JPH0238658B2 - - Google Patents
Info
- Publication number
- JPH0238658B2 JPH0238658B2 JP61293476A JP29347686A JPH0238658B2 JP H0238658 B2 JPH0238658 B2 JP H0238658B2 JP 61293476 A JP61293476 A JP 61293476A JP 29347686 A JP29347686 A JP 29347686A JP H0238658 B2 JPH0238658 B2 JP H0238658B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- less
- magnetic properties
- hot workability
- alloys
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 25
- 239000000956 alloy Substances 0.000 claims description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000005098 hot rolling Methods 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000696 magnetic material Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910000889 permalloy Inorganic materials 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Description
(産業上の利用分野)
本発明は、鉄−ニツケル系合金の製造方法に関
し、特に熱間加工性に優れると共に磁気特性の如
き品質特性にも優れる軟磁性材料としてのパーマ
ロイ合金やICリードフレーム用42合金等の鉄−
ニツケル(以下は「Fe−Ni」で表わす)系合金
の製造方法についての提案である。
(従来の技術)
一般に、鉄およびニツケルを主体とする合金と
しては、軟磁性材料であるパーマロイ合金やIC
リードフレーム用42合金、低熱膨張アンバー合
金、ガラス封着用42−6合金等が知られている。
これら合金に共通する欠点としては、熱間加工性
が劣るために、鍛造や熱間圧延に際しての歩留り
が低いという製造上の問題点があげられる。この
製造時に見られる欠点を改善するために、従来B
を添加含有させた素材を用いて熱間加工性を改善
するという方法が、特開昭60−159157号公報など
に開示されており、それなりに大きな成果をあげ
ている。
(発明が解決しようとする問題点)
ところが、素材合金中でのB添加は、合金の特
性への影響が大きく、例えば磁気特性や被覆剤
(ガラス)との密着性等を大きく低下させてしま
うという問題点を惹起する。そのため、Bの添加
量が制限され、その結果として十分な熱間加工性
の向上を実現させることができなかつた。
本発明の目的は、上記従来技術が抱えている問
題点を改善し、熱間加工性に優れると共に品質特
性にも優れる鉄−ニツケル合金の有利な製造方法
を提案することにある。
(問題点を解決するための手段)
上掲の目的に対し本発明は、次の事項を要旨構
成とする技術的手段、すなわちNiを33〜85wt%
含み、残部が主としてFeよりなる合金中に
0.001wt%を超え、0.1wt%以下のBを含有させた
熱間圧延材または冷間圧延材を、非酸化性雰囲気
中で熱処理することにより、脱B処理を行い、B
濃度を0.001wt%以下とすることを特徴とする鉄
−ニツケル系合金の製造方法を提案する。
(作用)
本発明にかかる方法は、好ましくは造塊時に素
材溶湯中に所定量のBを添加含有させた合金につ
いて一旦熱間加工等を施した後、熱処理を行うこ
とにより該合金中のBを低減させ、もつて必要な
磁気特性などの品質を製品に付与するようにした
技術である。
まず、本発明で用いる出発材料は、Niを33〜
85wt%(以下、単に「%」で略記する)の範囲
で含み、Bを0.001〜0.1%の範囲で含み、残部が
実質的にFeおよび不可避不純物よりなるものを
用いる。
ここで、Ni含有量の下限を33%としたのは、
マルテンサイトが析出しやすく熱膨張率、磁気特
性とも不安定となるからである。一方、含有量上
限の85%はこの値を超えるものではもともと熱間
加工性が良好でB添加が不必要となるので限定し
た。
次に、Bの含有量については、下限値の0.001
%以下では熱間加工性改善に対して効果がなく、
一方上限とした0.1%を超えるようでは却つて熱
間加工性を低下させるので、0.001wt%を超え、
0.1wt%以下の範囲とした。
なお、本発明においては、上記成分組織の他、
鉄合金とする場合に不可避に含まれる、C、Si、
Mn、Cr、Al、PおよびSの元素についても、詳
しくは言及はしないが、例えば、C:0.1%以下、
Si:0.5%以下、Mn:2.0以下、P:0.03%以下、
S:0.03%以下、Cr:15%以下、Mo:6%以下、
Cu:15%以下およびAl:0.5%以下の範囲内での
含有が許容される。
上記のC、Si、Mn、PおよびSはいずれも含
有量が特定した上限よりも多いと、熱間加工性が
低下し、またCrは、42Ni−6Cr−Fe合金などで
は熱膨張率のコントロールおよび封着性改善を目
的として添加されるが、15%より多いと磁気変態
点を下げるため磁気特性が不安定になると共に熱
膨張率が大きくなりすぎるので15%を上限とす
る。MoおよびCuについては、磁気特性の冷却速
度感受性をやわらげるが、それぞれ6%、15%を
超えると逆に磁気特性を低下させる。Alは、0.5
%より多いと清浄度を下げ、磁気特性を低下させ
ることが分かつている。
さて、上記成分組成の合金造塊材は、鍛造、熱
間圧延を行つた後、ホツトコイルのまま或いは焼
鈍、酸洗を経た後、またはさらに冷間圧延を行つ
た後、熱処理を行う。この熱処理は、Ar、N2、
H2などの不活性、還元性のいわゆる非酸化性ガ
ス雰囲気中、900〜1300℃、30分〜4時間の熱処
理を行う。この熱処理によつて、合金中のB量は
著しく減少し、B多量添加による品質への悪影響
は無視し得る程度にまで減少させることができ
る。
この加熱処理によつてBを低減させ得る理由は
次のように考えられる。すなわち、工業的に使用
されるAr、H2等のガス中には不純ガスとして
O2、H2Oが混入している。これらのガスの分圧
は、0.001〜1トール程度であり、Fe、Ni等を酸
化させることはないが、Bは酸素との結合力が強
いためにこの不純ガスと反応し、酸化ホウ素又は
水酸化ホウ素になると考えられる。したがつて、
脱B処理には雰囲気中に微量のO2、H2Oが存在
することが必要である。したがつて、あまりに高
純度のAr、H2ガス雰囲気や10-5トールを超える
高真空中での熱処理は、十分な脱B処理ができな
いと予想されるのので、本発明の場合好ましくな
い。
(実施例)
表1に示すような成分組成のパーマロイ系合金
他を溶解し、約10℃のインゴツトを作つた。この
インゴツトを鍛造して厚み約10mmのスラブとし、
その後熱間圧延、冷間圧延を行い、厚み1mmの板
とした。この板より内径33mmφ、外径45mmφのリ
ングを作成し、還元性(H2)雰囲気及び真空中
で、1100℃−2時間の熱処理を行つた。リングは
徐冷してからコイル状とした後磁気特性を測定し
た。
この表2よりわかるように比較例として示す真
空中での熱処理をした場合には、合金にBが多量
に残り、磁気特性を低下させている。しかし、本
発明法に従う雰囲気である水素中で熱処理した場
合には合金中のB量が減少し、良好な磁気特性が
得られることが判つた。
また熱間加工性についても、本発明にかかる方
法で限定した素材合金を用いると、良好な効果が
得られることが表1から明らかであり、さらに表
3からわかるように、ガラスとの封着強度も本発
明法に従つて製造したFe−Ni合金の方が優れた
値を示した。
(Industrial Application Field) The present invention relates to a method for producing iron-nickel alloys, particularly permalloy alloys as soft magnetic materials that have excellent hot workability and quality characteristics such as magnetic properties, and for use in IC lead frames. Iron such as 42 alloy
This is a proposal for a method for manufacturing a nickel (hereinafter referred to as "Fe-Ni") alloy. (Prior art) In general, alloys mainly composed of iron and nickel include permalloy alloys, which are soft magnetic materials, and IC alloys, which are soft magnetic materials.
42 alloy for lead frames, low thermal expansion amber alloy, 42-6 alloy for glass sealing, etc. are known.
A common drawback of these alloys is that they have poor hot workability, resulting in low yields during forging and hot rolling, which is a manufacturing problem. In order to improve this defect seen during manufacturing, conventional B
A method of improving hot workability using a material containing additives has been disclosed in JP-A-60-159157, etc., and has achieved considerable results. (Problem to be solved by the invention) However, the addition of B in the material alloy has a large effect on the properties of the alloy, such as greatly reducing the magnetic properties and adhesion with the coating material (glass). This causes a problem. Therefore, the amount of B added was limited, and as a result, it was not possible to achieve a sufficient improvement in hot workability. An object of the present invention is to improve the problems faced by the above-mentioned conventional techniques and to propose an advantageous method for producing an iron-nickel alloy that has excellent hot workability and quality characteristics. (Means for Solving the Problems) For the above-mentioned purpose, the present invention provides a technical means consisting of the following matters, that is, 33 to 85 wt% Ni.
in an alloy with the remainder mainly consisting of Fe.
A hot-rolled material or a cold-rolled material containing B exceeding 0.001wt% and 0.1wt% or less is heat-treated in a non-oxidizing atmosphere to remove B.
We propose a method for producing iron-nickel alloys characterized by a concentration of 0.001wt% or less. (Function) In the method according to the present invention, preferably, an alloy containing a predetermined amount of B added to the molten material at the time of ingot making is once subjected to hot working, etc., and then heat treatment is performed to remove the B in the alloy. This is a technology that reduces the amount of ferrite and gives products the necessary qualities such as magnetic properties. First, the starting material used in the present invention contains Ni from 33 to
B is contained in a range of 85 wt% (hereinafter simply abbreviated as "%"), B is contained in a range of 0.001 to 0.1%, and the balance is substantially composed of Fe and inevitable impurities. Here, the lower limit of Ni content was set at 33% because
This is because martensite tends to precipitate, making both the coefficient of thermal expansion and magnetic properties unstable. On the other hand, the upper limit of the content of 85% was set because if it exceeds this value, hot workability is already good and addition of B is unnecessary. Next, regarding the content of B, the lower limit is 0.001
% or less, there is no effect on improving hot workability;
On the other hand, if it exceeds the upper limit of 0.1%, it will actually reduce hot workability, so if it exceeds 0.001wt%,
The range was set to 0.1wt% or less. In addition, in the present invention, in addition to the above component structure,
C, Si, which are unavoidably included in iron alloys,
The elements of Mn, Cr, Al, P and S will not be mentioned in detail, but for example, C: 0.1% or less,
Si: 0.5% or less, Mn: 2.0 or less, P: 0.03% or less,
S: 0.03% or less, Cr: 15% or less, Mo: 6% or less,
Content within the range of Cu: 15% or less and Al: 0.5% or less is allowed. If the content of any of the above C, Si, Mn, P, and S exceeds the specified upper limit, hot workability will decrease, and Cr controls the thermal expansion coefficient in 42Ni-6Cr-Fe alloys. It is added for the purpose of improving sealing properties, but if it exceeds 15%, the magnetic properties will become unstable because it lowers the magnetic transformation point, and the coefficient of thermal expansion will become too large, so the upper limit is set at 15%. Mo and Cu soften the cooling rate sensitivity of magnetic properties, but if they exceed 6% and 15%, respectively, the magnetic properties will deteriorate. Al is 0.5
It is known that when the amount exceeds %, the cleanliness and magnetic properties are lowered. Now, the alloy ingot having the above-mentioned composition is subjected to heat treatment after forging and hot rolling, either as a hot coil or after annealing and pickling, or after further cold rolling. This heat treatment uses Ar, N2 ,
Heat treatment is performed at 900 to 1300°C for 30 minutes to 4 hours in an atmosphere of an inert, reducing, so-called non-oxidizing gas such as H2 . By this heat treatment, the amount of B in the alloy is significantly reduced, and the adverse effect on quality due to the addition of a large amount of B can be reduced to a negligible extent. The reason why B can be reduced by this heat treatment is considered to be as follows. In other words, industrially used gases such as Ar and H2 contain impurity gases.
O 2 and H 2 O are mixed. The partial pressure of these gases is about 0.001 to 1 Torr, and they do not oxidize Fe, Ni, etc., but B has a strong bond with oxygen, so it reacts with this impure gas, producing boron oxide or water. It is thought to become boron oxide. Therefore,
The B removal process requires the presence of trace amounts of O 2 and H 2 O in the atmosphere. Therefore, heat treatment in an extremely high purity Ar or H 2 gas atmosphere or in a high vacuum exceeding 10 -5 Torr is not preferred in the present invention because it is expected that sufficient B removal treatment will not be possible. (Example) A permalloy alloy having the composition shown in Table 1 was melted to make an ingot at about 10°C. This ingot is forged into a slab approximately 10mm thick,
Thereafter, hot rolling and cold rolling were performed to obtain a plate with a thickness of 1 mm. A ring with an inner diameter of 33 mmφ and an outer diameter of 45 mmφ was prepared from this plate, and heat treated at 1100° C. for 2 hours in a reducing (H 2 ) atmosphere and vacuum. The ring was slowly cooled and formed into a coil, and its magnetic properties were then measured. As can be seen from Table 2, when heat treatment was performed in vacuum as shown in the comparative example, a large amount of B remained in the alloy, degrading the magnetic properties. However, it was found that when the alloy was heat treated in hydrogen, an atmosphere according to the method of the present invention, the amount of B in the alloy was reduced and good magnetic properties were obtained. In addition, regarding hot workability, it is clear from Table 1 that good effects can be obtained by using the material alloy limited by the method according to the present invention. In terms of strength, the Fe-Ni alloy produced according to the method of the present invention showed superior values.
【表】【table】
【表】【table】
【表】
(発明の効果)
上記の説明ならびに実施例の結果からわかるよ
うに本発明によれば、熱間加工性に優れると共に
磁気特性などの品質にも優れたFe−Ni合金を高
い歩留りで製造することができる。[Table] (Effects of the Invention) As can be seen from the above explanation and the results of the examples, according to the present invention, a Fe-Ni alloy with excellent hot workability and magnetic properties can be produced at a high yield. can be manufactured.
Claims (1)
りなる合金中に0.001wt%を超え0.1wt%以下のB
を含有させて熱間圧延し、熱間圧延後の圧延材
(熱間圧延後に冷間圧延したものも含む)を非酸
化性雰囲気中で900〜1300℃で30分〜4時間加熱
して脱B処理を行い、B濃度を0.001wt%以下と
することを特徴とする鉄−ニツケル系合金の製造
方法。1 B exceeding 0.001wt% and not more than 0.1wt% in an alloy containing 33 to 85wt% Ni and the balance mainly consisting of Fe
The rolled material after hot rolling (including those cold rolled after hot rolling) is heated at 900 to 1300°C for 30 minutes to 4 hours in a non-oxidizing atmosphere to decompose the material. 1. A method for producing an iron-nickel alloy, which comprises performing B treatment to reduce the B concentration to 0.001 wt% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29347686A JPS63149361A (en) | 1986-12-11 | 1986-12-11 | Manufacture of iron-nickel alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29347686A JPS63149361A (en) | 1986-12-11 | 1986-12-11 | Manufacture of iron-nickel alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63149361A JPS63149361A (en) | 1988-06-22 |
JPH0238658B2 true JPH0238658B2 (en) | 1990-08-31 |
Family
ID=17795232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29347686A Granted JPS63149361A (en) | 1986-12-11 | 1986-12-11 | Manufacture of iron-nickel alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63149361A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02247367A (en) * | 1989-03-20 | 1990-10-03 | Mitsubishi Metal Corp | Plastic working method for b-containing co-base heat resisting alloy |
JPH02247366A (en) * | 1989-03-20 | 1990-10-03 | Mitsubishi Metal Corp | Plastic working method for b-containing ni-base heat resisting alloy |
JP2722628B2 (en) * | 1989-03-20 | 1998-03-04 | 三菱マテリアル株式会社 | Plastic working method for B-containing Ni-base heat-resistant alloy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57149440A (en) * | 1981-03-11 | 1982-09-16 | Res Inst Electric Magnetic Alloys | Magnetic alloy for magnetic sound recording and reproducing head and prepartion thereof |
JPS5842741A (en) * | 1981-09-07 | 1983-03-12 | Res Inst Electric Magnetic Alloys | Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head |
JPS6263649A (en) * | 1985-09-12 | 1987-03-20 | Sumitomo Special Metals Co Ltd | Fe-ni alloy for sealing having superior punchability |
JPS62205252A (en) * | 1986-03-03 | 1987-09-09 | Kobe Steel Ltd | Hot-working method for high ni-fe alloy |
-
1986
- 1986-12-11 JP JP29347686A patent/JPS63149361A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57149440A (en) * | 1981-03-11 | 1982-09-16 | Res Inst Electric Magnetic Alloys | Magnetic alloy for magnetic sound recording and reproducing head and prepartion thereof |
JPS5842741A (en) * | 1981-09-07 | 1983-03-12 | Res Inst Electric Magnetic Alloys | Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head |
JPS6263649A (en) * | 1985-09-12 | 1987-03-20 | Sumitomo Special Metals Co Ltd | Fe-ni alloy for sealing having superior punchability |
JPS62205252A (en) * | 1986-03-03 | 1987-09-09 | Kobe Steel Ltd | Hot-working method for high ni-fe alloy |
Also Published As
Publication number | Publication date |
---|---|
JPS63149361A (en) | 1988-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08209306A (en) | Iron-nickel alloy with low coefficient of thermal expansion | |
JPS5849622B2 (en) | Manufacturing method of cold-rolled steel sheet for ultra-deep drawing by continuous annealing | |
JPH0238658B2 (en) | ||
JPS5819726B2 (en) | Manufacturing method for electrical iron plate steel that is vacuum treated in a molten state | |
JPS58171527A (en) | Manufacture of low-grade electrical steel sheet | |
JP3141697B2 (en) | Method for producing alloy band of Fe-Ni alloy for shadow mask and IC lead frame excellent in prevention of edge cracking | |
CN111496416A (en) | Nickel alloy welding wire for welding cast iron pipe and preparation method thereof | |
JPH0424420B2 (en) | ||
US5441578A (en) | Method for producing soft magnetic alloys with very high permeability and alloys resulting therefrom | |
JPH0625747A (en) | Manufacture of thin high magnetic flux density grain-oriented silicon steel sheet | |
JPS6254183B2 (en) | ||
JPH05279826A (en) | Production of 'permalloy(r)' excellent in impedance relative magnetic permeability | |
JP3042273B2 (en) | Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance | |
JPH0798975B2 (en) | Method for producing Fe-Ni alloy | |
JPS5915966B2 (en) | Method for manufacturing non-oriented silicon steel sheet with excellent magnetic properties | |
EP0205619B1 (en) | Method of manufacturing unidirectional silicon steel slab having excellent surface and magnetic properties | |
JPH0726328A (en) | Production of grain oriented silicon steel sheet | |
KR820000330B1 (en) | Process for low magnetic and high magnetic permeability material of ni-fe-mo alloy | |
JP2001049350A (en) | PRODUCTION OF ALLOY STRIP OF Fe-Ni ALLOY FOR SHADOW MASK AND IC LEAD FRAME | |
JPH05186829A (en) | Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation | |
JPS5814499B2 (en) | Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou | |
JPH0570684B2 (en) | ||
JPH07116576B2 (en) | Stress corrosion cracking sealing alloy and its manufacturing method | |
JP3379760B2 (en) | Manufacturing method of high strength and high permeability steel | |
JPH05287423A (en) | 'permalloy@(3754/24)r)' having excellent impedance specific magnetic permeability and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |