JPH0239105B2 - - Google Patents

Info

Publication number
JPH0239105B2
JPH0239105B2 JP54115774A JP11577479A JPH0239105B2 JP H0239105 B2 JPH0239105 B2 JP H0239105B2 JP 54115774 A JP54115774 A JP 54115774A JP 11577479 A JP11577479 A JP 11577479A JP H0239105 B2 JPH0239105 B2 JP H0239105B2
Authority
JP
Japan
Prior art keywords
superconducting
copper
superconducting tape
shield
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54115774A
Other languages
Japanese (ja)
Other versions
JPS5640289A (en
Inventor
Teruo Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Priority to JP11577479A priority Critical patent/JPS5640289A/en
Publication of JPS5640289A publication Critical patent/JPS5640289A/en
Publication of JPH0239105B2 publication Critical patent/JPH0239105B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices

Description

【発明の詳細な説明】 本発明は超電導シールド組立体に関する。[Detailed description of the invention] The present invention relates to superconducting shield assemblies.

従来、超電導を利用した磁気シールドは種々提
案され実験的に用いられている。シールドすべき
磁場の強さによつてシールド作用をする原理の異
なる超電導シールドが用いられている。比較的低
い磁場のシールドには第1種超電導体のマイスナ
ー効果(Missner effect)を利用するのが最良で
あり、例えばPb、Snによつて数100ガウス以下の
磁場をシールドすることが可能である。又、第2
種超電導体の混合状態(Mixed state)における
遮蔽電流(Screening current)を利用するシー
ルドで、原理的には数10キロガウスのシールドが
可能である。本発明は後者の第2種超電導体の混
合状態の原理による磁気シールドに関するもので
ある。
Conventionally, various magnetic shields using superconductivity have been proposed and used experimentally. Superconducting shields are used that have different shielding principles depending on the strength of the magnetic field to be shielded. The best way to shield relatively low magnetic fields is to utilize the Meissner effect of type 1 superconductors; for example, it is possible to shield magnetic fields of several 100 Gauss or less using Pb and Sn. . Also, the second
This is a shield that utilizes the screening current in the mixed state of superconductors, and in principle, shielding of several tens of kilogauss is possible. The present invention relates to a magnetic shield based on the latter principle of mixed state of type 2 superconductors.

従来提案されている第2種超電導体による磁気
シールドは、第2種超電導体であるNb−Ti又は
Nb3Snからなる広幅のシートを、第1図に示す
如く所謂「スイス・ロール(Swiss roll)」の形
に巻きつけるか、第2図に示す如く多層に積層し
た半円筒状のものを向い合せて組み立てて円筒状
シールドを形成した構造のものである。しかしな
がら、このような構造の磁気シールドは次のよう
な欠点を有することが知られている: (1) 長尺体又は内径の大なる円筒状シールドを形
成するためには、広幅の超電導体シートを必要
とすること。しかるに広幅の超電導体シートは
特別に用意しなければ入手が容易でないが、特
にNb3Sn(Nb3Snの方がNb−Tiよりも高磁場
までシールドし得る)のシートを製作すること
は、脆性の高いNb3Snの性質からみて殆んど困
難である。Nb−Tiの場合は比較的広幅のシー
トを製作することが可能であるが、良好な磁気
シールド特性を得るために必要な銅又はアルミ
ニウムのコーテイングを特別に施さなければな
らない煩雑さが伴うものである。
Conventionally proposed magnetic shields using type 2 superconductors include Nb-Ti or type 2 superconductors.
A wide sheet made of Nb3Sn is wound into a so-called "Swiss roll" shape as shown in Figure 1, or semi-cylindrical sheets stacked in multiple layers are placed facing each other as shown in Figure 2. It has a structure in which it is assembled to form a cylindrical shield. However, it is known that magnetic shields with this structure have the following drawbacks: (1) In order to form a long body or a cylindrical shield with a large inner diameter, a wide superconductor sheet is required. to require. However, it is not easy to obtain wide superconductor sheets without special preparation, but it is especially difficult to produce sheets of Nb 3 Sn (Nb 3 Sn can shield up to higher magnetic fields than Nb-Ti). Considering the highly brittle nature of Nb 3 Sn, it is almost difficult to do so. In the case of Nb-Ti, it is possible to manufacture a relatively wide sheet, but this requires the special coating of copper or aluminum required to obtain good magnetic shielding properties, which is complicated. be.

(2) 磁気シールドを構成している個々の超電導シ
ールドは磁場の圧力による力を受けるが、この
力による変形や変位の結果生ずる磁気シールド
特性悪化〔フラツクス ジヤンプ(Flux
jump)と言い円筒内部の磁束が急激に侵入し
てシールド不能になる〕等を防止するための完
壁な対策が講じられていない。
(2) The individual superconducting shields that make up the magnetic shield are subjected to force due to the pressure of the magnetic field, but deformation and displacement due to this force result in deterioration of the magnetic shield characteristics [flux jump].
No perfect measures have been taken to prevent the sudden intrusion of magnetic flux inside the cylinder and the shielding becoming impossible.

本発明は、前述の如き諸欠点を改善すべく研究
の結果開発に成功したものであり、従つて本発明
の目的は上述のような従来の磁気シールドの欠点
を解消してフラツクスジヤンプのような磁気的不
安定性の発生を防止でき、超電導テープの電磁力
による動きや磁気応力による変形を防止できしか
も熱伝導度及び熱容量の大きな超電導シールド組
立体を提供することにある。この目的を達成する
ために、本発明による超電導シールド組立体は、
中空芯材上に超電導層をもつ積層超電導テープを
スパイラル状に巻き付け、該積層超電導テープ・
ターン間の間〓が相隣る積層超電導テープ層にお
けるターン間の間〓と重複しない配置とし、かつ
各積層超電導テープ層間に高純度金属箔を介在さ
せて組立体とし、該組立体を低融点金属で含浸し
たことを特徴としている。
The present invention was successfully developed as a result of research to improve the above-mentioned drawbacks. Therefore, the purpose of the present invention is to eliminate the above-mentioned drawbacks of conventional magnetic shielding and to solve problems such as flux jump. It is an object of the present invention to provide a superconducting shield assembly that can prevent the occurrence of magnetic instability, prevent movement of a superconducting tape due to electromagnetic force, and deformation due to magnetic stress, and has high thermal conductivity and heat capacity. To achieve this objective, the superconducting shield assembly according to the invention comprises:
A laminated superconducting tape having a superconducting layer is wound spirally around a hollow core material, and the laminated superconducting tape/
The space between turns is arranged so that it does not overlap with the space between turns in adjacent laminated superconducting tape layers, and a high-purity metal foil is interposed between each laminated superconducting tape layer to form an assembly. It is characterized by being impregnated with metal.

中空芯材はステンレス鋼、銅、銅合金、アルミ
ニウム又はアルミニウム合金から成り得る。
The hollow core can be made of stainless steel, copper, copper alloy, aluminum or aluminum alloy.

また、高純度金属箔は銅又はアルミニウムから
成り得る。
Also, the high purity metal foil can be made of copper or aluminum.

さらに、含浸用低融点金属は半田、インジウ
ム、ウツドメタルから成り得る。
Furthermore, the low melting point metal for impregnation can consist of solder, indium, wood metal.

本発明の一具体例を示す第3図及び第4図に基
いて更に詳述する。この具体例は円筒状シールド
に本発明を適用した場合であり、超電導マグネツ
ト用として標準的に市販されている超電導テープ
を使用したものである。
A specific example of the present invention will be explained in further detail based on FIGS. 3 and 4, which show one specific example of the present invention. This specific example is a case where the present invention is applied to a cylindrical shield, and a superconducting tape that is commercially available as a standard for use in superconducting magnets is used.

図において、2はステンレス鋼、銅、銅合金、
アルミニウム又はアルミニウム合金からなる中空
体の巻き芯、1,1′は市販の超電導テープであ
り、幅Wは4〜12.7mm程度のテープであつて、安
定化用銅メツキ又は銅箔半田付けを施してある。
3は超電導テープ1,1′間に巻き込んだ高純度
金属シートであり、銅又はアルミニウム等の箔で
ある。4は前記1,1′,2,3を巻き込んだ組
立体に含浸した低融点金属であつて、その例とし
ては半田、インジウム、ウツドメタル等を用いる
ことができる。
In the figure, 2 is stainless steel, copper, copper alloy,
The hollow cores 1 and 1' made of aluminum or aluminum alloy are commercially available superconducting tapes, with a width W of approximately 4 to 12.7 mm, and are plated with copper for stabilization or soldered with copper foil. There is.
3 is a high-purity metal sheet wound between the superconducting tapes 1 and 1', and is a foil of copper or aluminum or the like. 4 is a low melting point metal impregnated into the assembly including the above-mentioned 1, 1', 2, and 3, examples of which include solder, indium, and wood metal.

図示のものから判る通り、巻き芯2上に市販の
超電導テープ1′をスパイラル状にかつ各ターン
間に隙間5′なく第1層を巻きつけ、この第1層
の上に高純度金属箔3の一層を巻きつける。
As can be seen from the figure, a first layer of commercially available superconducting tape 1' is wound around a winding core 2 in a spiral shape with no gaps 5' between each turn, and a high-purity metal foil 3 is wrapped on top of this first layer. Wrap it in one layer.

ついで第2層の超電導テープ1をスパイラル状
に巻きつけるが、この場合第2層の各ターン間の
隙間5は、第1層の各ターン間の隙間5′を重複
しないよう、第3図図示の如くずらして第1層に
準じて巻きつける。尚、各層に巻きつける超電導
テープは各層の端部で切断しても差支えない。
又、シールドする磁場の強さに応じて超電導テー
プは何層にも繰返し必要な厚みとなるまで巻き重
ねる。
Next, the second layer of superconducting tape 1 is wound in a spiral shape. In this case, the gaps 5 between the turns of the second layer are made as shown in Figure 3 so that the gaps 5' between the turns of the first layer do not overlap. Shift it as shown and wrap it in the same manner as the first layer. Note that the superconducting tape wound around each layer may be cut at the end of each layer.
Also, depending on the strength of the magnetic field to be shielded, the superconducting tape is repeatedly wound into layers until the required thickness is achieved.

以上のようにして形成された組立体は、ついで
前述した低融点金属4の浴で真空含浸したのち、
両端部及び表面を機械加工して所定の寸法とす
る。
The assembly thus formed was then vacuum impregnated with a bath of the low melting point metal 4 mentioned above.
Machine both ends and surfaces to desired dimensions.

各超電導テープ間に巻き込まれる高純度金属箔
は、使用に際して生起する急激な磁束変化をダン
プして超電導テープにフラツクス・ジヤンプの起
ることを防止する作用、効果を有する。又、組立
体を低融点金属により含浸することにより、巻き
つけられた超電導テープが電磁力により移動した
り、磁気応力によつて変形することを防止すると
共に、一体化した磁気シールドの熱伝導率を高
め、同時に熱容量を大きくして急激な温度上昇を
避けると共に外部の冷媒の冷却を改善するもので
ある。
The high-purity metal foil wound between each superconducting tape has the function and effect of damping sudden changes in magnetic flux that occur during use and preventing flux jumps from occurring in the superconducting tape. In addition, impregnating the assembly with a low-melting point metal prevents the wrapped superconducting tape from moving due to electromagnetic force or deforming due to magnetic stress, and also reduces the thermal conductivity of the integrated magnetic shield. At the same time, the heat capacity is increased to avoid sudden temperature rises and improve the cooling of external refrigerants.

以下第5図を用いて図示円筒型超電導シールド
組立体のシールド作用について説明する。
The shielding action of the illustrated cylindrical superconducting shield assembly will be described below with reference to FIG.

円筒型超電導シールド組立体の円筒軸に平行な
磁場に対しては円周方向の電流は閉回路を形成し
ないのでシールド作用は得られないが、円筒軸に
垂直な磁場に対しては第5図に示すように軸方向
電流IZが誘起され、閉回路を構成するので、シー
ルド作用が得られる。
For a magnetic field parallel to the cylindrical axis of the cylindrical superconducting shield assembly, the current in the circumferential direction does not form a closed circuit, so no shielding effect can be obtained, but for a magnetic field perpendicular to the cylindrical axis, as shown in Figure 5. As shown in , an axial current IZ is induced and a closed circuit is formed, resulting in a shielding effect.

すなわち第5図にはスパイラルに巻かれた超電
導テープの任意の1ターンを示し、外部磁場を打
ち消すように、半ターンの閉回路を形成してテー
プに電流が流れる。外部垂直磁場をByとすると、
テープ内部で閉じる電流のうち円周成分は打ち消
されるが、軸方向の電流成分IZのみは残る。
That is, FIG. 5 shows an arbitrary turn of a spirally wound superconducting tape, and current flows through the tape forming a half-turn closed circuit so as to cancel out an external magnetic field. If the external vertical magnetic field is By, then
The circumferential component of the current that closes inside the tape is canceled out, but only the axial current component IZ remains.

従つて全ターンについてこの軸方向電流が加え
合わさるとシールド組立体は対向するサドル型の
コイルと等価となり、円筒軸に垂直な磁場をシー
ルドすることになる。
Therefore, when this axial current is added for all turns, the shield assembly is equivalent to an opposing saddle-shaped coil, shielding the magnetic field perpendicular to the cylinder axis.

本発明を実施例に基いて更に詳述する。 The present invention will be further explained in detail based on examples.

実施例 使用した超電導テープ、V3Ga(巾10mm×厚さ
0.14mm) 使用した金属箔 アルミニウム(純度99.99%
0.8mm厚) シールド組立体寸法 (超電導層数34層) 内径 26mmφ 外径 46〃φ 長さ 80mm 使用低融点金属 ウツド・メタル シールド磁場 9KG 上記組立体に外部磁場を該組立体の長手方向に
垂直に印加し、シールド組立体内部の磁場と外部
磁場を同時にホール素子で測定しながら、外部磁
場を0から次第に9KGまで増加し、その後順次
減少させたところ、組立体内部の磁場は常に0の
まゝであつた。
Example Superconducting tape used: V 3 Ga (width 10 mm x thickness
0.14mm) Metal foil used: Aluminum (99.99% purity)
(0.8mm thickness) Shield assembly dimensions (34 superconducting layers) Inner diameter 26mmφ Outer diameter 46〃φ Length 80mm Low melting point metal used Wooden metal Shield magnetic field 9KG Apply an external magnetic field to the above assembly perpendicular to the longitudinal direction of the assembly When the magnetic field inside the shield assembly and the external magnetic field were simultaneously measured using a Hall element, the external magnetic field was gradually increased from 0 to 9 KG, and then gradually decreased, and the magnetic field inside the assembly remained at 0. It was hot.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の磁気シールド組立体
の断面図、第3図は本発明の超電導磁気シールド
組立体の斜視図、第4図は、第3図−線の断
面図、第5図はシールド作用を説明する説明図で
ある。図中1,1′は超電導テープ、2は巻き芯、
3は金属箔、4は低融点金属、5,5′は各ター
ン間の間隙を示す。
1 and 2 are sectional views of a conventional magnetic shield assembly, FIG. 3 is a perspective view of a superconducting magnetic shield assembly of the present invention, FIG. 4 is a sectional view taken along the line of FIG. The figure is an explanatory diagram illustrating the shielding effect. In the figure, 1 and 1' are superconducting tapes, 2 is a winding core,
3 is a metal foil, 4 is a low melting point metal, and 5 and 5' are gaps between each turn.

Claims (1)

【特許請求の範囲】 1 中空芯材上に超電導層をもつ積層超電導テー
プをスパイラル状に巻き付け、該積層超電導テー
プ・ターン間の間〓が相隣る積層超電導テープ層
におけるターン間の間〓と重複しない配置とし、
かつ各積層超電導テープ層間に高純度金属箔を介
在させて組立体とし、該組立体を低融点金属で含
浸したことを特徴とする超電導シールド組立体。 2 中空芯材がステンレス鋼、銅、銅合金、アル
ミニウム又はアルミニウム合金である特許請求の
範囲第1項に記載の超電導シールド組立体。 3 高純度金属箔が銅又はアルミニウムである特
許請求の範囲第1項に記載の超電導シールド組立
体。 4 含浸用低融点金属が半田、インジウム、ウツ
ドメタルである特許請求の範囲第1項に記載の超
電導シールド組立体。
[Claims] 1. A laminated superconducting tape having a superconducting layer is wound spirally around a hollow core material, and the distance between turns of the laminated superconducting tape is equal to the distance between turns in adjacent laminated superconducting tape layers. Arranged so that there is no overlap,
A superconducting shield assembly characterized in that a high purity metal foil is interposed between each laminated superconducting tape layer to form an assembly, and the assembly is impregnated with a low melting point metal. 2. The superconducting shield assembly according to claim 1, wherein the hollow core material is stainless steel, copper, copper alloy, aluminum, or aluminum alloy. 3. The superconducting shield assembly according to claim 1, wherein the high-purity metal foil is copper or aluminum. 4. The superconducting shield assembly according to claim 1, wherein the low melting point metal for impregnation is solder, indium, or wood metal.
JP11577479A 1979-09-11 1979-09-11 Superconductive shielding assembly Granted JPS5640289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11577479A JPS5640289A (en) 1979-09-11 1979-09-11 Superconductive shielding assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11577479A JPS5640289A (en) 1979-09-11 1979-09-11 Superconductive shielding assembly

Publications (2)

Publication Number Publication Date
JPS5640289A JPS5640289A (en) 1981-04-16
JPH0239105B2 true JPH0239105B2 (en) 1990-09-04

Family

ID=14670717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11577479A Granted JPS5640289A (en) 1979-09-11 1979-09-11 Superconductive shielding assembly

Country Status (1)

Country Link
JP (1) JPS5640289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290127A (en) * 2001-03-23 2002-10-04 Kenwa Kk Guide tube for antenna

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231778A (en) * 1985-04-05 1986-10-16 Shimadzu Corp Superconducting shield
JPS6416698U (en) * 1987-07-17 1989-01-27
JP2822034B2 (en) * 1987-08-21 1998-11-05 セイコーエプソン株式会社 Magnetic shielding material
JPH01109509A (en) * 1987-10-23 1989-04-26 Sharp Corp Thin film magnetic head
JPH0779200B2 (en) * 1988-05-30 1995-08-23 大阪府 Superconducting magnetic shield
JPH0238697U (en) * 1988-09-08 1990-03-14
JPH0682949B2 (en) * 1990-03-23 1994-10-19 新日本製鐵株式会社 Superconducting magnetic shield and manufacturing method thereof
US6759593B2 (en) * 2000-11-14 2004-07-06 Pirelli Cavi E Sistemi S.P.A. Superconducting cable
JP3858221B2 (en) 2002-06-12 2006-12-13 財団法人国際超電導産業技術研究センター Superconducting magnet made of high-temperature superconducting bulk material and method for producing the same
JP6402501B2 (en) * 2014-06-20 2018-10-10 アイシン精機株式会社 Superconducting magnetic field generator, superconducting magnetic field generating method, and nuclear magnetic resonance apparatus
EP4246602A1 (en) * 2022-03-14 2023-09-20 Theva Dünnschichttechnik GmbH Hermetically sealed high temperature superconductor tape conductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923594A (en) * 1972-06-23 1974-03-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923594A (en) * 1972-06-23 1974-03-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290127A (en) * 2001-03-23 2002-10-04 Kenwa Kk Guide tube for antenna

Also Published As

Publication number Publication date
JPS5640289A (en) 1981-04-16

Similar Documents

Publication Publication Date Title
EP1212760B2 (en) Rotor assembly with superconducting magnetic coil
US3652967A (en) Superconductive magnet
US5659277A (en) Superconducting magnetic coil
JPH0239105B2 (en)
US3496622A (en) Method of manufacturing superconductive nb3sn-wrapped wire
US5929385A (en) AC oxide superconductor wire and cable
WO2012070584A1 (en) Oxide superconductive solenoid wound coil and production method therefor
US4564564A (en) Superconducting magnet wire
US4218668A (en) Superconductive magnet device
US3444495A (en) Superconductors
Fukunaga et al. Alternating current transport and magnetic losses in Ag‐sheathed (Bi, Pb) 2Sr2Ca2Cu3O x wires
JPS5847687Y2 (en) superconducting hybrid coil
JPH1050153A (en) Oxide supreconductive wire for alternating current, and cable
JPH0676649A (en) Composite superconductor
EP0110400B1 (en) Superconducting wire and method of producing the same
US3559127A (en) Superconductive magnet construction
JP3272017B2 (en) AC superconducting wire and method of manufacturing the same
JPS6312109A (en) Superconducting magnet
JPH06260335A (en) High temperature superconducting magnet
JPH046713A (en) Aluminium stabilization superconductive wire
JPS638602B2 (en)
JP2844632B2 (en) Oxide superconducting wire and manufacturing method thereof
JP3050629B2 (en) Method for producing NbTi alloy-based superconducting wire
JPS6239802B2 (en)
JPS60765B2 (en) Compound superconducting coil