるが、電流制限値(I)による制御作動時のデューテ
ィ比と速度との関係から一定角度(α)をCPU6によ
って演算する方法でもよい。
Note that the current limitation by the temperature sensor 18 is as follows:
Even when traveling uphill with a small inclination angle, if the uphill traveling continues for a long time, there is a risk that the control equipment will generate heat even though the supplied current is relatively low, and this is used to prevent this. In addition, in the embodiment, the tilt angle detection device 5 is constituted by a tilt sensor attached to the aircraft body, but due to the relationship between the duty ratio and speed during control operation based on the current limit value (I), a constant angle (α) is used. Alternatively, the CPU 6 may calculate.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】制御動作を示すフローチャート図である。FIG. 1 is a flowchart showing a control operation.

【図2】制御ブロック図である。FIG. 2 is a control block diagram.

【図3】パルス編成列を示す図である。FIG. 3 is a diagram showing a pulse organization train.

【図4】パルス編成列におけるデューティ比を示す図で
ある。
FIG. 4 is a diagram showing a duty ratio in a pulse formation train.

【図5】走行路面の傾斜角度に対応して制御される供給
電流と実速度の変化を示す図である。
FIG. 5 is a diagram showing changes in supply current and actual speed that are controlled in accordance with the inclination angle of the running road surface.

【図6】走行路面の傾斜角度に対応して制御されるデュ
ーティ比の変化を示す図である。
FIG. 6 is a diagram showing changes in the duty ratio that is controlled in response to the inclination angle of the road surface.

【符号の説明】[Explanation of symbols]

1  電源 2  駆動トランジスタ 3  モータ 4  電流検出器 5  傾斜角度検出装置 I  電流制限値 α  一定角度 1 Power supply 2 Drive transistor 3 Motor 4 Current detector 5 Inclination angle detection device I Current limit value α Fixed angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電源(1)からの電流を駆動トランジ
スタ(2)を介してモータ(3)へ印加して走行する電
動車において、制御回路中に供給電流を検出する電流検
出器(4)を設け該電流検出器(4)が制御機器保護の
為設定される電流制限値(I)以上を検出した際に駆動
パルスの割合であるデューティ比を下げて供給電流を電
流制限値(I)以下に制御可能に構成すると共に、走行
路面の傾斜角度検出装置(5)が一定角度(α)以上の
登坂走行を検出した際に、上記電流制限値(I)を低下
補正することを特徴とする電動車の登坂制御装置。
[Claim 1] In an electric vehicle that runs by applying current from a power source (1) to a motor (3) via a drive transistor (2), a current detector (4) detects a supplied current in a control circuit. When the current detector (4) detects a current exceeding the current limit value (I) set for protection of control equipment, the duty ratio, which is the ratio of drive pulses, is lowered to reduce the supplied current to the current limit value (I). The current limit value (I) is configured to be controllable as follows, and is characterized in that when the driving road surface inclination angle detection device (5) detects running uphill by a certain angle (α) or more, the current limit value (I) is corrected to lower the current limit value (I). A hill climbing control device for electric vehicles.
JP3017183A 1991-01-16 1991-01-16 Hill climbing controller for motor vehicle Pending JPH04236107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017183A JPH04236107A (en) 1991-01-16 1991-01-16 Hill climbing controller for motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3017183A JPH04236107A (en) 1991-01-16 1991-01-16 Hill climbing controller for motor vehicle

Publications (1)

Publication Number Publication Date
JPH04236107A true JPH04236107A (en) 1992-08-25

Family

ID=11936832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017183A Pending JPH04236107A (en) 1991-01-16 1991-01-16 Hill climbing controller for motor vehicle

Country Status (1)

Country Link
JP (1) JPH04236107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078576A (en) * 2007-09-25 2009-04-16 Honda Motor Co Ltd Motor-driven two wheeler
WO2017162488A1 (en) * 2016-03-22 2017-09-28 Robert Bosch Gmbh Method and device for predicatively actuating an electric motor in order to reduce the risk of a wheelchair overturning
WO2017162487A1 (en) * 2016-03-22 2017-09-28 Robert Bosch Gmbh Method and device for controlling an electric motor for expanded balancing support of a wheelchair

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078576A (en) * 2007-09-25 2009-04-16 Honda Motor Co Ltd Motor-driven two wheeler
WO2017162488A1 (en) * 2016-03-22 2017-09-28 Robert Bosch Gmbh Method and device for predicatively actuating an electric motor in order to reduce the risk of a wheelchair overturning
WO2017162487A1 (en) * 2016-03-22 2017-09-28 Robert Bosch Gmbh Method and device for controlling an electric motor for expanded balancing support of a wheelchair

Similar Documents

Publication Publication Date Title
JP5473020B2 (en) Electric drive vehicle
US8523296B2 (en) Electric drive vehicle
US6232729B1 (en) Motor control device for an electric vehicle capable of preventing a battery of the vehicle from being overcharged
JP4820243B2 (en) Automotive control device
JP3200885B2 (en) Battery-compatible electric vehicle controller
MXPA04002618A (en) Reversible dc motor drive including a dc/dc converter and four quadrant dc/dc controller.
JP3000858B2 (en) Electric car control device
EP0870641B1 (en) Performance event sensing for control of electric motor driven golf car
US5642023A (en) Method and apparatus for the electronic control of electric motor driven golf car
JPH09242579A (en) Prime mover control device
GB2105493A (en) Vehicle propulsion control apparatus and method
JPH04236107A (en) Hill climbing controller for motor vehicle
JP2000125406A (en) Electric rolling stock controller
JP2001245406A (en) Driving equipment for forklift
JP3110233B2 (en) Electric vehicle control device
JP3475799B2 (en) Electric vehicle traveling control device
KR20040028374A (en) Slip exclusion apparatus of electric vehicle and method thereof
JP2835055B2 (en) Electric car control device
JPS6171275A (en) Motor power steering system
JP2003134611A (en) Drive control device for electric vehicle
JPS63114507A (en) Control method of vehicle
JPH02228204A (en) Speed control device of electric motor car
JPH05292611A (en) Travel controller for motor
JPH04208004A (en) Stop controller for motor car
JP4466542B2 (en) Vehicle drive control device