JPH0238649B2 - - Google Patents

Info

Publication number
JPH0238649B2
JPH0238649B2 JP61075106A JP7510686A JPH0238649B2 JP H0238649 B2 JPH0238649 B2 JP H0238649B2 JP 61075106 A JP61075106 A JP 61075106A JP 7510686 A JP7510686 A JP 7510686A JP H0238649 B2 JPH0238649 B2 JP H0238649B2
Authority
JP
Japan
Prior art keywords
pores
metal plate
foamed metal
foamed
shell membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61075106A
Other languages
Japanese (ja)
Other versions
JPS62230940A (en
Inventor
Kazuo Morimoto
Tooru Nishikawa
Masao Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP7510686A priority Critical patent/JPS62230940A/en
Publication of JPS62230940A publication Critical patent/JPS62230940A/en
Publication of JPH0238649B2 publication Critical patent/JPH0238649B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は多数の独立気孔の集合体よりなる発
泡金属の気孔の殻膜に亀裂を生じさせることによ
り、各気孔を互いに連通させるようにした金属多
孔体およびその製造方法に関するものである。 (従来技術) 連通孔を有する多孔質金属を製造する方法とし
ては、金属の粉体や金属繊維を焼結する方法、連
通孔を有する海綿状のプラスチツク多孔体に金属
をめつきした後、プラスチツクを除去する方法、
無機塩類の粉体を焼結してその空隙に溶融金属を
圧入し、金属が凝固した後、無機塩類を溶出する
方法等、多くの技術が開発されている。しかしこ
れらの方法により製造した多孔質金属は、粉体、
焼結、めつき、溶湯の圧入等の手段によるためコ
ストが高くなるだけでなく、製品の大きさに限界
があり、かつ機械的強度が弱いという欠点があ
る。 また機械的強度および剛性に優れ、安価に製造
することのできる発泡金属は独立気孔の集合体よ
りなるため、建築材料や構造部材等、軽量構造材
料として極めて優れた特性をもつているが、吸音
材等の用途に適用できる機能を高めるためには、
独立気孔の殻膜に貫通孔を形成する必要がある。
また軽量でしかも剛性があり、火災の際にも有害
ガスを発生することがなく、さらに吸音効果等に
優れた建築、構造材料の開発が求められてきた。 (発明の目的) この発明はこのような従来の欠点を解消するた
めになされたものであり、独立気孔の集合体より
なる発泡金属の気孔の殻膜に亀裂を生じさせるこ
とにより、吸引効果等の高度な機能を付与した連
続気孔の金属多孔体およびその製造方法を提供す
るものである。 (発明の構成) この発明の第1の要旨は、気孔率60%以上の独
立気孔の集合体よりなる発泡金属において、各気
孔を構成する殻膜に亀裂を生じさせることによ
り、各気孔を全体的に互いに連通させたものであ
る。 この発明の第2の要旨は、気孔率60%以上の独
立気孔の集合体よりなる板状の発泡金属を製造
し、これに降伏点以上の圧縮または曲げ加工を行
うことにより、殻膜に亀裂を生じさせて各気孔を
全体的に互いに連通させるようにしたものであ
る。 上記構成では、独立気孔の集合体であるセル構
造よりなる発泡金属の殻膜に微細な貫通孔を設け
ることにより、吸音効果が極めて高く、かつ構造
材料として軽量性、機械的強度、耐熱性、耐候性
に優れた多孔質金属材料が得られ、また殻膜の亀
裂は冷間プレス、曲げ加工等の機械的手段によ
り、工業的に容易に製造することが可能である。 (実施例) 第1図は独立気孔の集合体よりなる発泡金属の
切断面におけるセル構造(金属組織)を示し、発
泡金属は溶融アルミニウムに増粘材、発泡材を加
えて公知の方法により製造した。溶融金属として
は、アルミニウム、マグネシウム、亜鉛、錫、
銅、鉛、ニツケルおよびこれらの合金、セラミツ
ク等粉体混合物であつてもよい。発泡金属を鋳
造、凝固する際、一部の気孔殻膜に亀裂が入つて
気孔が連続する場合があるが、発泡金属は全体的
に独立気孔の集合体を形成しており、各気孔は殻
膜によつて閉鎖されている。 吸音材として多孔質金属を用いる場合は、複雑
な形状の連通孔を有している方が高い吸音効果が
得られることはよく知られており、したがつて独
立気孔の発泡金属の殻膜に亀裂を生じさせること
により連通孔を有する発泡金属にすれば吸音材と
しての機能が発揮されることになる。 以下に示す実施例は見掛け比重が0.27、気孔の
大きさが2〜7mmで、発泡アルミニウム鋳造によ
つてできる鋳肌の部分は切断して除去し、気孔を
露出させた。 第2図は厚さ15mmの発泡アルミニウム板状体を
圧縮した場合の圧縮荷重−歪曲線を示す。この試
料の殻膜の厚さは10〜200μである。発泡アルミ
ニウムは方向性がない複雑な形状をしたセル構造
よりなつており、圧縮荷重に対して高い弾性係数
を示し、弾性限界Aを越えると、B点において殻
膜の一部が座屈し、続いて多少の荷重変動を伴い
ながら全体的に圧縮強度の低下をきたすことな
く、各気孔の殻膜が座屈してB、C、Dのような
圧縮荷重−歪曲線を示し、全気孔が完全に圧壊さ
れ、各気孔が全体的に互いに連通したD点からは
独立気孔の存在しない板状体としての圧縮強度を
示す。この場合も圧壊された殻膜の集合体として
板状体は、その表裏両面間に貫通する連通孔を有
している。 第3図は発泡金属板の圧縮前のセル構造を示
し、1は発泡アルミニウムからなる発泡金属板、
2は独立気孔、3は殻膜を示す。第4図は厚さ15
mmの上記発泡金属板1を10mmの板状体にまで圧縮
した場合の発泡金属板10のセル構造を示してい
る。第4図において殻膜3は座屈してヘアークラ
ツク4が生じ、これによつて各気孔2は互いに連
通している。このようにして発泡金属板10の表
裏両面間が複雑な経路を通つて連通するように構
成され、これによつて各気孔が全体的に互いに連
通している。発泡金属の厚さが薄い場合は殻膜が
一様に座屈するため、降伏点Bより少し圧縮歪の
大きいところで亀裂を生じるが、厚さが厚くなる
にしたがつて殻膜の一部が座屈し、つづいて相隣
接する殻膜が座屈し、順次座屈が伝搬するという
傾向がみられるので、例えば30mm以上の厚さの発
泡体では第2図C点まで圧縮することにより全体
の殻膜に亀裂を生じさせることができる。第5図
は第4図の亀裂発生部の拡大図である。 第6図は上記発泡アルミニウム板を曲げ加工し
た場合の曲げ荷重−撓み線図である。曲げ加工の
場合は圧縮加工の場合と異なつて撓みが大きく、
冷間加工により容易に殻膜に亀裂を生じさせるこ
とができる。微細なヘアークラツクをつくるため
に、B点まで曲げ加工を行うが、D点にいたつて
発泡金属の曲げ強度が急激に減少し、E点で完全
に破壊される。B点で繰返し荷重を加えると、破
線で示すようにループを描き、永久歪OFを生じ
て殻膜に所定の亀裂が生じる。第7図は曲げ加工
による亀裂の発生状況を示したものであり、発泡
金属板11は厚さの減少は小さく、かつ各気孔2
が互いに連通するように殻膜3に亀裂が生じてい
る。 第8図は上記発泡金属板1に対して盤台7とプ
レス金型6とによつて部分的に圧縮を行つている
状態を示している。これによつて第9図に示すよ
うに、発泡金属板12には多数の圧縮部5が形成
され、この圧縮部5は上記発泡金属板10のよう
に殻膜3に亀裂が形成され、発泡金属板12の表
裏両面間に貫通する連通孔が形成されている。こ
のように発泡金属板全体を圧縮加工する代りに、
部分的に圧縮加工してもよい。部分的に圧縮する
場合の利点は、全体として厚い板状体として建
築、構造材料に利用できることおよび任意の表面
意匠が得られること等である。 また第10図に示すように、発泡金属板1を一
対のロールにより圧延して連続的に発泡金属板1
0を製造するようにしてもよい。 第11図はロール圧延により部分的に圧縮を行
う状態を示し、一対のロールのうちの一方を通常
の円柱状ロール8、他方を圧縮部5に相当する突
出部が形成された異形ロール9を用い、この両ロ
ール8,9で発泡金属板1を挟み付けて移送する
ことにより、発泡金属板1の表面に圧縮部5を形
成させて発泡金属板12を製造するようにしても
よい。 第12図はロールにより正逆曲げ加工を行うこ
とにより発泡金属板1の殻膜に亀裂を生じさせる
ようにした例を示し、80は送りまたはガイドロ
ール、81は殻膜に亀裂を生じさせるための曲げ
加工ロール、82は矯正ロール、83は引出しロ
ールである。 第13図は吸音効果を測定するために上記発泡
金属板10を、遮音板(無孔鉄板)14と、厚さ
Lmmの空気層15を介して組合せた試料を示す。
測定条件は第1表の通りであり、同表において
は発泡アルミニウムの貫通孔の有無および種類、
は空気層の厚さ(Lmm)をそれぞれ示してい
る。
(Industrial Application Field) This invention relates to a metal porous body in which each pore is made to communicate with each other by creating cracks in the shell membrane of the pores of a foamed metal, which is composed of an aggregate of a large number of independent pores, and a method for manufacturing the same. It is related to. (Prior art) Methods for manufacturing porous metals having communicating pores include sintering metal powder or metal fibers, plating metal on a spongy plastic porous body having communicating pores, and then plating the plastic with metal. how to remove,
Many techniques have been developed, such as a method in which inorganic salt powder is sintered, molten metal is press-fitted into the voids, and after the metal solidifies, the inorganic salts are eluted. However, porous metals produced by these methods are powder,
Not only is the cost high because it uses methods such as sintering, plating, and press injection of molten metal, but it also has the drawbacks of limited product size and weak mechanical strength. In addition, foamed metal has excellent mechanical strength and rigidity, and can be produced at low cost.As it is made up of a collection of closed pores, it has extremely excellent properties as a lightweight structural material for building materials and structural members. In order to improve the functionality that can be applied to materials, etc.
It is necessary to form through holes in the closed-pore shell membrane.
In addition, there has been a demand for the development of architectural and structural materials that are lightweight and rigid, do not emit harmful gases in the event of a fire, and have excellent sound absorption effects. (Purpose of the Invention) This invention was made in order to eliminate such conventional drawbacks, and by creating cracks in the shell membrane of the pores of the foam metal, which is composed of a collection of independent pores, the suction effect, etc. The present invention provides a metal porous body with continuous pores and a method for producing the same, which is provided with advanced functions. (Structure of the Invention) The first gist of the present invention is that in a foamed metal consisting of an aggregate of independent pores with a porosity of 60% or more, each pore is completely closed by creating cracks in the shell membrane constituting each pore. They communicated with each other. The second gist of this invention is to produce a plate-shaped foamed metal consisting of an aggregate of closed pores with a porosity of 60% or more, and to compress or bend the metal to a point higher than its yield point, thereby causing cracks in the shell membrane. The pores are made to communicate with each other as a whole. In the above structure, fine through holes are provided in the metal foam shell membrane, which has a cell structure consisting of a collection of closed pores, to provide an extremely high sound absorption effect, and as a structural material, it has light weight, mechanical strength, heat resistance, A porous metal material with excellent weather resistance is obtained, and cracks in the shell membrane can be easily produced industrially by mechanical means such as cold pressing and bending. (Example) Figure 1 shows the cell structure (metallic structure) in a cross section of a foamed metal consisting of a collection of closed pores.The foamed metal is manufactured by a known method by adding a thickener and a foaming material to molten aluminum. did. Molten metals include aluminum, magnesium, zinc, tin,
It may also be a powder mixture of copper, lead, nickel, alloys thereof, ceramic, or the like. When foamed metal is cast and solidified, cracks may appear in some of the pore shell membranes and the pores may become continuous, but the foamed metal as a whole forms a collection of independent pores, and each pore is separated from the shell. closed by a membrane. When using porous metal as a sound-absorbing material, it is well known that a higher sound-absorbing effect can be obtained if it has a complex shape of communicating pores. If the metal foam is made to have communicating holes by creating cracks, it will function as a sound absorbing material. In the example shown below, the apparent specific gravity was 0.27 and the size of the pores was 2 to 7 mm, and the cast surface formed by foamed aluminum casting was cut and removed to expose the pores. FIG. 2 shows a compression load-strain curve when a foamed aluminum plate with a thickness of 15 mm is compressed. The shell membrane thickness of this sample is 10-200μ. Foamed aluminum has a cell structure with a complex shape without directionality, and exhibits a high elastic modulus against compressive loads. When the elastic limit A is exceeded, a part of the shell membrane buckles at point B, and then The shell membrane of each pore buckles and shows compressive load-strain curves as shown in B, C, and D, and all pores are completely covered with no overall decrease in compressive strength despite some load fluctuations. The compressive strength of a plate-like body without independent pores is shown from point D, which is crushed and the pores are completely connected to each other. In this case as well, the plate-like body, which is an aggregate of crushed shell membranes, has a communicating hole penetrating between its front and back surfaces. Figure 3 shows the cell structure of a foamed metal plate before compression; 1 is a foamed metal plate made of foamed aluminum;
2 indicates independent pores, and 3 indicates shell membrane. Figure 4 shows thickness 15
The cell structure of the foamed metal plate 10 is shown when the foamed metal plate 1 of mm is compressed to a plate-like body of 10 mm. In FIG. 4, the shell membrane 3 is buckled to form hair cracks 4, whereby the pores 2 communicate with each other. In this way, the front and back surfaces of the foamed metal plate 10 are configured to communicate through a complicated path, thereby allowing the pores to communicate with each other as a whole. When the thickness of the metal foam is thin, the shell membrane buckles uniformly, causing cracks at a point where the compressive strain is slightly larger than the yield point B, but as the thickness increases, part of the shell membrane buckles. There is a tendency for adjacent shell membranes to buckle, and the buckling to propagate sequentially. can cause cracks. FIG. 5 is an enlarged view of the crack occurrence area in FIG. 4. FIG. 6 is a bending load-deflection diagram when the aluminum foam plate is bent. In the case of bending, there is a large amount of deflection, unlike in the case of compression.
Cold working can easily cause cracks in the shell membrane. In order to create minute hair cracks, bending is performed up to point B, but the bending strength of the foamed metal rapidly decreases at point D, and it is completely destroyed at point E. When a load is repeatedly applied at point B, a loop is drawn as shown by the broken line, a permanent strain OF occurs, and a predetermined crack occurs in the shell membrane. FIG. 7 shows the occurrence of cracks due to bending, and the thickness of the foamed metal plate 11 is small and the thickness of each pore 2 is small.
A crack is formed in the shell membrane 3 so that the two parts communicate with each other. FIG. 8 shows a state in which the foamed metal plate 1 is partially compressed by the board stand 7 and the press mold 6. As shown in FIG. As a result, as shown in FIG. 9, a large number of compressed parts 5 are formed in the foamed metal plate 12, and these compressed parts 5, like the foamed metal plate 10, are cracked in the shell membrane 3 and the foamed metal plate 12 is expanded. A communicating hole passing through both the front and back surfaces of the metal plate 12 is formed. Instead of compressing the entire foam metal plate in this way,
It may be partially compressed. The advantage of partially compressing the material is that it can be used as a thick plate as a whole for construction and structural materials, and that any desired surface design can be obtained. Further, as shown in FIG. 10, the foamed metal plate 1 is rolled by a pair of rolls to continuously roll the foamed metal plate 1.
0 may be manufactured. FIG. 11 shows a state in which compression is partially performed by roll rolling, in which one of the pair of rolls is a normal cylindrical roll 8, and the other is a deformed roll 9 on which a protrusion corresponding to the compression part 5 is formed. The compressed portion 5 may be formed on the surface of the foamed metal plate 1 by sandwiching the foamed metal plate 1 between the rolls 8 and 9 and transporting the foamed metal plate 1 to produce the foamed metal plate 12. Figure 12 shows an example in which the shell membrane of the foamed metal plate 1 is made to crack by performing forward and reverse bending with rolls, 80 is a feed or guide roll, and 81 is a roll for causing cracks in the shell membrane. 82 is a straightening roll, and 83 is a drawing roll. FIG. 13 shows a sample in which the foamed metal plate 10 was combined with a sound insulating plate (non-porous iron plate) 14 via an air layer 15 having a thickness of L mm in order to measure the sound absorption effect.
The measurement conditions are as shown in Table 1. In the table, the presence or absence and type of through holes in aluminum foam,
indicates the thickness (Lmm) of the air layer.

【表】 上記測定結果は第14図に示すようになつた。
同図において、線21は貫通孔を有さない厚さ15
mmの発泡アルミニウム板(第3図に示す発泡金属
板1)を用い、空気層L=0の場合、線22は第
15図に示す直径1mmの貫通孔16を開孔率が断
面積比で1%となるように、等間隔に穿孔した発
泡アルミニウム板13(殻膜の亀裂のない)を用
いて空気層L=60mmに設定した場合、線23は厚
さ15mmで貫通孔を有しない発泡アルミニウム板
(発泡金属板1)を、ロール圧延により厚さ110mm
とし、殻膜にヘアークラツクを生じさせた連続気
孔の発泡金属板11を用いて空気層L=60mmに設
定した場合、線24は上記連続発泡アルミニウム
板11を用い、L=300mmに設定した場合の垂直
入射吸音率と周波数との関係をそれぞれ示してい
る。 同図において、線21は1000Hz以上の高周波域
で最高の吸音率0.66、線22は400Hzで最高の吸
音率0.91が得られるが、いずれも高い吸音率を示
す周波数範囲が狭いことが示されている。 これに対し、この発明によるものでは線23お
よび線24で示されるように、広い周波数域にわ
たつて高い吸音率が得られ、とくに空気層L=
300mmとした線24では低周波域で極めて高い吸
音率が得られた。なお、気孔率が60%以下の発泡
金属では殻膜が厚く、殻膜に亀裂を生じさせるこ
とは困難であるので、この発明による連続発泡金
属を得るためには、気孔率を60%以上とすること
が必要である。 第16図はこの発明による連続発泡アルミニウ
ム吸音板の実用例で、発泡金属板12を枠部材1
4と組合せて防音壁としたもの、第17図は適宜
の壁材34に対して溝形部材35を介して発泡金
属板12を両者間に空気層が形成されるように組
合せて建築壁材としたもの、第18図はパイプ4
4の内面に適宜の間隔を設け、円筒形に成形した
発泡金属板12を取付けてダクト型消音材とした
ものをそれぞれ示している。 (発明の効果) 以上説明したように、この発明は独立気孔の集
合体よりなる発泡金属の各気孔を全体的に互いに
連通させた状態、すなわち各気孔を構成する殻膜
に貫通孔を形成することによつて、複雑な形状を
した連通孔を非連続的に形成させ、これによつて
広い周波数域に亘つて高い吸音効果が得られ、か
つ機械的特性、耐熱性、耐候性等の優れた特性を
具備させたものであり、建築、構造材料、消音器
等に極めて有用である。また精密フイルタや触媒
坦体として利用することも可能である。
[Table] The above measurement results were as shown in FIG.
In the figure, the wire 21 has a thickness of 15 without a through hole.
When a foamed aluminum plate (foamed metal plate 1 shown in Fig. 3) with a diameter of When the air layer L is set to 60 mm using a foamed aluminum plate 13 (without cracks in the shell membrane) with holes perforated at equal intervals so as to have a thickness of 1%, the wire 23 is a foamed aluminum plate 13 with a thickness of 15 mm and no through holes. An aluminum plate (foamed metal plate 1) is rolled to a thickness of 110mm.
When the open-pore foamed metal plate 11 with hair cracks in the shell membrane is used and the air layer L is set to 60 mm, the wire 24 is the same as when the open-cell aluminum plate 11 is used and the air layer is set to L = 300 mm. The relationship between normal incidence sound absorption coefficient and frequency is shown. In the figure, line 21 shows the highest sound absorption coefficient of 0.66 in the high frequency range of 1000Hz or higher, and line 22 shows the highest sound absorption coefficient of 0.91 at 400Hz, but both show that the frequency range in which high sound absorption coefficients are shown is narrow. There is. On the other hand, as shown by lines 23 and 24, according to the present invention, a high sound absorption coefficient can be obtained over a wide frequency range, especially when the air layer L=
For line 24, which was 300 mm, an extremely high sound absorption coefficient was obtained in the low frequency range. Note that in metal foams with a porosity of 60% or less, the shell membrane is thick and it is difficult to cause cracks in the shell membrane, so in order to obtain the continuous foam metal according to the present invention, the porosity must be set to 60% or more. It is necessary to. FIG. 16 shows a practical example of the continuous foam aluminum sound absorbing plate according to the present invention, in which a foamed metal plate 12 is attached to a frame member 1.
Fig. 17 shows a construction wall material in which a foamed metal plate 12 is combined with a suitable wall material 34 via a groove-shaped member 35 so that an air layer is formed between the two. Figure 18 shows pipe 4.
A duct-type sound deadening material is shown in which foamed metal plates 12 formed into a cylindrical shape are attached to the inner surface of the drum 4 at appropriate intervals at appropriate intervals. (Effects of the Invention) As explained above, the present invention provides a state in which each pore of a foamed metal consisting of an aggregate of independent pores is communicated with each other as a whole, that is, through-holes are formed in the shell membrane constituting each pore. By forming communication holes in a discontinuous manner with a complex shape, a high sound absorption effect can be obtained over a wide frequency range, and it also has excellent mechanical properties, heat resistance, weather resistance, etc. It is extremely useful for architecture, structural materials, silencers, etc. It can also be used as a precision filter or catalyst carrier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は独立気孔の集合体よりなる発泡金属板
のセル構造(金属組織)の写真、第2図は厚さ15
mmの発泡アルミニウム板状体を圧縮した場合の圧
縮荷重−歪曲線図、第3図は発泡金属板の圧縮前
のセル構造を示す概略断面図、第4図は発泡金属
板を板状体に圧縮した発泡金属板のセル構造を示
す概略断面図、第5図は第4図の亀裂発生部の拡
大図、第6図は上記発泡アルミニウム板を曲げ加
工した場合の曲げ荷重−撓み線図、第7図は曲げ
加工による亀裂の発生状況を示す概略断面図、第
8図は独立気孔の発泡金属板に対して部分的に圧
縮を行つている状態を示す概略説明図、第9図は
部分的な圧縮部が形成された発泡金属板の斜視
図、第10図は独立気孔の発泡金属板を一対のロ
ールにより圧延して連続的に連続気孔の発泡金属
板を製造する状態の説明図、第11図はロール圧
延を部分的に圧縮を行う状態を示す説明図、第1
2図はロールにより独立気孔の発泡金属板の殻膜
に亀裂を生じさせる状態の説明図、第13図は吸
音効果を測定するための試料の概略断面図、第1
4図は上記試料による垂直入射吸音率と周波数と
の関係図、第15図は連続気孔の発泡金属板の別
の例を示す概略断面図、第16図〜第18図はそ
れぞれこの発明による連通気孔の発泡アルミニウ
ム板の応用例を示し、第16図は防音壁としたも
のの斜視図、第17図は建築壁材としたものの斜
視図、第18図はダクト型消音材としたものの斜
視図である。 1……独立気孔の発泡金属板、2……気孔、3
……殻膜、4……亀裂、5……圧縮部、6……プ
レス金型、8,9,81……ロール、10,1
1,12……連続気孔発泡金属板。
Figure 1 is a photograph of the cell structure (metallic structure) of a foamed metal plate consisting of a collection of independent pores, and Figure 2 is a photograph of the cell structure (metal structure) of a foamed metal plate consisting of a collection of closed pores.
Compression load-strain curve diagram when compressing a foamed aluminum plate of mm size, Figure 3 is a schematic cross-sectional view showing the cell structure of the foamed metal plate before compression, Figure 4 shows the foamed metal plate being compressed into a plate. A schematic cross-sectional view showing the cell structure of a compressed foamed metal plate, FIG. 5 is an enlarged view of the crack occurrence area in FIG. 4, and FIG. 6 is a bending load-deflection diagram when the foamed aluminum plate is bent. Fig. 7 is a schematic cross-sectional view showing how cracks occur due to bending, Fig. 8 is a schematic explanatory view showing a state in which a closed-pore foamed metal plate is partially compressed, and Fig. 9 is a partial view. FIG. 10 is an explanatory diagram of a state in which a foamed metal plate with closed pores is rolled by a pair of rolls to continuously produce a foamed metal plate with open pores, Figure 11 is an explanatory diagram showing a state in which roll rolling is partially compressed;
Figure 2 is an explanatory diagram of the state in which cracks are created in the shell membrane of a closed-cell foamed metal plate by a roll, Figure 13 is a schematic cross-sectional view of a sample for measuring the sound absorption effect, and Figure 1
Figure 4 is a diagram of the relationship between normal incidence sound absorption coefficient and frequency for the above sample, Figure 15 is a schematic sectional view showing another example of a foamed metal plate with open pores, and Figures 16 to 18 are diagrams showing connections according to the present invention. Examples of applications of foamed aluminum plates with pores are shown. Figure 16 is a perspective view of a soundproof wall, Figure 17 is a perspective view of a building wall material, and Figure 18 is a perspective view of a duct type sound deadening material. be. 1... Closed pore foam metal plate, 2... Pore, 3
... Shell membrane, 4 ... Crack, 5 ... Compression part, 6 ... Press mold, 8, 9, 81 ... Roll, 10, 1
1, 12...Open pore foam metal plate.

Claims (1)

【特許請求の範囲】 1 気孔率60%以上の独立気孔の集合体よりなる
発泡金属において、各気孔を構成する殻膜に亀裂
を生じさせることにより、各気孔を全体的に互い
に連通させたことを特徴とする金属多孔体。 2 気孔率60%以上の独立気孔の集合体よりなる
板状の発泡金属を製造し、これに降伏点以上の圧
縮または曲げ加工を行なうことにより、殻膜に亀
裂を生じさせて各気孔を全体的に互いに連通させ
ることを特徴とする金属多孔体の製造方法。
[Claims] 1. In a foamed metal consisting of an aggregate of closed pores with a porosity of 60% or more, the pores are made to communicate with each other as a whole by creating cracks in the shell membrane that constitutes each pore. A porous metal body characterized by: 2. Producing a plate-shaped foamed metal consisting of an aggregate of closed pores with a porosity of 60% or more, and then compressing or bending it above its yield point to create cracks in the shell membrane and completely eliminate each pore. 1. A method for producing a porous metal body, characterized in that the porous metal bodies are made to communicate with each other.
JP7510686A 1986-03-31 1986-03-31 Metallic porous body and its production Granted JPS62230940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7510686A JPS62230940A (en) 1986-03-31 1986-03-31 Metallic porous body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7510686A JPS62230940A (en) 1986-03-31 1986-03-31 Metallic porous body and its production

Publications (2)

Publication Number Publication Date
JPS62230940A JPS62230940A (en) 1987-10-09
JPH0238649B2 true JPH0238649B2 (en) 1990-08-31

Family

ID=13566586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7510686A Granted JPS62230940A (en) 1986-03-31 1986-03-31 Metallic porous body and its production

Country Status (1)

Country Link
JP (1) JPS62230940A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634991Y2 (en) * 1988-10-13 1994-09-14 株式会社ノダ Soundproof panel
KR100322253B1 (en) * 1998-06-02 2002-05-13 위성갑 Panel for honeycomb-foam aluminum soundproof wall
JP4845493B2 (en) * 2005-12-02 2011-12-28 キヤノン株式会社 Image forming apparatus
JP4895046B2 (en) * 2007-10-02 2012-03-14 公益財団法人鉄道総合技術研究所 Cell structure Porous metal material installation structure
CN103361504A (en) * 2012-04-08 2013-10-23 宋培荣 Foamed metal or non-metal material containing closed pores and open pores and method for preparing foamed metal or non-metal material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634087U (en) * 1979-08-22 1981-04-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634087U (en) * 1979-08-22 1981-04-03

Also Published As

Publication number Publication date
JPS62230940A (en) 1987-10-09

Similar Documents

Publication Publication Date Title
Yu et al. Metal foaming by a powder metallurgy method: Production, properties and applications
Han et al. Acoustic absorption behaviour of an open-celled aluminium foam
Arjunan et al. Acoustic performance of metallic foams
EP0588182B1 (en) Thermally and acoustically insulating composite element, manufacturing method thereof and its use
JP2010501794A (en) Shielding member, especially heat shield
DE3002775A1 (en) METHOD FOR PRODUCING A SOUND ABSORBING MATERIAL AND METHOD PRODUCED BY THE METHOD
JPH0238649B2 (en)
EP2728082B1 (en) Multi-layer brick and method for its production
RU2005138954A (en) VEHICLE CAB
EP1446537B2 (en) Dividing wall element for room partitions and the like with a filling of heat insulating material, especially mineral wool
EP1382031B1 (en) Silencer
WO2006119964A2 (en) Sound absorbing component
JP3127632B2 (en) Sound insulation structure
JPH02263631A (en) Aluminum composite material and manufacturing thereof
CN219100565U (en) Novel solid wood veneer composite foam aluminum sound absorption decorative plate
CN211923323U (en) Building board with excellent sound insulation effect
JPH0435584B2 (en)
JP2008285857A (en) Porous sound-absorbing material and sound-absorbing structure using the same
CN214530274U (en) Integral metal sound absorption and insulation board
JPH0413142B2 (en)
JPS6410179B2 (en)
JP4230441B2 (en) Magnesium alloy hollow metal sphere
CN219175631U (en) Sound insulation wall
JPH0476299B2 (en)
JPH06348281A (en) Sound absorbing board and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term