JP3475799B2 - Electric vehicle traveling control device - Google Patents

Electric vehicle traveling control device

Info

Publication number
JP3475799B2
JP3475799B2 JP21811098A JP21811098A JP3475799B2 JP 3475799 B2 JP3475799 B2 JP 3475799B2 JP 21811098 A JP21811098 A JP 21811098A JP 21811098 A JP21811098 A JP 21811098A JP 3475799 B2 JP3475799 B2 JP 3475799B2
Authority
JP
Japan
Prior art keywords
speed
command
current
motor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21811098A
Other languages
Japanese (ja)
Other versions
JP2000050419A (en
Inventor
幸彦 岡村
吉田  孝
健二 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP21811098A priority Critical patent/JP3475799B2/en
Publication of JP2000050419A publication Critical patent/JP2000050419A/en
Application granted granted Critical
Publication of JP3475799B2 publication Critical patent/JP3475799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、直流電動機を一定
速度に制御して、車体を低速で走行させる電動車走行制
御装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an electric vehicle traveling control device for controlling a DC motor at a constant speed to drive a vehicle body at a low speed.

【0002】[0002]

【従来の技術】近時においては、老人や障害車などの車
椅子として電動車が広く使用されるようになっている
が、この種の電動車では駆動源に直流電動機を使用し、
定速走行を行っているために直流電動機のフィードバッ
ク制御系を有しており、このフィードバック制御系は更
に走行感を滑らかにするため積分動作によって制御量を
演算する構成になっている。そのため、負荷が大きくな
れば電動機に印加する電圧または電流を大きくして一定
速度を維持するように機能させているのが通例である
が、特開平8−107602号では、過負荷等で電流が
規定値以上となれば通電を停止し、電流が規定値となれ
ば再度通電して、直流電動機を過負荷から防止してい
る。
2. Description of the Related Art Recently, electric vehicles have been widely used as wheelchairs for the elderly and disabled people. In this type of electric vehicle, a DC motor is used as a drive source.
Since the vehicle runs at a constant speed, it has a feedback control system for the DC motor, and this feedback control system is configured to calculate the control amount by an integral operation in order to further smooth the driving feeling. For this reason, it is customary to increase the voltage or current applied to the electric motor as the load increases so as to maintain a constant speed. However, in Japanese Patent Laid-Open No. 8-107602, the current is increased due to overload or the like. When the current exceeds the specified value, the power supply is stopped, and when the current reaches the specified value, the power is supplied again to prevent the DC motor from being overloaded.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな直流電動機を用いた電動車では、過負荷で電流が規
定値以上となって通電を停止している状態で過負荷が急
激に解除された場合に、過大な電流あるいは電圧が加わ
り、大きなトルクを発生している直流電動機の回転数が
急激に増加してしまうため、条件によっては電動車が予
期せずして移動するおそれがあった。
However, in an electric vehicle using such a DC motor, the overload is suddenly released in a state where the current exceeds a specified value due to the overload and the energization is stopped. In this case, an excessive current or voltage is applied, and the number of rotations of the DC motor that generates a large torque sharply increases, so that the electric vehicle may move unexpectedly depending on conditions.

【0004】本発明は、上記問題点を解決するためにな
されたもので、その目的とするところは、直流電動機の
フィードバック制御系に、過負荷等で電動機の電流が増
加した場合でも、電流を規定値に制限でき、しかも負荷
が急激に解除された場合でも、直流電動機を急激に回転
させることがないので、ブレーキ手段などの外部装置を
使用せずして安全に走行できる電動車を提供するにあ
る。
The present invention has been made to solve the above problems, and an object thereof is to provide a feedback control system for a DC motor with a current even if the current of the motor increases due to overload or the like. To provide an electric vehicle that can be safely driven without using an external device such as a braking device, because the DC motor can be limited to a specified value and the DC motor does not suddenly rotate even when the load is suddenly released. It is in.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
提案される本発明は、次のような構成になっている。す
なわち、請求項1では、アクセル操作に応じて直流電動
機を起動あるいは制動して直流電動機を回転制御するフ
ィードバック制御系を有した電動車走行制御装置におい
て、直流電動機の回転速度を検出する速度検出手段と、
アクセル操作に応じて、指令速度を出力させる指令速度
発生手段と、速度検出手段による検出速度と指令速度と
の偏差を積分した積分演算値を制御量として含み、その
制御量に基づいて算出した指令電圧を電動機制御系に出
力させる速度制御手段と、直流電動機の電機子電流を検
出する電流検出手段と、電流判定手段とを備えており、
電流判定手段は、速度検出手段が検出した検出速度と、
電流検出手段が検出した電機子電流とを受けて、電動機
の運転状態を判別し、電機子電流が所定レベルを越えた
ときには、速度制御手段による積分動作を停止し、その
ときの制御量を更に増加、減少あるいは固定させるとと
もに、指令速度発生手段による指令速度も増加、減少あ
るいは固定させるようにしている。
The present invention proposed to achieve the above object has the following constitution. That is, in claim 1, in the electric vehicle traveling control device having the feedback control system for controlling the rotation of the DC motor by starting or braking the DC motor according to the accelerator operation, the speed detecting means for detecting the rotation speed of the DC motor. When,
A command speed generation means for outputting a command speed according to an accelerator operation, and an integrated calculation value obtained by integrating the deviation between the detected speed by the speed detection means and the command speed as a control amount, and a command calculated based on the control amount The speed control means for outputting the voltage to the electric motor control system, the current detection means for detecting the armature current of the DC motor, and the current determination means,
The current determination means is a detection speed detected by the speed detection means,
In response to the armature current detected by the current detection means, the operating state of the electric motor is determined. When the armature current exceeds a predetermined level, the speed control means stops the integral operation, and the control amount at that time is further reduced. In addition to increasing, decreasing or fixing, the command speed generated by the command speed generating means is also increased, decreased or fixed.

【0006】請求項2では、請求項1において、電流判
定手段は、直流電動機が起動状態にあるときに、電機子
電流が所定レベルを越えたときには、速度制御手段によ
る積分動作を停止して、そのときの制御量を減少させ、
かつ速度指令手段から出力される指令速度も減少させる
ようにしている。請求項3によれば、請求項1におい
て、電流判定手段は、直流電動機が制動状態にあるとき
に、電機子電流が所定レベルを越えたときには、速度制
御手段による積分動作を停止して、そのときの制御量を
固定あるいは増大させ、かつ指令速度手段から出力され
る指令速度も固定あるいは増大する構成としている。
According to a second aspect of the present invention, in the first aspect, the current determining means stops the integrating operation by the speed control means when the armature current exceeds a predetermined level when the DC motor is in a starting state, The amount of control at that time is reduced,
In addition, the command speed output from the speed command means is also reduced. According to claim 3, in claim 1, when the DC motor is in a braking state, when the armature current exceeds a predetermined level, the current determination means stops the integrating operation by the speed control means, and The control amount at this time is fixed or increased, and the command speed output from the command speed means is also fixed or increased.

【0007】請求項4によれば、請求項1〜3のいずれ
かにおいて、電機子電流が所定レベルを越えたときに、
速度制御手段によって減少あるいは増大される制御量
と、指令速度発生手段によって減少あるいは増大される
指令速度の制御量のいずれもが、電機子電流のレベルに
応じて変化するようになっている。更に、請求項5によ
れば、請求項1〜4において、電流判定手段は、電機子
電流と第1の基準値、第2の基準値との大小を比較する
第1、第2の比較器を備え、この第1、第2の比較器に
よる判別結果と、速度検出手段によって検出された検出
速度とを受けて、所定の論理判断を行い、その結果を過
電流制御信号として、速度制御手段及び指令速度発生手
段に出力する構成としている。
According to claim 4, in any one of claims 1 to 3, when the armature current exceeds a predetermined level,
Both the control amount that is reduced or increased by the speed control means and the control amount of the command speed that is reduced or increased by the command speed generation means change according to the level of the armature current. Further, according to claim 5, in claims 1 to 4, the current determination means compares the armature current with the first reference value and the second reference value to determine whether they are large or small. In accordance with the discrimination results by the first and second comparators and the detected speed detected by the speed detecting means, a predetermined logical judgment is made, and the result is used as an overcurrent control signal, and the speed controlling means is provided. And the output to the command speed generation means.

【0008】[0008]

【作用】直流電動機を駆動源とした電動車では、定速走
行中に急激に大きい負荷が加わると、直流電動機のフィ
ードバック制御系は、電機子電流を増大させてトルクを
増大させるが、その時点で負荷を急激に取り除くと、直
流電動機の回転数を異常に増大させ、急激な速度上昇を
来してしまう。
In the electric vehicle using the DC motor as the drive source, when a large load is suddenly applied during constant speed running, the feedback control system of the DC motor increases the armature current to increase the torque. If the load is suddenly removed with, the rotation speed of the DC motor will be abnormally increased, resulting in a rapid increase in speed.

【0009】一方、アクセルを緩めたり、オフ操作する
と、直流電動機は発電制動となって制動し、このとき電
機子電流は反対方向に流れる。本発明では、このような
直流電動機の特性に鑑み、直流電動機に流れる電機子電
流のレベル変化や、その方向を判別することによって、
直流電動機が起動状態にあり、過負荷になっているとき
には、過電流による損傷を防止するだけでなく、負荷を
急激に取り除いても、直流電動機の急激な回転数の増大
が抑制でき、また制動状態にある場合には、電機子電流
の急激な上昇による損傷を防止できるようにしている。
On the other hand, when the accelerator is loosened or turned off, the DC motor is braked by dynamic braking, and at this time, the armature current flows in the opposite direction. In the present invention, in view of such characteristics of the DC motor, by determining the level change of the armature current flowing in the DC motor and the direction thereof,
When the DC motor is in the start-up state and is overloaded, not only is damage prevented by overcurrent prevented, but even if the load is suddenly removed, it is possible to suppress a sudden increase in the rotational speed of the DC motor, and to reduce the braking When in the state, it is possible to prevent damage due to a rapid increase in armature current.

【0010】したがって、本発明では、電動車が走行中
に負荷が加わって電機子電流が増大すると、電流判定手
段から速度制御手段及び指令速度発生手段には、電機子
電流のレベルに応じた過電流制御信号が出力され、これ
によって、速度制御手段は、検出速度と指令速度との偏
差を積分する動作を停止して、減少させた制御量に基づ
いた指令電圧を発生させ、またこれと同時に指令速度発
生手段も指令速度を減少させる。
Therefore, according to the present invention, when a load is applied while the electric vehicle is running and the armature current increases, the current determining means causes the speed control means and the command speed generating means to operate in accordance with the level of the armature current. A current control signal is output, whereby the speed control means stops the operation of integrating the deviation between the detected speed and the command speed to generate a command voltage based on the reduced control amount, and at the same time. The command speed generation means also reduces the command speed.

【0011】また、電動機が制動状態になって電機子電
流が増大すると、電流判定手段から速度制御手段及び指
令速度発生手段には、電機子電流のレベルに応じた過電
流制御信号が出力され、これによって、速度制御手段
は、検出速度と指令速度との偏差を積分する動作を停止
して、制御量を固定あるいは増大させ、またこれと同時
に指令速度発生手段は指令速度を固定あるいは増大させ
る。
Further, when the motor is in a braking state and the armature current increases, an overcurrent control signal according to the level of the armature current is output from the current determination means to the speed control means and the command speed generation means, As a result, the speed control means stops the operation of integrating the deviation between the detected speed and the command speed to fix or increase the control amount, and at the same time, the command speed generating means fixes or increases the command speed.

【0012】一方、電動車が走行中に負荷が変動して
も、電機子電流が所定レベル(後述する実施例では過電
流レベル)を越えない程度の変化であれば、電流判定手
段から出力される過電流制御信号は通常制御を指示す
る。そのため、積分量を利用した通常のフィードバック
制御となり、速度制御手段は、検出速度と指令速度との
偏差を積分した制御量に基づいて、直流電動機に加える
指令電圧を発生させ、指令速度発生手段は、指令速度が
設定速度に一致するようにして、電動機を回転駆動す
る。
On the other hand, even if the load fluctuates while the electric vehicle is running, if the change is such that the armature current does not exceed the predetermined level (the overcurrent level in the embodiment described later), the current determination means outputs it. The overcurrent control signal that indicates normal control is given. Therefore, the normal feedback control using the integration amount is performed, and the speed control means generates a command voltage to be applied to the DC motor based on the control amount obtained by integrating the deviation between the detected speed and the command speed, and the command speed generation means , The motor is driven to rotate so that the commanded speed matches the set speed.

【0013】[0013]

【発明の実施の形態】以下に、添付図を参照して、本発
明の実施例を説明する。図1には、本発明の電動車走行
制御装置の基本構成をブロック図で示している。直流電
動機Mの回転速度を速度検出器7で検出し、検出した回
転速度は速度制御器3によって指令速度と比較され、そ
の偏差を積分して得た制御量に基づいて指令電圧を電圧
制御器5に送出して直流電動機Mの回転速度を制御する
フィードバック制御系を構成している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a block diagram showing the basic configuration of the electric vehicle traveling control device of the present invention. The rotation speed of the DC motor M is detected by the speed detector 7, the detected rotation speed is compared with the command speed by the speed controller 3, and the command voltage is applied to the voltage controller based on the control amount obtained by integrating the deviation. 5 to form a feedback control system for controlling the rotation speed of the DC motor M.

【0014】1はアクセル操作に応じて、設定速度ω″
を出力する速度設定手段をなす速度設定器、2は指令速
度発生手段をなす指令速度発生器で、中央演算器(CP
U)とメモリ(ROM,RAM)等で構成され、記憶及
び演算機能を有し、設定速度ω″と電流判定手段を構成
する電流判定器6からの過電流制御信号Socに基づい
て指令速度ω′を出力する。
1 is a set speed ω ″ in accordance with the accelerator operation.
Is a speed setter serving as speed setting means for outputting the command speed generator 2 serving as command speed generating means.
U) and memory (ROM, RAM) and the like, which has a storage and calculation function, and has a command speed ω based on a set speed ω ″ and an overcurrent control signal Soc from the current determiner 6 which constitutes the current judging means ′ Is output.

【0015】速度制御器3は速度制御手段をなし、指令
速度ω′、直流電動機Mの検出速度ω、電流判定器6か
ら出力される過電流制御信号Socに基づいて、その制
御量を演算し,直流電動機Mへの指令電圧V′を発生す
る。電圧制御手段をなす電圧制御器5は基準電圧Vin
を有し、PWM制御により、指令電圧V′に応じた電圧
Vmを直流電動機Mに印加しており、速度検出手段をな
す速度検出器7はタコジェネレータ、あるいはエンコー
ダとF/V変換器等で構成されており、直流電動機Mの
回転速度ωmを検出速度ωに変換して速度制御器3に入
力している。
The speed controller 3 constitutes a speed control means and calculates a control amount thereof based on the command speed ω ', the detected speed ω of the DC motor M, and the overcurrent control signal Soc output from the current determiner 6. , Generates a command voltage V'to the DC motor M. The voltage controller 5 forming the voltage control means has a reference voltage Vin.
A voltage Vm corresponding to the command voltage V'is applied to the DC motor M by PWM control, and the speed detector 7 forming speed detecting means is a tacho generator, an encoder and an F / V converter, or the like. It is configured so that the rotation speed ωm of the DC motor M is converted into a detection speed ω and is input to the speed controller 3.

【0016】電流検出手段をなす電流検出器4は、直流
電動機Mの電機子電流Imをシャント抵抗器8で取り出
し、増幅して検出電流Iを求め、電流判定器6へ出力し
ており、電流判定器6では、検出速度ω、検出電流Iと
基準電流との判別結果に基づいて過電流制御信号Soc
を出力している。図2は、電流判定手段の一例を示して
いる。
The current detector 4 forming the current detecting means takes out the armature current Im of the DC motor M with the shunt resistor 8, amplifies it to obtain the detected current I, and outputs it to the current determiner 6, The determiner 6 determines the overcurrent control signal Soc based on the determination result of the detection speed ω, the detection current I and the reference current.
Is being output. FIG. 2 shows an example of the current determination means.

【0017】この電流判定手段6は、第1の比較器CO
MP1と第2の比較器COMP2を有しており、第1の
比較器COMP1は、検出電流Iの絶対値と、基準電流
Iref1とを比較し、第2の比較器COMP2では、
検出電流Iの絶対値と基準電流Iref2とを比較して
おり、それらの比較結果S1、S2と、検出速度ωの
正、負の判断結果との組み合わせから判定器60によっ
て図3に示したような論理判断を行って、過電流制御信
号Socを出力する構成としている。
The current judging means 6 is a first comparator CO.
MP1 and the second comparator COMP2 are included. The first comparator COMP1 compares the absolute value of the detection current I with the reference current Iref1, and the second comparator COMP2
The absolute value of the detection current I is compared with the reference current Iref2, and the combination of the comparison results S1 and S2 and the positive and negative determination results of the detection speed ω is used as shown in FIG. It is configured to perform the logical determination and output the overcurrent control signal Soc.

【0018】ここに、過電流制御信号Socは、通常、
固定、減少(変化率小)、減少(変化率大)を指定して
おり、通常の場合には、指令速度発生器2は、設定速度
ω″に一致するように指令速度ω′を緩やかに変化さ
せ、速度制御器3は、検出速度ωと指令速度ω′との偏
差を積分した積分演算値(PI制御の場合には、検出速
度と指令速度との偏差を数倍した演算値が更に加算され
る)を制御量とし、その制御量に基づいて指令電圧V′
を発生する。
Here, the overcurrent control signal Soc is usually
Fixed, decrease (small change rate), and decrease (large change rate) are specified. In the normal case, the command speed generator 2 gradually changes the command speed ω ′ so as to match the set speed ω ″. The speed controller 3 changes the integral calculation value obtained by integrating the deviation between the detected speed ω and the command speed ω ′ (in the case of PI control, the calculated value obtained by multiplying the deviation between the detected speed and the command speed by several times). Is added) and the command voltage V'is based on the control amount.
To occur.

【0019】また、固定の場合には、指令速度発生器2
は、指令速度ω′を変化させずに固定し、速度制御器3
は、検出速度ωと指令速度ω′との偏差を積分する動作
を停止して、そのときの制御量(PI制御の場合には、
検出速度と指令速度との偏差を数倍した演算値が更に加
算される)に基づいて指令電圧V′を発生する。一方、
減少(変化率小)の場合には、指令速度発生器2は、指
令速度ω′を所定の変化率ωΔ1で低下させ、速度制御
器3は、検出速度ωと指令速度ω′との偏差を積分する
動作を停止し、そのときの制御量から更に所定の変化率
IintΔ1で減少させた値を制御量として、その制御
量に基づいた指令電圧V′を発生する。
When fixed, the command speed generator 2
Is fixed without changing the command speed ω ′, and the speed controller 3
Stops the operation of integrating the deviation between the detected speed ω and the commanded speed ω ′, and the control amount at that time (in the case of PI control,
The command voltage V'is generated based on the calculated value obtained by multiplying the deviation between the detected speed and the command speed by several times. on the other hand,
In the case of a decrease (small change rate), the command speed generator 2 decreases the command speed ω ′ at a predetermined change rate ωΔ1, and the speed controller 3 determines the deviation between the detected speed ω and the command speed ω ′. The operation of integrating is stopped, and a value further reduced by a predetermined change rate IintΔ1 from the control amount at that time is used as a control amount, and a command voltage V ′ based on the control amount is generated.

【0020】また、減少(変化率大)の場合には、指令
速度発生器2は、指令信号ω′を、ωΔ1よりも大きい
所定の変化率ωΔ2で低下させ、速度制御器3は、検出
速度ωと指令速度ω′との偏差を積分する動作を停止し
て、そのときの制御量から、更に変化率IintΔ1よ
りも大きい所定の変化率IintΔ2で減少させた値を
制御量として、その制御量に基づいた指令電圧V′を発
生する。
In the case of a decrease (large change rate), the command speed generator 2 decreases the command signal ω'at a predetermined change rate ωΔ2 larger than ωΔ1, and the speed controller 3 detects the detected speed. The operation of integrating the deviation between ω and the command speed ω ′ is stopped, and the control amount is a value obtained by further reducing the control amount at that time by a predetermined change rate IintΔ2 larger than the change rate IintΔ1. A command voltage V'based on the above is generated.

【0021】電流判定器6では、電動車が前進し、検出
速度ωが正になっている場合には、図3の表(a)、検
出速度ωが負になっている場合には、図3の表(b)の
論理判断を行っている。つまり、電機子電流Iの正、負
によって、電動機Mの運転状態、つまり駆動、制動の判
別結果と、第1、第2の比較器COMP1,2の判断結
果S1、S2との組み合わせに応じて、過電流制御信号
Socを規定している。
In the current judging device 6, when the electric vehicle moves forward and the detected speed ω is positive, the table (a) of FIG. 3 is shown. When the detected speed ω is negative, The logical judgment of Table (b) of 3 is made. That is, depending on whether the armature current I is positive or negative, the operating state of the electric motor M, that is, the determination result of driving or braking and the determination results S1 and S2 of the first and second comparators COMP1 and COMP2 are combined. , The overcurrent control signal Soc is defined.

【0022】図4には電動車が定速度で走行中に負荷を
加えた場合の各信号の変化をタイムチャートで示してお
り、図3の表(a)の電機子電流Iが正の場合における
論理判断を実行した例を示している。(a)は負荷、
(b)は電機子電流I、(c)は設定速度ω″と速度指
令ω′、(d)は速度制御器3において積分され、指令
電圧V′を発生させるための制御量Iintを示してい
る。
FIG. 4 is a time chart showing a change in each signal when a load is applied while the electric vehicle is running at a constant speed, and when the armature current I in the table (a) of FIG. 3 is positive. 7 shows an example in which the logical judgment in FIG. (A) is the load,
(B) shows the armature current I, (c) shows the set speed ω ″ and the speed command ω ′, and (d) shows the control amount Iint to be integrated by the speed controller 3 to generate the command voltage V ′. There is.

【0023】電動車に大きな負荷が加わると、このとき
電動機は起動状態にあるので、電機子電流Iは、図4の
(b)に示したように急激に正の方向に増大する。電機
子電流Iが過電流レベルIref1を越えると、電流判
定器6は減少(変化率:小)となる過電流制御信号So
cを出力し、電機子電流が更に過電流危険レベルIre
f2を越えると、電流判定器6は減少(変化率:大)と
なる過電流制御信号Socを出力する。
When a large load is applied to the electric vehicle, the motor is in a starting state at this time, so that the armature current I rapidly increases in the positive direction as shown in FIG. 4 (b). When the armature current I exceeds the overcurrent level Iref1, the current determiner 6 decreases (rate of change: small) overcurrent control signal So.
c is output, and the armature current is further overcurrent danger level Ire
When f2 is exceeded, the current determiner 6 outputs the overcurrent control signal Soc that decreases (change rate: large).

【0024】速度制御器3は、減少(変化率:小)とな
る過電流制御信号Socを受けると、積分動作を停止し
て、そのときの制御量を予め設定されているIintΔ
1で減少させ、指令速度発生器2は、指令速度ω′を変
化率ω′Δ1で減少させる(以上、図4の区間B参
照)。また、指令速度発生器2は、減少(変化率:大)
となる過電流制御信号Socを受けると、積分動作を停
止して、そのときの積分演算量を予め設定されているI
intΔ2で減少させ、指令速度発生器2は、指令速度
ω′を変化率ω′Δ2で減少させる(以上、図4の区間
A参照)。ここに、IintΔ1<IintΔ2であ
り、ω′Δ1<ω′Δ2である。
When the speed controller 3 receives a decrease (rate of change: small) overcurrent control signal Soc, the speed controller 3 stops the integration operation, and the control amount at that time is set to a preset IintΔ.
1, the command speed generator 2 decreases the command speed ω ′ at the rate of change ω′Δ1 (see section B in FIG. 4). Also, the command speed generator 2 decreases (rate of change: large)
When the overcurrent control signal Soc that satisfies the above condition is received, the integration operation is stopped, and the integration calculation amount at that time is set to I
The command speed generator 2 decreases the command speed ω ′ at a rate of change ω′Δ2 (see section A in FIG. 4). Here, IintΔ1 <IintΔ2 and ω′Δ1 <ω′Δ2.

【0025】なお、電機子電流Iが過電流レベルIre
f1を越えない期間は、指令速度ω′は、設定速度ω″
に一致させる方向に変化し、積分動作が開始されて制御
量Iint、指令速度ω′も増大する(図4の(c),
(d)における矢符参照)。これらの結果、本発明で
は、負荷が加えられ電機子電流Iが増大し、過電流レベ
ルIref1、過電流危険レベルIref2を越える
と、制御量Iint、指令速度ω′は、それぞれに設定
された変化率IintΔ1とω′Δ1、あるいはIin
tΔ2とω′Δ2で減少するので、負荷が急激に取り除
かれたときにも、指令速度ω′、指令電圧V′がともに
抑制される。そのため、直流電動機Mは急激に回転数を
増大して、速度上昇するような事態は未然に防止され、
アクセル操作に応じた安全な走行が可能となる。
The armature current I is the overcurrent level Ire.
During the period of not exceeding f1, the command speed ω ′ is the set speed ω ″.
, The control amount Iint and the command speed ω ′ are also increased ((c) of FIG. 4,
(See arrow in (d)). As a result, in the present invention, when the load is applied and the armature current I increases and exceeds the overcurrent level Iref1 and the overcurrent danger level Iref2, the control amount Iint and the command speed ω ′ are changed respectively. The rates Iint Δ1 and ω′Δ1 or Iin
Since it decreases at tΔ2 and ω′Δ2, both the command speed ω ′ and the command voltage V ′ are suppressed even when the load is rapidly removed. Therefore, it is possible to prevent the situation in which the DC motor M rapidly increases its rotation speed and increases its speed.
It enables safe driving according to the accelerator operation.

【0026】図5には電動車を制動させた場合の各信号
の変化をタイムチャートで示しており、図3の表(a)
で電機子電流が負の場合の論理判断を実行した例を示し
ている。(a)は設定速度ω″、(b)は電機子電流
I、(c)は設定速度ω″と指令速度ω′、(d)は速
度制御器3において積分演算され、指令電圧V′を発生
させるための制御量Iintを示している。
FIG. 5 is a time chart showing changes in each signal when the electric vehicle is braked. Table (a) of FIG.
Shows an example in which the logic judgment is executed when the armature current is negative. (A) is the set speed ω ″, (b) is the armature current I, (c) is the set speed ω ″ and the command speed ω ′, and (d) is the integral calculation in the speed controller 3 to calculate the command voltage V ′. The control amount Iint for generating is shown.

【0027】アクセルを緩めると、設定速度ω″は
(a)に示したように緩やかに低下し、それに伴って電
動機Mは発電制動となるので、電機子電流Iは(b)に
示したように起動時とは反対方向に流れ、負の方向に増
大する。電機子電流Iが過電流レベルIref1を越え
ると、電流判定器6は固定となる過電流制御信号Soc
を出力し、速度制御器3は、この固定となる過電流制御
信号Socを受けると、積分動作を停止して、そのとき
の制御量を固定するので、速度制御器3は、そのときの
制御量に応じた指令電圧V′を発生する。また、このと
き指令速度発生器2も指令速度ω′をそのときの値に固
定している(以上、図5の区間C参照)。なお、電機子
電流Iが過電流レベルIref1を越えない期間は、指
令速度ω′は、設定速度ω″に一致させる方向に変化
し、積分動作が開始されて制御量も増大する(図5の
(c),(d)における矢符参照)。
When the accelerator is loosened, the set speed ω ″ gradually decreases as shown in (a), and the electric motor M is dynamically braked accordingly. Therefore, the armature current I is as shown in (b). When the armature current I exceeds the overcurrent level Iref1, the current determiner 6 becomes a fixed overcurrent control signal Soc.
When the speed controller 3 receives this fixed overcurrent control signal Soc, the speed controller 3 stops the integration operation and fixes the control amount at that time. Therefore, the speed controller 3 controls at that time. A command voltage V'corresponding to the quantity is generated. At this time, the command speed generator 2 also fixes the command speed ω ′ to the value at that time (see section C in FIG. 5). During the period in which the armature current I does not exceed the overcurrent level Iref1, the command speed ω ′ changes to match the set speed ω ″, the integral operation is started, and the control amount also increases (in FIG. 5). (See arrows in (c) and (d)).

【0028】これらの結果、本発明では、電動機Mが制
動状態になり、電機子電流Iが過電流レベルIref1
を越えると、指令速度ω′、指令電圧V′のそれ以上の
増大が抑制されるので、過電流による損傷が未然に防止
されるだけでなく、電動機Mの回転数も抑制され、安全
に走行できる。なお、この例では、電機子電流Iは過電
流レベルIref1より大きいレベルとなる過電流危険
レベルIref2が判別されていないが、図4の場合と
同様に、過電流危険レベルIref2(破線で示す)を
設けて、その判別処理をしてもよい。
As a result, in the present invention, the electric motor M is in the braking state and the armature current I is overcurrent level Iref1.
When the speed exceeds the limit, further increases in the command speed ω'and the command voltage V'are suppressed, so that damage due to overcurrent is prevented in advance, and the rotation speed of the electric motor M is also suppressed, so that the vehicle travels safely. it can. In this example, the overcurrent danger level Iref2, which is the armature current I higher than the overcurrent level Iref1, is not determined, but as in the case of FIG. 4, the overcurrent danger level Iref2 (indicated by a broken line). May be provided and the determination process may be performed.

【0029】図6には電動車を制動させた場合の他の制
御例をタイムチャートで示している。図7に示した表の
(a)で電機子電流Iが負の場合の論理判断を実行した
例を示している。図4と異なる点は、電機子電流が過電
流レベルIref1を越えると、電流判定器6は増加と
なる過電流制御信号Socを出力し、速度制御器3は、
増加となる過電流制御信号Socを受けると、積分動作
を停止して、そのときの制御量に更に所定の値を加えて
増大させている。また、このとき指令速度発生器2も、
指令速度ω′を所定量だけ増大させている(以上、図6
の区間D参照)。
FIG. 6 is a time chart showing another control example when the electric vehicle is braked. In the table (a) shown in FIG. 7, there is shown an example in which the logic judgment is executed when the armature current I is negative. The difference from FIG. 4 is that when the armature current exceeds the overcurrent level Iref1, the current determiner 6 outputs an increasing overcurrent control signal Soc, and the speed controller 3
When the increasing overcurrent control signal Soc is received, the integration operation is stopped, and the control amount at that time is further increased by adding a predetermined value. At this time, the command speed generator 2 also
The command speed ω ′ is increased by a predetermined amount (above, FIG.
Section D).

【0030】これらの結果、本発明では、電動機Mが制
動状態になり、電機子電流Iが過電流レベルIref1
を越えると、指令速度ω′、指令電圧V′が増大して、
制動時における過電流が抑制され、過電流による損傷が
防止される。なお、電機子電流が過電流危険レベルIr
ef2(破線で示す)を設けて、そのレベルを越えたと
きに、その判別をできるようにしてもよい。また、電機
子電流Iが過電流レベルIref1を越えない期間は、
指令速度ω′は、設定速度ω″に一致させる方向に変化
し、積分動作が開始されて制御量Iintも増大する
(図6の(c),(d)における矢符参照)。
As a result, in the present invention, the electric motor M is in the braking state, and the armature current I is overcurrent level Iref1.
When it exceeds, the command speed ω'and the command voltage V'increase,
Overcurrent during braking is suppressed and damage due to overcurrent is prevented. Note that the armature current is the overcurrent danger level Ir.
ef2 (shown by a broken line) may be provided so that the judgment can be made when the level is exceeded. Further, during a period in which the armature current I does not exceed the overcurrent level Iref1,
The command speed ω ′ changes in a direction to match the set speed ω ″, the integration operation is started, and the control amount Iint also increases (see arrows in (c) and (d) of FIG. 6).

【0031】[0031]

【発明の効果】本発明によれば、次のような効果があ
る。すなわち、請求項1,2,3によれば、直流電動機
が起動状態において電機子電流が所定レベルを越えたと
きには、アクセルの操作に応じて指令速度発生手段から
出力される指令速度と、速度制御手段から出力される指
令電圧が小さくなるので、電機子電流が抑制できる。ま
た、過負荷が解除されたときにも、電動機に過大な電圧
が印加されなくなるので、電動機の回転数を急激に増大
させることがなく、ブレーキ手段を用いなくても安全に
走行できる。
The present invention has the following effects. That is, according to claims 1, 2 and 3, when the armature current exceeds a predetermined level when the DC motor is in the activated state, the command speed output from the command speed generating means in response to the operation of the accelerator and the speed control. Since the command voltage output from the means becomes small, the armature current can be suppressed. Further, even when the overload is released, an excessive voltage is not applied to the electric motor, so that the rotational speed of the electric motor is not sharply increased, and the vehicle can travel safely without using braking means.

【0032】更に、直流電動機が制動状態において電機
子電流が所定レベルを越えたときにも、過電流が抑制さ
れるので、制動時における過電流による損傷も防止でき
る。特に、請求項2によれば、直流電動機が起動状態に
あるときに、電機子電流が所定レベルを越えたときに
は、速度制御手段による積分動作を停止して、そのとき
の制御量を減少させ、かつ速度指令手段から出力する指
令速度も減少させるので、過電流による損傷が未然に防
止でき、また負荷を急激に取り除いたときにも、直流電
動機の回転数を急激に増大させることなく、安定して走
行できる。
Further, even when the DC motor is in the braking state and the armature current exceeds a predetermined level, the overcurrent is suppressed, so that damage due to the overcurrent during braking can be prevented. In particular, according to claim 2, when the DC motor is in a starting state and the armature current exceeds a predetermined level, the integral operation by the speed control means is stopped to reduce the control amount at that time, Moreover, since the command speed output from the speed command means is also reduced, damage due to overcurrent can be prevented in advance, and even when the load is suddenly removed, the DC motor can be stabilized without rapidly increasing its rotation speed. Can run.

【0033】請求項3によれば、直流電動機が発電制動
の状態にあるときに、直流電動機の電機子電流が所定レ
ベルを越えた場合にも過電流による損傷が未然に防止で
きる。そのため、慣性負荷を減速させた場合の過電流を
規定値に制限できる。請求項4によれば、電機子電流が
所定レベルを越えたときに増加、減少させる指令速度の
増加量、減少量と、指令電圧の増加量、減少量を、電機
子電流に応じて変化させるので、細かい制御が可能とな
る。
According to the third aspect, even when the armature current of the DC motor exceeds a predetermined level when the DC motor is in the dynamic braking state, damage due to overcurrent can be prevented. Therefore, the overcurrent when the inertial load is decelerated can be limited to a specified value. According to the fourth aspect, when the armature current exceeds a predetermined level, the command speed increase / decrease amount and the command voltage increase / decrease amount are changed according to the armature current. Therefore, fine control is possible.

【0034】請求項5によれば、直流電動機の検出速度
と、電機子電流とを入力し、簡単な論理判断を行うこと
によって、過電流制御信号を出力できる簡易な構成の電
流判別手段が提供できる。
According to the present invention, there is provided a current discriminating means having a simple structure capable of outputting the overcurrent control signal by inputting the detected speed of the DC motor and the armature current and making a simple logical decision. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電動車走行制御装置の基本構成を示し
たブロック図。
FIG. 1 is a block diagram showing a basic configuration of an electric vehicle traveling control device of the present invention.

【図2】電流判定手段の概略構成を示す図。FIG. 2 is a diagram showing a schematic configuration of a current determination means.

【図3】電流判定手段における論理判断表を示す図。FIG. 3 is a diagram showing a logic judgment table in a current judgment means.

【図4】直流電動機が駆動状態で過負荷になった場合の
基本動作を示したタイムチャート。
FIG. 4 is a time chart showing a basic operation when the DC motor is overloaded in a driving state.

【図5】直流電動機が制動状態にある場合の基本動作を
示したタイムチャート。
FIG. 5 is a time chart showing a basic operation when the DC motor is in a braking state.

【図6】直流電動機が制動状態にある場合の基本動作を
示したタイムチャート。
FIG. 6 is a time chart showing a basic operation when the DC motor is in a braking state.

【図7】電流判定手段における別の論理判断表を示す
図。
FIG. 7 is a diagram showing another logical judgment table in the current judging means.

【符号の説明】[Explanation of symbols]

1 速度設定器(速度設定手段) 2 指令速度発生器(指令速度発生手段) 3 速度制御器(速度制御手段) 4 電流検出器(電流検出手段) 5 電圧制御器(電圧制御手段) 6 電流判定器(電流判定手段) 7 速度検出器(速度検出手段) ω′指令速度 ω″設定速度 Soc 過電流制御信号 V′指令電圧 1 Speed setting device (speed setting means) 2 Command speed generator (command speed generating means) 3 Speed controller (speed control means) 4 Current detector (current detection means) 5 Voltage controller (voltage control means) 6 Current judging device (current judging means) 7 Speed detector (speed detection means) ω'command speed ω ″ set speed Soc overcurrent control signal V'command voltage

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−30602(JP,A) 特開 昭59−216487(JP,A) 特開 平2−70205(JP,A) 実開 昭60−69504(JP,U) (58)調査した分野(Int.Cl.7,DB名) B60L 15/20 H02P 5/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-5-30602 (JP, A) JP-A-59-216487 (JP, A) JP-A-2-70205 (JP, A) Actual development Sho-60- 69504 (JP, U) (58) Fields surveyed (Int.Cl. 7 , DB name) B60L 15/20 H02P 5/06

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アクセル操作に応じて直流電動機を起動あ
るいは制動して、直流電動機を回転制御するフィードバ
ック制御系を有した電動車走行制御装置において、 直流電動機の回転速度を検出する速度検出手段と、 アクセル操作に応じて、指令速度を出力させる指令速度
発生手段と、 上記速度検出手段による検出速度と指令速度との偏差を
積分した積分演算値を制御量として含み、その制御量に
基づいて算出した指令電圧を出力させる速度制御手段
と、 直流電動機の電機子電流を検出する電流検出手段と、 電流判定手段とを備え、 上記電流判定手段は、速度検出手段が検出した検出速度
と、電流検出手段が検出した電機子電流とを受けて、電
動機の運転状態を判別し、電機子電流が所定レベルを越
えたときには、上記速度制御手段による積分動作を停止
し、そのときの制御量を更に増加、減少あるいは固定さ
せるとともに、上記指令速度発生手段か ら出力される指令速度も増加、減少あるいは固定させる
ようにしたことを特徴とする電動車走行制御装置。
1. An electric vehicle traveling control device having a feedback control system for controlling the rotation of a DC motor by starting or braking the DC motor according to an accelerator operation, and speed detection means for detecting a rotation speed of the DC motor. , Including a command speed generating means for outputting a command speed according to the accelerator operation, and an integral calculation value obtained by integrating the deviation between the speed detected by the speed detecting means and the command speed as a control amount, and calculating based on the control amount The speed control means for outputting the command voltage, the current detection means for detecting the armature current of the DC motor, and the current determination means, wherein the current determination means is the detection speed detected by the speed detection means and the current detection means. When the armature current exceeds a predetermined level by receiving the armature current detected by the means, the operating state of the electric motor is determined. Minute operation is stopped, and the control amount at that time is further increased, decreased or fixed, and the command speed output from the command speed generating means is also increased, decreased or fixed. Control device.
【請求項2】請求項1において、 電流判定手段は、直流電動機が起動状態にあるときに、
電機子電流が所定レベルを越えたときには、上記速度制
御手段による積分動作を停止して、そのときの制御量を
減少させ、かつ速度指令手段から出力する指令速度を減
少させるようにしている電動車走行制御装置。
2. The current determining means according to claim 1, wherein the current determining means is:
When the armature current exceeds a predetermined level, the integral operation by the speed control means is stopped, the control amount at that time is decreased, and the command speed output from the speed command means is decreased. Travel control device.
【請求項3】請求項1において、 電流判定手段は、直流電動機が制動状態にあるときに、
電機子電流が所定レベルを越えたときには、上記速度制
御手段による積分動作を停止して、そのときの制御量を
固定あるいは増大させ、かつ速度指令手段から出力する
指令速度を固定あるいは増大させるようにしている電動
車走行制御装置。
3. The current judging means according to claim 1, wherein the current judging means is provided when the DC motor is in a braking state.
When the armature current exceeds a predetermined level, the integral operation by the speed control means is stopped so that the control amount at that time is fixed or increased and the command speed output from the speed command means is fixed or increased. Electric vehicle running control device.
【請求項4】請求項1〜3のいずれかにおいて、 電機子電流が所定レベルを越えたときに、速度制御手段
によって減少あるいは増大される制御量と、速度指令手
段によって減少あるいは増大される指令速度とを、いず
れも電機子電流のレベルに応じて変化させるようにして
いる電動車走行制御装置。
4. The control amount according to any one of claims 1 to 3, when the armature current exceeds a predetermined level, the control amount reduced or increased by the speed control means and the instruction reduced or increased by the speed command means. An electric vehicle traveling control device in which both the speed and the speed are changed according to the level of the armature current.
【請求項5】請求項1〜4において、 電流判定手段は、電機子電流と第1の基準値、第2の基
準値との大小を比較する第1、第2の比較器を備え、こ
の第1、第2の比較器による判別結果と、速度検出手段
によって検出された検出速度とを受けて、所定の論理判
断を行い、その結果を過電流制御信号として、前記速度
制御手段及び指令速度発生手段に出力する構成としてい
る電動車走行制御装置。
5. The current judging means according to claim 1, further comprising first and second comparators for comparing the magnitude of the armature current with the first reference value and the second reference value. A predetermined logical judgment is made on the basis of the discrimination results by the first and second comparators and the detected speed detected by the speed detecting means, and the result is used as an overcurrent control signal, the speed controlling means and the command speed. An electric vehicle traveling control device configured to output to a generating means.
JP21811098A 1998-07-31 1998-07-31 Electric vehicle traveling control device Expired - Lifetime JP3475799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21811098A JP3475799B2 (en) 1998-07-31 1998-07-31 Electric vehicle traveling control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21811098A JP3475799B2 (en) 1998-07-31 1998-07-31 Electric vehicle traveling control device

Publications (2)

Publication Number Publication Date
JP2000050419A JP2000050419A (en) 2000-02-18
JP3475799B2 true JP3475799B2 (en) 2003-12-08

Family

ID=16714793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21811098A Expired - Lifetime JP3475799B2 (en) 1998-07-31 1998-07-31 Electric vehicle traveling control device

Country Status (1)

Country Link
JP (1) JP3475799B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571718B (en) * 2009-06-02 2012-05-09 西安交通大学 Performance detection device for energy recovery controller of electric vehicle
JP7416166B1 (en) * 2022-09-30 2024-01-17 株式会社富士通ゼネラル motor control device

Also Published As

Publication number Publication date
JP2000050419A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
JP4131079B2 (en) Inverter device and current limiting method thereof
JP4987482B2 (en) Elevator control device
JP2001251701A (en) Control device for electric car
US5677610A (en) Control apparatus for electric vehicles
JPS6223387A (en) Controller of elevator
JP7339797B2 (en) vehicle
JP3475799B2 (en) Electric vehicle traveling control device
JP3520645B2 (en) Electric vehicle control device
JP4667987B2 (en) Electric vehicle control device
JP2906636B2 (en) Inverter control device for induction motor
JPH11299012A (en) Controller of dc electric vehicle
JP3622410B2 (en) Control method of electric motor by inverter
JP2001197614A (en) Motor controller for electric motor car
JP3260071B2 (en) AC elevator control device
JP3578612B2 (en) Electric car control device
JP2879766B2 (en) Power steering device for electric wheelchair
JPH0530602A (en) Motor control circuit for motor vehicle
JPH08308283A (en) Motor speed controller
JP3382018B2 (en) Inverter device
JPH04236107A (en) Hill climbing controller for motor vehicle
JP3185419B2 (en) Induction motor control device
JP3110233B2 (en) Electric vehicle control device
JP3362830B2 (en) Crane traveling device and inverter for crane traveling device
JPH06343201A (en) Electric system for electric car
KR20040028374A (en) Slip exclusion apparatus of electric vehicle and method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9