JP2008285857A - Porous sound-absorbing material and sound-absorbing structure using the same - Google Patents
Porous sound-absorbing material and sound-absorbing structure using the same Download PDFInfo
- Publication number
- JP2008285857A JP2008285857A JP2007130552A JP2007130552A JP2008285857A JP 2008285857 A JP2008285857 A JP 2008285857A JP 2007130552 A JP2007130552 A JP 2007130552A JP 2007130552 A JP2007130552 A JP 2007130552A JP 2008285857 A JP2008285857 A JP 2008285857A
- Authority
- JP
- Japan
- Prior art keywords
- sound
- absorbing
- low
- porous
- bulk density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
- Building Environments (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
Description
この発明は、鉄道用防音壁、道路用防音壁、一般のビルやコンサートホール等の壁面や間仕切り、地下道の天井面、更には電車やモノレール等の乗り物のカウル(若しくはスカート)、船舶等のエンジンルームの間仕切り壁等のように、吸音性能を必要とする種々の構造物や建造物更には乗り物等の吸音処理部において、防音用あるいは吸音用として用いられる吸音構造体に用いられる多孔質吸音材及びこれを用いた吸音構造体に関する。 The present invention relates to noise barriers for railways, noise barriers for roads, walls and partitions of ordinary buildings and concert halls, ceiling surfaces of underground passages, and cowls (or skirts) of vehicles such as trains and monorails, engines for ships, etc. Porous sound-absorbing material used for sound-absorbing structures used for sound-proofing or sound-absorbing in various structures and buildings that require sound-absorbing performance, such as room partition walls, and sound-absorbing treatment parts such as vehicles And a sound absorbing structure using the same.
種々の構造物や建造物更には乗り物等において用いられる多孔質吸音材については、一般に、アルミニウム又はアルミニウム合金からなるアルミニウム系繊維、銅又は銅合金からなる銅系繊維、ステンレス等の鉄系繊維、ニッケル繊維等の金属繊維を所定の形状に成形してなる金属繊維成形体や、ガラス繊維(ガラスウール)、鉱物繊維(ロックウール)、金属焼結材、金属発泡材等により形成されたものが用いられている(例えば、特公平4-5,721号、特開平5-209,241号、特開平11-3,082号等の各公報参照)。 For porous sound-absorbing materials used in various structures, buildings, and vehicles, in general, aluminum fibers made of aluminum or aluminum alloys, copper fibers made of copper or copper alloys, iron fibers such as stainless steel, Metal fiber molded bodies formed by molding metal fibers such as nickel fibers into a predetermined shape, and those formed by glass fibers (glass wool), mineral fibers (rock wool), metal sintered materials, metal foam materials, etc. (See, for example, Japanese Patent Publication Nos. 4-5,721, JP-A-5-209,241, and JP-A-11-3,082).
しかしながら、これらの多孔質吸音材の吸音特性は、その材質、嵩密度、厚さ等によりほぼ一義的に決まってしまう。このため、多孔質吸音材の設置場所や使用環境によって、特定周波数帯域の騒音等を効率良く吸収する必要があったり、低周波数帯域又は高周波数帯域で比較的広い周波数帯域の騒音等を吸収する必要があったり、あるいは、低周波数帯域から高周波数帯域までの広い周波数帯域の騒音等を吸収する必要がある等、その吸音特性を変える必要がある場合には、ある特定の材料を選択したり、特有の嵩密度及び厚さを有する多孔質吸音材を形成したり、更には、複数種類の多孔質吸音材を製作してこれらを併用する等の必要が生じ、所望の吸音特性を有する多孔質吸音材を製造する上で経験と試行錯誤に頼らざるを得ず、多大な手間と費用を必要としていた。 However, the sound absorption characteristics of these porous sound absorbing materials are almost uniquely determined by the material, bulk density, thickness, and the like. For this reason, it is necessary to efficiently absorb noise in a specific frequency band depending on the installation location and use environment of the porous sound absorbing material, or absorb noise in a relatively wide frequency band in a low frequency band or a high frequency band. If there is a need to change the sound absorption characteristics, such as when it is necessary to absorb noise in a wide frequency band from a low frequency band to a high frequency band, etc., a specific material can be selected. It is necessary to form a porous sound-absorbing material having a specific bulk density and thickness, or to produce a plurality of types of porous sound-absorbing materials and to use them together, and to have a desired sound-absorbing characteristic. In producing quality sound-absorbing materials, we had to rely on experience and trial and error, and required a great deal of labor and cost.
例えば、特開平1-296,297号公報には、金属切削屑を樹脂バインダーの存在下に圧縮成形する際に、グラスウール等の吸音に寄与する材料を挟持させ、金属切削屑の吸音特性をグラスウール等の吸音特性で補うようにした吸音材が開示されており、また、特開平4-333,897号公報には、グラスウールやロックウール等の綿状繊維質吸音材層とアルミニウム系多孔質板とを積層させ、吸音率を高めると共に広い周波数帯域に亘って優れた吸音特性を付与せしめた吸音パネルが開示されており、更に、特開平8-311,823号公報には、金属繊維にバインダーを混入して集積体とし、この集積体を多孔質の板状に成形してなり、再加圧により吸音特性を変更できるようにし、これによって設置される場所に応じた吸音特性を付与することができる多孔質吸音板が開示されている。 For example, in Japanese Patent Laid-Open No. 1-296,297, when metal cutting waste is compression-molded in the presence of a resin binder, a material that contributes to sound absorption such as glass wool is sandwiched, and the sound absorption characteristics of the metal cutting waste are set such as glass wool. A sound-absorbing material supplemented with sound-absorbing characteristics is disclosed, and JP-A-4-333,897 discloses laminating a cotton-like fibrous sound-absorbing material layer such as glass wool or rock wool and an aluminum-based porous plate. In addition, a sound absorbing panel is disclosed in which a sound absorption coefficient is increased and excellent sound absorbing characteristics are provided over a wide frequency band. Further, Japanese Patent Laid-Open No. 8-311,823 discloses that a binder is mixed into a metal fiber to obtain an integrated body. A porous sound-absorbing plate that is formed into a porous plate shape and can change the sound-absorbing characteristic by re-pressurization, and can thereby impart the sound-absorbing characteristic according to the place where it is installed Open It is.
しかしながら、金属切削屑の吸音特性をグラスウール等の吸音特性で補う吸音材については、リサイクル性が悪いという問題があるほか、必ずしも十分な吸音率が得られず、また、綿状繊維質吸音材層とアルミニウム系多孔質板とを積層させた吸音パネルについては、パネル単体としての強度及び剛性が不足し、更に、再加圧により吸音特性を変更できるようにした多孔質吸音板については、吸音材の厚さが変化し、吸音材の背後に空気層を形成するのに余分な手間がかかるという問題があり、いずれの場合も吸音材単体では吸音特性を発現する周波数域のコントロールに限界がある。 However, the sound absorbing material that supplements the sound absorbing property of metal cutting waste with the sound absorbing property such as glass wool has a problem that the recyclability is poor, and a sufficient sound absorption rate cannot always be obtained, and the cotton-like fibrous sound absorbing material layer The sound absorbing panel in which the aluminum-based porous plate is laminated is insufficient in strength and rigidity as a single panel, and the sound absorbing material can be changed by re-pressurization. There is a problem that it takes extra time to form an air layer behind the sound absorbing material, and there is a limit to the control of the frequency range where the sound absorbing material expresses the sound absorbing characteristics in any case .
また、このような多孔質吸音材を用いて吸音処理や防音処理を行う場合、多孔質吸音材が取り付けられる被処理体の剛性が不足し、多孔質吸音材側にある程度の剛性が要求される場合があるが、このような場合には、補剛材(枠材やリブ材等)使用等の手段を施す必要が生じ、補剛材の形状、寸法によっては十分な吸音特性が得られない。 In addition, when performing sound absorption processing and soundproofing processing using such a porous sound absorbing material, the rigidity of the target object to which the porous sound absorbing material is attached is insufficient, and a certain degree of rigidity is required on the porous sound absorbing material side. In such a case, it is necessary to use a stiffener (frame material, rib material, etc.), and sufficient sound absorption characteristics cannot be obtained depending on the shape and dimensions of the stiffener. .
更に、設置場所や使用環境によって要求される種々の吸音特性に対応するための方法として、例えば、特開平5-71,109号公報や特開2000-276,178号公報には、第1の多孔質材層、第1の空気層、第2の多孔質材層、第2の空気層、及び背後層(遮音材や強度部材)を備え、第1と第2の多孔質材層については第1の多孔質材層に多数の小孔を設けたり、あるいは、第1の多孔質材層の面密度を第2の多孔質材層の面密度より小さくし、第1の多孔質材層及び空気層により低周波数領域の騒音等を吸収すると共に、第2の多孔質材層及び空気層により高周波数領域の騒音等を吸収するようにし、これによって低周波数領域から高周波数領域に亘る吸音性能を得るようにした吸音構造体が開示されており、また、特開2001-166,780号公報や特開2001-318,679号公報には、左右一対の多孔質吸音材の間に、波型形状板や仕切体(多数の横板と縦板とで形成されて左右の多孔質吸音材に向けて開口する左右の吸音空間を形成するもの)を挟み込み、波型形状板のピッチや仕切体で形成される左右の吸音空間の奥行き寸法を変化させて低周波数領域から高周波数領域に亘る吸音性能を得るようにした両面吸音構造体が開示されている。 Furthermore, as a method for coping with various sound absorption characteristics required depending on the installation location and use environment, for example, Japanese Patent Application Laid-Open Nos. 5-71,109 and 2000-276,178 disclose a first porous material layer. , A first air layer, a second porous material layer, a second air layer, and a back layer (sound insulating material and strength member), and the first and second porous material layers are the first porous A large number of small holes are provided in the material layer, or the surface density of the first porous material layer is made smaller than the surface density of the second porous material layer, and the first porous material layer and the air layer are used. Absorbing noise in the low frequency region and absorbing noise in the high frequency region by the second porous material layer and the air layer, thereby obtaining sound absorption performance from the low frequency region to the high frequency region. A sound absorbing structure is disclosed, and Japanese Patent Laid-Open No. 2001-166,780 and Japanese Patent Laid-Open No. 2001-318,679 are also disclosed. In between the pair of left and right porous sound absorbing materials, a corrugated plate or partition (a left and right sound absorbing space formed by a large number of horizontal plates and vertical plates and opening to the left and right porous sound absorbing materials is provided. Double-sided sound absorption structure that obtains sound absorption performance from the low frequency range to the high frequency range by changing the pitch of the corrugated plate and the depth dimension of the left and right sound absorption spaces formed by the partitions. The body is disclosed.
しかしながら、前者(特開平5-71,109号公報や特開2000-276,178号公報)の吸音構造体においては、全体で5層の層構造が必要になり、全体の厚さが大きくなり過ぎて用途が著しく制限されるという問題があり、また、後者(特開2001-166,780号公報や特開2001-318,679号公報)の両面吸音構造体においては、全体の厚さを抑制しつつ両面からの騒音等を吸収できるという利点はあるが、波型形状板や仕切体で形成される吸音空間の幅寸法や奥行き寸法を変化させることで低周波数領域から高周波数領域に亘る吸音性能を得るものであることから、対応できる吸音特性には限界がある。 However, in the former (JP-A-5-71,109 and JP-A-2000-276,178), the sound absorbing structure requires a five-layer structure as a whole. In the double-sided sound absorbing structure of the latter (Japanese Patent Laid-Open No. 2001-166,780 and Japanese Patent Laid-Open No. 2001-318,679), noise from both sides is suppressed while suppressing the overall thickness. However, it is possible to obtain sound absorption performance from the low frequency range to the high frequency range by changing the width and depth dimensions of the sound absorption space formed by the corrugated plate or partition. Therefore, there is a limit to the sound absorption characteristics that can be handled.
そこで、本発明者らは、これら従来の吸音構造体における種々の問題を解決できるものとして、多孔質吸音材で閉塞された多数の透音孔を有する音源対向部と、この音源対向部の背後に空気層を形成する層形成部又は音源対向部とで構成され、各透音孔に対応して形成される積層構造の各々を吸音単位構造としたとき、多数の吸音単位構造を備えた吸音構造体であって、上記空気層については、所定の方向に多数の吸音単位構造に亘って同じ層厚で連続すると共に、この同じ層厚が連続する方向に対して同じ平面内で直交する方向には異なる複数の層厚が形成され、また、上記の多数の透音孔については、同じ層厚が連続する空気層の長さ方向に沿って異なる円相当径を有する複数種類の透音孔が配置され、更に、上記多孔質吸音材については、同じ層厚が連続する空気層の長さ方向に沿って連続する帯状に形成された吸音構造体を提案した(特開2004-37,582号公報参照)。
本発明者らは、先に提案した吸音構造体の更なる改良について鋭意検討した結果、意外なことには、多孔質吸音材に嵩密度が比較的高くて透音性の低い低透音部から嵩密度が比較的小さくて透音性の高い高透音部までの異なる透音特性を持つ複数種類の透音部を形成することにより、設置場所や使用環境に合わせて吸音特性を広範にかつ容易に制御でき、また、その設計が容易であるだけでなく、吸音構造体の構造を簡略化してその製造コストをより低減できることを見出し、本発明を完成した。 As a result of earnestly examining the further improvement of the previously proposed sound absorbing structure, the present inventors have surprisingly found that the sound absorbing part has a relatively high bulk density and a low sound transmitting part. By forming multiple types of sound-transmitting parts with different sound-transmitting properties ranging from high-sound transmitting parts with relatively low bulk density to high sound-transmitting properties, a wide range of sound-absorbing characteristics can be selected according to the installation location and usage environment. The present invention has been completed by finding that it can be easily controlled and not only easy to design, but also simplifies the structure of the sound absorbing structure to reduce its manufacturing cost.
従って、本発明の目的は、設置場所や使用環境に合わせて種々の吸音特性を有する吸音構造体を製造するのに最適な多孔質吸音材を提供することにある。 Accordingly, an object of the present invention is to provide a porous sound-absorbing material that is optimal for producing a sound-absorbing structure having various sound-absorbing characteristics in accordance with the installation location and use environment.
また、本発明の他の目的は、吸音特性を広範にかつ容易に制御でき、また、その設計が容易であり、ある特定周波数帯域の騒音等を効率良く吸収したり、また、低周波数帯域又は高周波数帯域で比較的広い周波数帯域の騒音等を吸収したり、更には、低周波数帯域から高周波数帯域までの広い周波数帯域の騒音等を吸収する必要がある場合等、設置場所や使用環境によって吸音特性を変える必要がある場合に容易に対応することができ、しかも、容易にかつ安価に製造することができる吸音構造体を提供することにある。 Another object of the present invention is to broadly and easily control the sound absorption characteristics, and to facilitate its design, to efficiently absorb noise in a specific frequency band, etc. Depending on the installation location and usage environment, such as when absorbing noise in a relatively wide frequency band in a high frequency band, and further, absorbing noise in a wide frequency band from a low frequency band to a high frequency band, etc. An object of the present invention is to provide a sound absorbing structure that can easily cope with a change in sound absorption characteristics and can be easily manufactured at low cost.
すなわち、本発明は、金属繊維及び/又は金属切削屑からなる金属材料を所定の形状に成形して得られた多孔質吸音材であって、嵩密度が相対的に高い低透音部とこの低透音部より嵩密度の小さい1又は2以上の高透音部が形成されていることを特徴とする多孔質吸音材である。本発明によれば、複数の広い周波数域での吸音特性を選定することが可能となり、有効な多孔質吸音材を提供することが可能になる。 That is, the present invention is a porous sound-absorbing material obtained by molding a metal material made of metal fibers and / or metal cutting scraps into a predetermined shape, and a low sound-transmitting part having a relatively high bulk density and The porous sound-absorbing material is characterized in that one or two or more high sound-transmitting parts having a bulk density lower than that of the low sound-transmitting part are formed. According to the present invention, it is possible to select sound absorption characteristics in a plurality of wide frequency ranges, and it is possible to provide an effective porous sound absorbing material.
また、本発明は、金属繊維及び/又は金属切削屑からなる金属材料を所定の形状に成形して形成された多孔質吸音材からなり、嵩密度が相対的に高い低透音部とこの低透音部より嵩密度の小さい1又は2以上の高透音部を有する第一の音源対向部材と、この音源対向部材から所定の間隔を置いて配置され、音源対向部材の背後に空気層を形成する層形成部材又は第二の音源対向部材とを備えていることを特徴とする吸音構造体である。本発明によれば、マスキング材を用いることなく音源側に多孔質吸音材を配設することができるために、音源側全面にて吸音特性を発揮できる有効な吸音構造体を提供できる。 The present invention also comprises a porous sound-absorbing material formed by molding a metal material made of metal fibers and / or metal cutting scraps into a predetermined shape, and a low sound transmission part having a relatively high bulk density and the low sound transmission part. A first sound source facing member having one or two or more high sound transmitting portions having a bulk density smaller than that of the sound transmitting portion, a predetermined distance from the sound source facing member, and an air layer behind the sound source facing member. A sound absorbing structure comprising a layer forming member to be formed or a second sound source facing member. According to the present invention, since the porous sound absorbing material can be disposed on the sound source side without using a masking material, it is possible to provide an effective sound absorbing structure capable of exhibiting sound absorbing characteristics over the entire sound source side.
本発明において、多孔質吸音材に形成される低透音部と高透音部とについては、嵩密度が相対的に高い低透音部が1箇所とこの低透音部より嵩密度の小さい高透音部が少なくとも1箇所存在すればよく、高透音部についてその嵩密度の違いによる種類数やその合計数、低透音部及び高透音部の嵩密度(透音性)、更には多孔質吸音材の形状や低透音部及び高透音部の平面形状及び配置等については、特に制限されるものではなく、吸音構造体を設計する際に要求される吸音特性に基づいて、任意に設定することができる。 In the present invention, the low sound transmission part and the high sound transmission part formed in the porous sound absorbing material have one low sound transmission part having a relatively high bulk density and a lower bulk density than the low sound transmission part. It suffices that at least one high sound transmission part exists, and the number of types and the total number thereof due to the difference in the bulk density of the high sound transmission part, the bulk density (sound permeability) of the low sound transmission part and the high sound transmission part, The shape of the porous sound-absorbing material and the planar shape and arrangement of the low sound-transmitting part and the high sound-transmitting part are not particularly limited, and are based on the sound-absorbing characteristics required when designing the sound-absorbing structure. Can be set arbitrarily.
また、低透音部及び高透音部の嵩密度(透音性)については、例えば、金属材料がアルミニウム系材料である場合、低透音部の嵩密度(Bd-H)が1.0g/cm3以上2.0g/cm3以下の範囲内であって、高透音部の嵩密度(Bd-L)が0.5g/cm3以上1.0g/cm3以下であり、より好ましくはこれら低透音部と高透音部との嵩密度比(Bd-H/Bd-L)が1.25〜4の範囲内であるのがよい。低透音部の嵩密度(Bd-H)が2.0g/cm3より大きいと、音は透過せず反射してしまい吸音効果が発揮できず、また、高透音部の嵩密度(Bd-L)が0.5g/cm3より小さいと、通気抵抗が小さく、音は吸音されずにそのまま透過してしまい、吸音効果が発揮できない。また、嵩密度比(Bd-H/Bd-L)が1.25より小さいと、低透音部と高透音部との間での吸音性能に差が生じないので、多孔質吸音材をそのまま吸音材として利用した際における吸音特性を広い周波数領域に対応させることが困難になり、吸音構造体として利用した場合においては、吸音構造体の表面側開口部を構成する為には透音性能の差が小さすぎ開口部形状の設計が困難となる。更に、嵩密度比(Bd-H/Bd-L)が4より大きくなると製造が困難になるという問題が生じる。 As for the bulk density (sound transmissivity) of the low sound transmission part and the high sound transmission part, for example, when the metal material is an aluminum material, the bulk density (Bd-H) of the low sound transmission part is 1.0 g. / cm 3 or more and 2.0 g / cm 3 or less, and the bulk density (Bd-L) of the high sound transmission part is 0.5 g / cm 3 or more and 1.0 g / cm 3 or less, more preferably. The bulk density ratio (Bd-H / Bd-L) between these low sound transmission parts and high sound transmission parts is preferably in the range of 1.25-4. If the bulk density (Bd-H) of the low sound transmission part is larger than 2.0 g / cm 3 , the sound is not transmitted and reflected, and the sound absorbing effect cannot be exhibited. Also, the bulk density (Bd If -L) is less than 0.5 g / cm 3 , the ventilation resistance is low, and the sound is transmitted without being absorbed, and the sound absorbing effect cannot be exhibited. Also, if the bulk density ratio (Bd-H / Bd-L) is less than 1.25, there will be no difference in the sound absorption performance between the low sound transmission part and the high sound transmission part. When used as a sound absorbing material as it is, it becomes difficult to make the sound absorption characteristics compatible with a wide frequency range, and when used as a sound absorbing structure, the sound transmission performance is required in order to configure the surface side opening of the sound absorbing structure. This difference is too small, making it difficult to design the opening shape. Furthermore, when the bulk density ratio (Bd-H / Bd-L) is larger than 4, there arises a problem that production becomes difficult.
更に、多孔質吸音材の形状については、この多孔質吸音材が適用される吸音構造体の形状に応じて、例えば、長方形状、正方形状、帯状、円形状、楕円形状等の適宜の形状を採用することができる。また、低透音部及び高透音部の平面形状及び配置等については、例えば、透音性の低い低透音部を海とすると共に透音性の高い1又は2以上の高透音部を島としたり、また、海となる低透音部の中に島となる多数の高透音部を配置したり、更には、低透音部の中に配置される多数の高透音部について、その大きさを変えたり、及び/又は、嵩密度(透音性)の異なる複数の種類で構成する等の手段を採用してもよい。多孔質吸音材の形状や低透音部及び高透音部の平面形状及び配置等について、このような手段を採用することによって、各高透音部とその背後の空気層とで構成されるヘルムホルツ共鳴構造における吸音特性の設計を容易に行うことができる。なお、この場合にあっては、高透音部により透音開口を形成し、低透音部と高透音部との境界部により頸部が構成されることになる。 Furthermore, for the shape of the porous sound absorbing material, depending on the shape of the sound absorbing structure to which the porous sound absorbing material is applied, for example, an appropriate shape such as a rectangular shape, a square shape, a strip shape, a circular shape, an elliptical shape, etc. Can be adopted. Moreover, about the planar shape and arrangement | positioning, etc. of a low sound transmission part and a high sound transmission part, for example, the low sound transmission part with low sound transmission property is made into the sea, and one or two or more high sound transmission parts with high sound transmission property are used. The island is also used as an island, and a large number of high sound transmission parts that are islands are arranged in the low sound transmission part that is the sea. Furthermore, a large number of high sound transmission parts are arranged in the low sound transmission part. The size may be changed, and / or a plurality of types having different bulk densities (sound transmissivity) may be employed. By adopting such means for the shape of the porous sound-absorbing material and the planar shape and arrangement of the low sound-transmitting part and the high sound-transmitting part, each sound-transmitting part and the air layer behind it are configured. Sound absorption characteristics in the Helmholtz resonance structure can be easily designed. In this case, the sound transmission opening is formed by the high sound transmission portion, and the neck portion is constituted by the boundary portion between the low sound transmission portion and the high sound transmission portion.
更に、本発明の多孔質吸音材については、透音性の低い低透音部を海とすると共に透音性の高い1又は2以上の高透音部を島とする構成に加えて、その低透音部の形状及び嵩密度を多孔質吸音材がその形状を維持するのに必要な形状及び剛性を有するものとすることにより、多孔質吸音材の周縁部にその補強や取付けのための手段を設ける必要が無くなり、それだけ安価に吸音構造体を製造することができる。 Furthermore, for the porous sound absorbing material of the present invention, in addition to the configuration in which the low sound-transmitting portion having low sound permeability is the sea and one or two or more high sound-transmitting portions having high sound permeability are the islands, By setting the shape and bulk density of the low sound-transmitting part to the shape and rigidity necessary for the porous sound-absorbing material to maintain its shape, it is necessary to reinforce and attach it to the peripheral part of the porous sound-absorbing material. There is no need to provide means, and the sound absorbing structure can be manufactured at a low cost.
本発明の多孔質吸音材は、金属繊維及び/又は金属切削屑からなる金属材料を所定の形状に成形して製造されるものであり、金属材料としては、例えば、アルミニウム又はアルミニウム合金からなるアルミニウム系材料、銅又は銅合金からなる銅系材料、ステンレス等の鉄系材料、ニッケル又はニッケル合金からなるニッケル系材料等を挙げることができ、軽量化や耐食性等の観点から、好ましくはアルミニウム系材料である。 The porous sound-absorbing material of the present invention is manufactured by molding a metal material made of metal fibers and / or metal cutting scraps into a predetermined shape. Examples of the metal material include aluminum made of aluminum or an aluminum alloy. -Based materials, copper-based materials composed of copper or copper alloys, iron-based materials such as stainless steel, nickel-based materials composed of nickel or nickel alloys, etc., preferably aluminum-based materials from the viewpoint of weight reduction and corrosion resistance It is.
また、本発明の多孔質吸音材において、その成形材料として用いられた金属材料、特にこの金属材料が金属切削屑である場合には、この金属切削屑を所定の形状に成形した際に互いに絡まり合った金属切削屑の交点の一部又は全部が無機接着剤又はロウ付けの手段により接合されているのがよく、これによって、成形された多孔質吸音材に良好な形状維持性を付与し、吸音構造体の製造時の作業性を高めることができるだけでなく、引張強度、曲げ強度、圧縮強度等の機械的強度を実用的範囲に維持しつつ、低透音部や高透音部の嵩密度を調整することができ、多孔質吸音材の製造が容易になる。 Further, in the porous sound-absorbing material of the present invention, when the metal material used as the molding material, particularly when the metal material is metal cutting waste, the metal cutting waste is entangled with each other when formed into a predetermined shape. Part or all of the intersections of the combined metal cutting scraps should be joined by an inorganic adhesive or brazing means, thereby giving good shape maintenance to the molded porous sound absorbing material, Not only can the workability during the production of the sound absorbing structure be improved, but the bulk of the low sound transmission part and the high sound transmission part can be maintained while maintaining the mechanical strength such as tensile strength, bending strength, and compression strength within a practical range. The density can be adjusted, and the production of the porous sound absorbing material becomes easy.
本発明の多孔質吸音材の製造方法については、目的とする低透音部と高透音部を備えた多孔質吸音材の製造が可能であれば従来公知のどのような方法であってもよく、特に制限されるものではないが、アルミ切削屑を用いて低透音部と高透音部とを備えた多孔質吸音材を製造する場合を例にして説明すると、例えば、以下のような方法を例示することができる。 With respect to the method for producing the porous sound absorbing material of the present invention, any conventionally known method can be used as long as the porous sound absorbing material having the desired low sound transmitting portion and high sound transmitting portion can be manufactured. Well, although not particularly limited, a case where a porous sound-absorbing material having a low sound-transmitting part and a high sound-transmitting part is manufactured using aluminum cutting waste will be described as an example. Various methods can be illustrated.
先ず、第一の方法としては、アルミ切削屑を第一段圧縮成形して高透音部の嵩密度と同じ相対的に低い嵩密度を有する低嵩密度成形板を成形し、次いでこの低嵩密度成形板の一部を第二段圧縮成形して目的とする相対的に高い嵩密度を有する低透音部を形成し、これによって嵩密度が相対的に高い低透音部とこの低透音部より嵩密度の小さい高透音部を有する多孔質吸音材を製造する方法であり、この場合には2段階の成形工程が必要になる。 First, as a first method, aluminum cutting waste is first compression-molded to form a low bulk density molded plate having a relatively low bulk density that is the same as the bulk density of the high sound transmission part. A part of the density molded plate is subjected to second-stage compression molding to form a target low sound transmission part having a relatively high bulk density, and thereby a low sound transmission part having a relatively high bulk density and the low sound transmission part. This is a method for producing a porous sound-absorbing material having a high sound-transmitting part having a bulk density smaller than that of the sound part. In this case, a two-step molding process is required.
また、第二の方法としては、相対的に高い嵩密度を有する低透音部を成形する部分とこの低透音部の嵩密度より低い嵩密度の高透音部を成形する部分とを有してこれら低透音部と高透音部とを同時に成形できる金型を用意し、一段で圧縮成形して嵩密度が相対的に高い低透音部とこの低透音部より嵩密度の小さい高透音部とを有する多孔質吸音材を製造する方法であり、この場合には1回の成形工程で加工が可能である。 The second method includes a part for forming a low sound transmission part having a relatively high bulk density and a part for forming a high sound transmission part having a bulk density lower than that of the low sound transmission part. A mold capable of simultaneously molding the low sound transmission part and the high sound transmission part is prepared, and the low sound transmission part having a relatively high bulk density by compression molding in one step and the bulk density higher than the low sound transmission part. This is a method for producing a porous sound-absorbing material having a small high sound-transmitting part, and in this case, it can be processed by a single molding step.
そして、より好ましくは、上記の第一及び第二の方法において、アルミ切削屑を圧縮成形して所定の低透音部と高透音部とを有する成形物を製造した後、この成形物に対して接着剤を含浸させ、互いに絡まりあったアルミ切削屑の交点の一部又は全部を接合するか、あるいは、アルミ切削屑としてアルミニウム又はアルミニウム合金からなるアルミニウム材の表面にアルミニウム合金からなるロウ材をクラッドしたアルミクラッド材を切削して得られたアルミクラッド切削屑を用い、このミクラッド切削屑を圧縮成形して所定の低透音部と高透音部とを有する成形物を製造した後に所定のフラックスを塗布し、ロウ付け炉を用いたり、不活性ガス(通常、窒素ガス)雰囲気中で互いに絡まりあったアルミ切削屑の交点の一部又は全部を接合するのがよい。 More preferably, in the first and second methods described above, after the aluminum cutting waste is compression molded to produce a molded product having a predetermined low sound transmission part and high sound transmission part, In contrast, the adhesive is impregnated, and a part or all of the intersections of the tangled aluminum cutting scraps are joined, or the aluminum cutting brazing material made of aluminum or aluminum alloy as the aluminum cutting scraps After using the aluminum clad cutting scrap obtained by cutting the aluminum clad material clad with the clad, compression molding the micladding cutting scrap to produce a molded product having a predetermined low sound transmission portion and high sound transmission portion. Apply some flux, and use a brazing furnace or join some or all of the intersections of aluminum swarf that are entangled with each other in an inert gas (usually nitrogen gas) atmosphere Good it is.
また、上記本発明の多孔質吸音材を用いて製造される吸音構造体については、それがヘルムホルツ共鳴構造を利用した吸音構造体として利用する場合には、例えば、1つの吸音室に対してその中央部に対応する位置に1つの嵩密度の低い高透音部が形成された多孔質吸音材を取り付け、この高透音部をヘルムホルツ共鳴構造の開口部(頸部)として吸音構造体を構成したり、あるいは、1つの吸音室に対して複数の嵩密度の低い高透音部が形成された多孔質吸音材を取り付け、この複数の高透音部をヘルムホルツ共鳴構造の開口部(頸部)として吸音構造体を構成することができる。 In addition, regarding a sound absorbing structure manufactured using the porous sound absorbing material of the present invention, when it is used as a sound absorbing structure using a Helmholtz resonance structure, for example, the sound absorbing structure is used for one sound absorbing chamber. A porous sound-absorbing material with a low-bulk-density high sound-transmitting part is attached at a position corresponding to the central part, and this sound-transmitting part is used as an opening (neck part) of the Helmholtz resonance structure to form a sound-absorbing structure Alternatively, a plurality of low-bulk-density porous sound-absorbing materials are attached to one sound-absorbing chamber, and the plurality of highly-sound-transmitting portions are opened in the Helmholtz resonance structure (neck portion). ) As a sound absorbing structure.
そして、この場合、従来用いられていたマスキング材を用いることなく、多孔質吸音材を音源側に単に配設するだけで吸音構造体を形成することができる。このようにして形成された吸音構造体は、嵩密度が相対的に高い低透音部とこの低透音部より嵩密度の小さい1又は2以上の高透音部を有する第一の音源対向部材と、この音源対向部材から所定の間隔を置いて配置され、音源対向部材の背後に空気層を形成する層形成部材又は第二の音源対向部材とを備えている吸音構造体である。このような吸音構造体の場合、嵩密度の高い低透音部と嵩密度の低い高透音部の個数大きさ、嵩密度を適宜選定することにより、設置場所や使用環境に合わせて吸音特性を広範にかつ容易に制御でき、また、その設計が容易であるだけでなく、吸音構造体の構造を簡略化してその製造コストをより低減できるという利点がある。 In this case, the sound absorbing structure can be formed by simply disposing the porous sound absorbing material on the sound source side without using a masking material that has been conventionally used. The sound-absorbing structure formed in this way is a first sound source facing portion having a low sound-transmitting part having a relatively high bulk density and one or more high sound-transmitting parts having a bulk density lower than that of the low sound-transmitting part. The sound absorbing structure includes a member and a layer forming member or a second sound source facing member that is disposed at a predetermined interval from the sound source facing member and forms an air layer behind the sound source facing member. In the case of such a sound absorbing structure, by appropriately selecting the number of bulk sounding parts having a high bulk density and a low sounding part having a low bulk density, and the bulk density, sound absorption characteristics can be selected according to the installation location and the use environment. In addition to being easy to design, the structure of the sound absorbing structure can be simplified to reduce the manufacturing cost.
この本発明の吸音構造体において、好ましくは、第一及び第二の音源対向部材を多孔質吸音材で帯状に形成された複数の帯状吸音材で構成し、各帯状吸音材には低透音部と1又は2以上の高透音部とを形成するのがよく、これによって吸音特性を広範の音域に亘って調整できると共に、低透音部に入射する音波についても、従来の孔開き板と違い、音波をある程度透過させつつ吸音するので、その吸音効率が向上するという利点がある。 In the sound absorbing structure of the present invention, preferably, the first and second sound source facing members are constituted by a plurality of band sound absorbing materials formed in a band shape with a porous sound absorbing material, and each band shaped sound absorbing material has a low sound transmission property. And one or two or more highly sound permeable parts, and the sound absorption characteristics can be adjusted over a wide range of sound, and a conventional perforated plate can also be used for sound waves incident on the low sound permeable parts. Unlike the above, sound absorption is performed while transmitting sound waves to some extent, so that the sound absorption efficiency is improved.
また、本発明の吸音構造体において、好ましくは、第一及び第二の音源対向部材について、透音性の低い低透音部が海となり、透音性の高い1又は2以上の高透音部が島となる構造を付与するのがよく、これによって、低透音部の嵩密度を音源対向部材がそれ自体で形状を維持するのに必要な高さにすることにより、音源対向部材それ自体に必要な形状及び剛性を付与することができ、それだけ吸音構造体を構成する部品点数を少なくして廉価に製造できるほか、透音性の低い低透音部での音波の透過による吸音効率が向上するというという利点がある。なお、吸音室で吸音されなかった音波のエネルギーの一部は、再び、低透音部や高透音部を透過し音源側に向けて伝播されるが、従来の孔開き板の表面で直接反射されて音源側に伝播されるエネルギーと比較して、低透音部や高透音部を往復で透過することにより吸収されるエネルギー量の方が大きいことは言うまでも無い。 In the sound-absorbing structure of the present invention, preferably, for the first and second sound source facing members, the low sound-transmitting portion with low sound transmission becomes the sea, and one or more high sound transmission with high sound transmission is provided. It is preferable to provide a structure in which the part becomes an island, and thereby the volume density of the low sound transmission part is set to a height necessary for the sound source facing member to maintain its shape by itself. The necessary shape and rigidity can be given to itself, and it can be manufactured inexpensively by reducing the number of parts that make up the sound absorbing structure, and sound absorption efficiency by transmitting sound waves in low sound transmission parts with low sound transmission Has the advantage of improving. A part of the energy of the sound wave that has not been absorbed in the sound absorbing chamber is transmitted again toward the sound source through the low sound transmission part and the high sound transmission part, but directly on the surface of the conventional perforated plate. It goes without saying that the amount of energy absorbed by reciprocating through the low sound transmission part and the high sound transmission part is larger than the energy reflected and propagated to the sound source side.
更に、海となる低透音部の中に島として配置された複数の高透音部を透音特性の異なる複数種類の高透音部で構成し、これら各高透音部とその背後の空気層とで構成される吸音単位構造が複数の異なる吸音特性を発現するように構成することにより、吸音特性をより広範にかつより容易に制御できるようになる。また、上記の第一及び第二の音源対向部材ついて、その低透音部に音源対向部材の形状を維持するのに必要な形状及び剛性を付与することにより、従来の如く孔開き板と多孔質吸音材とを重複して配設する必要がないので、吸音構造体の構造を簡略化してその製造コストをより低減できるほか、その設計がより容易になるという利点がある。 In addition, a plurality of high sound transmission portions arranged as islands in the low sound transmission portion that becomes the sea are composed of a plurality of types of high sound transmission portions having different sound transmission characteristics, and each of these high sound transmission portions and the back thereof. By configuring the sound absorption unit structure constituted by the air layer to exhibit a plurality of different sound absorption characteristics, the sound absorption characteristics can be controlled more widely and more easily. Further, with respect to the first and second sound source facing members, by providing the low sound transmission part with the shape and rigidity necessary for maintaining the shape of the sound source facing member, a perforated plate and a perforated plate as in the past are provided. Since it is not necessary to dispose the sound-absorbing material redundantly, there is an advantage that the structure of the sound-absorbing structure can be simplified to reduce the manufacturing cost, and the design becomes easier.
本発明の多孔質吸音材を用いてヘルムホルツ共鳴構造を構成する場合、その低透音部と高透音部の透音特性から、概念的には高透音部が頸部となって低透音部がこの頸部を形成する頸部形成部となるが、これら頸部と頸部形成部とが嵩密度の異なる多孔質材料で形成されていることから、頸部が通気抵抗の無い開口ではなくて通気抵抗がある高透音部で形成されており、また、その周辺の低透音部も通気抵抗は高いが通気可能な材料で形成されているので、本発明の多孔質吸音材で形成されたヘルムホルツ共鳴構造(吸音単位構造)においては、実際に測定された最大吸音周波数がヘルムホルツの計算式から求められる目論見値とは一致しないが、事前試験を行なうことにより適正な吸音特性を設計することが可能なことはいうまでもない。 When the Helmholtz resonance structure is configured using the porous sound-absorbing material of the present invention, from the sound transmission characteristics of the low sound-transmitting portion and the high sound-transmitting portion, the high sound-transmitting portion is conceptually the neck portion and the low sound-transmitting property. The sound part is a neck forming part that forms this neck part. Since the neck part and the neck forming part are made of porous materials having different bulk densities, the neck part has no ventilation resistance. However, the porous sound-absorbing material of the present invention is formed of a highly sound-permeable portion having ventilation resistance, and the surrounding low-noise portion is also formed of a material having high ventilation resistance but allowing ventilation. In the Helmholtz resonance structure (sound-absorbing unit structure) formed in (1), the actually measured maximum sound absorption frequency does not match the expected value obtained from the Helmholtz calculation formula. Needless to say, it can be designed.
本発明の多孔質吸音材は、設置場所や使用環境に合わせて種々の吸音特性を有する吸音構造体を製造するのに最適な材料である。また、これを用いて製造される本発明の吸音構造体は、単に吸音性能が向上するだけでなく、その吸音特性を広範にかつ容易に制御でき、また、その設計が容易であり、ある特定周波数帯域の騒音等を効率良く吸収したり、また、低周波数帯域又は高周波数帯域で比較的広い周波数帯域の騒音等を吸収したり、更には、低周波数帯域から高周波数帯域までの広い周波数帯域の騒音等を吸収する必要がある場合等、設置場所や使用環境によって吸音特性を変える必要がある場合に容易に対応することができ、しかも、容易にかつ安価に製造することができる。 The porous sound-absorbing material of the present invention is an optimal material for producing a sound-absorbing structure having various sound-absorbing characteristics in accordance with the installation location and use environment. In addition, the sound absorbing structure of the present invention manufactured using this not only improves the sound absorbing performance, but also allows the sound absorbing characteristics to be controlled extensively and easily, and its design is easy. Efficiently absorbs noise in the frequency band, absorbs noise in a relatively wide frequency band in the low frequency band or high frequency band, and further wide frequency band from low frequency band to high frequency band When it is necessary to change the sound absorption characteristics depending on the installation location and the use environment, such as when it is necessary to absorb the noise, it can be easily manufactured at a low cost.
以下、試験例及び実施例に基づいて、本発明の多孔質吸音材及び吸音構造体の好適な実施の形態を具体的に説明する。 Hereinafter, preferred embodiments of the porous sound-absorbing material and the sound-absorbing structure of the present invention will be specifically described based on test examples and examples.
[試験例1〜4]
図1(d)(e)に示すように、内径87mmで底部内面中央に直径25mm×深さ2.5mmの大きさの凹部2を有する円筒状のプレス金型1と500kNまでの圧縮荷重を付与する上型3を備えた500kN万能試験機を用い、このプレス金型1内には、アルミニウム材の適宜廃材をフライス盤ないしシェーパーにて切削して製造した断面の幅0.4mm以上2.0mm以下、断面厚さ0.1mm以上0.6mm以下、長さ5mm以上100mm以下で平均約30mm、及びカール高さ2.0mm以上8.0mm以下のアルミ切削屑4の所定量(質量:約20g)を充填し、圧縮荷重200〜500kNの範囲で圧縮成形することにより、1回の成形工程で、凹部2の周辺部に嵩密度が比較的高く低透音部が形成され、また、凹部2に対応する中央部分に嵩密度が比較的小さくて高透音部が形成された4種の加圧成形材を作製した。この際の凹部2周辺部での載荷圧力(低透音部載荷圧力:kN/cm2)と厚さ(低透音部厚さ:mm)とを表1に示す。
[Test Examples 1 to 4]
As shown in FIGS. 1D and 1E, a cylindrical press die 1 having an inner diameter of 87 mm and a
なお、上記の試験例では1回の成形工程で加圧成形材を作製したが、例えば図1(a)(b)(c)に示すように、内径87mmの円筒状のプレス金型1と500kNまでの圧縮荷重を付与する上型3を備えた500kN万能試験機を用い、このプレス金型1内には、上記と同様にアルミニウム材の適宜廃材より形成したアルミ切削屑4の所定量(目標:20質量g)を充填し、先ず、予定される嵩密度の低い部分に相当する嵩密度になるように第1段階の加圧力を加えて加圧成形し、次いで、上型3を下面中央部に直径25mm×深さ2.5mm以上の大きさの凹部2aを有する上型3aに交換し、この上型3aにより第2段階の加圧力を加えて周辺部のみを加圧し、このようにして2段階の成形工程により、周辺部に嵩密度が比較的高い低透音部が形成され、また、中央部に嵩密度が比較的小さい高透音部が形成された加圧成形材を作製してもよい。
In the above test example, the pressure-molded material was produced by a single molding process. For example, as shown in FIGS. 1 (a), (b) and (c), a cylindrical press die 1 having an inner diameter of 87 mm and Using a 500 kN universal testing machine equipped with an
次に、無機系の接着剤(株式会社トウペ製商品名:ポーセリン)と希釈剤(イソプロピルアルコール)とを1:2の割合で混合して得られた無機接着剤溶液を準備し、先に得られた各加圧成形材(4種類)をこの無機系接着剤溶液中に浸漬し、次いで焼付け炉に入れて180℃で25分間加熱して乾燥し、図2に示すように、中央部に上記凹部2に対応する比較的嵩密度の小さい高透音部8を有すると共にその周辺部に比較的嵩密度の高い低透音部7を有する円盤型の試験用吸音材(多孔質吸音材)6を調製し、No.1〜No.4の試験用吸音材とした。各No.1〜No.4の試験用吸音材について、低透音部の嵩密度(BD-H)と高透音部の嵩密度(BD-L)とを測定し、これら低透音部嵩密度(BD-H)と高透音部嵩密度(BD-L)との嵩密度比(BD-H/BD-L)を求めた。結果を表1に示す。
Next, an inorganic adhesive solution obtained by mixing an inorganic adhesive (trade name: Porcelain manufactured by Tope Co., Ltd.) and a diluent (isopropyl alcohol) at a ratio of 1: 2 is prepared and obtained first. Each pressure molding material (4 types) obtained was immersed in this inorganic adhesive solution, then placed in a baking oven, heated at 180 ° C. for 25 minutes and dried, as shown in FIG. A disk-shaped sound-absorbing material for testing (porous sound-absorbing material) having a high sound-transmitting
[試験例5]
また、図1(a)(b)に示すように、凹部のない内径87mmの円筒状のプレス金型1と500kNまでの圧縮荷重を付与する上型3を備えた500kN万能試験機を用い、このプレス金型1内には上記と同様にアルミニウム材の適宜廃材より形成したアルミ切削屑4の所定量(目標:20質量g)を充填し、載荷圧力1.66kN/cm2の条件で圧縮成形し、1回の成形工程で厚さ3.66mm及び嵩密度0.94g/cm3の加圧成形材を作製した。次に、この加圧成形材の片面に、中央部に開口部を有する外径87.5mmφ、内径25mmφ及び厚さ0.5mmの平面ドーナツ形状のアルミ箔を貼着し、No.5の試験用吸音材を作製した。
[Test Example 5]
Moreover, as shown in FIGS. 1 (a) and 1 (b), a 500 kN universal testing machine equipped with a cylindrical press die 1 having an inner diameter of 87 mm without a recess and an
このようにして得られたNo.1〜No.5の各試験用吸音材(多孔質吸音材)を用い、低透音部厚さ(t)2.01〜3.66mm、高透音部の直径(d)25mm、及び背後空気層の厚さ(L)30mmのヘルムホルツ共鳴構造(吸音単位構造)を構成し、垂直入射吸音率測定装置(神戸製鋼所株式会社製)を用い、JIS A1405に準拠して、垂直入射吸音率を測定すると共に吸音周波数特性を確認した。
結果を表1及び図3に示す。
Using the sound absorbing material for each test No. 1 to No. 5 (porous sound absorbing material) thus obtained, the thickness of the low sound transmission part (t) 2.01 to 3.66 mm, the high sound transmission part A Helmholtz resonance structure (sound absorption unit structure) with a diameter (d) of 25 mm and a back air layer thickness (L) of 30 mm is used, and a normal incident sound absorption coefficient measuring device (manufactured by Kobe Steel, Ltd.) is used. In accordance with the above, the normal incident sound absorption coefficient was measured and the sound absorption frequency characteristic was confirmed.
The results are shown in Table 1 and FIG.
[実施例1]
図4(a)(b)及び図5に、本発明の多孔質吸音材を用いて形成された本発明の実施例1に係る片面型の吸音構造体が示されている。
[Example 1]
FIGS. 4 (a), 4 (b) and 5 show a single-sided sound absorbing structure according to Example 1 of the present invention formed using the porous sound absorbing material of the present invention.
この実施例1の片面型の吸音構造体は、図5に示されているように、4枚の多孔質吸音材製の帯状吸音材9a(図4(a)参照)及び4枚の多孔質吸音材製の帯状吸音材9b(図4(b)参照)からなる音源対向部材9と、これら音源対向部材9の各帯状吸音材9a,9bが取り付けられ、各帯状吸音材9a,9bの背後に所定の厚さの空気層11a,11bを形成する層形成部材10a及びこの層形成部材10aと相俟って各帯状吸音材9a,9bの端部を層形成部材10aに固定する板厚1.6mmのアルミニウム材製の押し縁材10dとで構成されている。この吸音構造体の全体の大きさは、幅800mm×長さ1500mm×厚さ45mmである。
As shown in FIG. 5, the single-sided sound absorbing structure of Example 1 is composed of four porous
この実施例1において、各帯状吸音材9aは、前述の2段階の成形工程による試験用吸音材(多孔質吸音材)の製造方法と同様の方法により、また、上記と同様にアルミニウム材の適宜廃材より形成したアルミ切削屑を用いて形成された。すなわち、図1(a)(b)(c)においては、円筒状のプレス金型1に代えて、内寸394mm×98.4mmの角形状のプレス金型(図示せず)を用い、凹部の無い上型により第1段階の低嵩密度の成形を行ない、次いで別の下面に低密度部形成用の凹部を有する上型に交換してこの凹部を有する上型により第2段階の圧縮を行ない、2段階の成形工程によって、周辺部に嵩密度が比較的高い低透音部が形成され、また、中央部に嵩密度が比較的小さい高透音部が形成された加圧成形材を作製した。
In this Example 1, each band-like
次に、上記の試験例1〜4と同様にして、得られた加圧成形材を無機系接着剤溶液中に浸漬し、次いで焼付け炉に入れて180℃で25分間加熱して乾燥し、図4(a)に示す多孔質吸音材を形成した。この帯状吸音材9aは、幅98.4mm×長さ394mm×厚さ2.4mmの大きさを有し、比較的嵩密度が高くて透音性の低い低透音部7aを海とし、その幅方向中央部には互いに中心間距離50mmを置いて比較的嵩密度が小さくて透音性の高い合計8個の円形状高透音部8aが島として形成されており、また、上記低透音部7aはその厚さが2.4mmであって、高透音部8aはその直径が25mmφでその厚さが3.66mmである。
Next, in the same manner as in Test Examples 1 to 4, the obtained pressure-molded material was immersed in an inorganic adhesive solution, then placed in a baking furnace and heated at 180 ° C. for 25 minutes to dry, The porous sound-absorbing material shown in FIG. 4 (a) was formed. This band-shaped
また、各帯状吸音材9bは、上記の各帯状吸音材9aと同様にして形成され、幅98.4mm×長さ394mm×厚さ2.1mmの大きさを有し、比較的嵩密度が高くて透音性の低い低透音部7bを海とし、その幅方向中央部には互いに中心間距離100mmを置いて比較的嵩密度が小さくて透音性の高い合計4個の高透音部8bが島として形成されており、また、上記低透音部7bはその厚さが2.1mmであって、高透音部8bはその直径が25mmφでその厚さが3.66mmである。
Each band-shaped
そして、上記層形成部材10aは、図5に示されているように、その全体が板厚1.6mmのアルミニウム材で形成されており、また、30mmの幅寸法を有する平板状で互いに100mmの間隔(隙間)を置いて平行に位置する水平部12と、これら各水平部12の幅方向中央部の背面側長手方向に沿って形成され、各水平部12の背面方向に向けて突出する垂直部13と、互いに隣接する上記垂直部13の突出端側において、互いに隣接する上記水平部12の間に形成された隙間に相対向するように架設され、交互に段違いに位置する背面部14a,14bとを有している。
As shown in FIG. 5, the
上記の各帯状吸音材9a,9bは、押し縁材10dを水平部12にねじ等により固定することで固定される。その帯状吸音材9aが一方の背面部14aに相対向してこれらの間に30mmの厚さの空気層11aを形成し、また、帯状吸音材9bが他方の背面部14bに相対向してこれらの間に40mmの厚さの空気層11bを形成する。これによって、上記各帯状吸音材9a,9bに形成された高透音部8a,8bに対応して、高透音部8aと空気層11aの組合せ(A)及び高透音部8bと空気層11bとの組合せ(B)からなる2種類の吸音単位構造(ヘルムホルツ共鳴構造)A及びBが構成されている。
Each of the band-shaped
ここで、この実施例1で構成された2種類の吸音単位構造(ヘルムホルツ共鳴構造)A及びBを有する吸音構造体における各パラメーターの値は下記の表2に示す通りである。
これらについて、前述の垂直入射音吸音率測定値等の実験値より実施例1の吸音構造体を構成するABの吸音構造体それぞれについて最大吸音周波数と平均吸音率を予測すると表2と図6に示す通りとなる。また、2種類の吸音単位構造A及びBを有する吸音構造体について、その平均吸音率を見積もると0.86となった。
Here, the values of each parameter in the sound absorbing structure having the two types of sound absorbing unit structures (Helmholtz resonance structures) A and B configured in Example 1 are as shown in Table 2 below.
About these, when the maximum sound absorption frequency and the average sound absorption coefficient are predicted for each of the sound absorbing structures of AB constituting the sound absorbing structure of Example 1 from the experimental values such as the measured values of the sound absorption coefficient of the normal incident sound described above, Table 2 and FIG. As shown. Further, when the average sound absorption coefficient of the sound absorbing structure having two types of sound absorbing unit structures A and B was estimated, it was 0.86.
また、この実施例1で得られた片面型の吸音構造体について、JIS A1409に準拠し、内容積251m3、表面積237m2、及び残響時間63Hz〜1kHzにて8秒以上の残響箱を用い、残響室法吸音率を測定した。結果を図7に示す。 In addition, the single-sided sound absorbing structure obtained in Example 1 is based on JIS A1409, using an internal volume of 251 m 3 , a surface area of 237 m 2 and a reverberation box of 8 seconds or longer at a reverberation time of 63 Hz to 1 kHz Reverberation chamber method sound absorption was measured. The results are shown in FIG.
この図7に示す結果から明らかなように、この実施例1の片面型の吸音構造体は、500〜2000Hzにおける平均吸音率が0.85であり、上記2種類の吸音単位構造(ヘルムホルツ共鳴構造)から計算によって求められる平均吸音率の予測値0.86とよく一致した。 As is clear from the results shown in FIG. 7, the single-sided sound absorbing structure of Example 1 has an average sound absorption coefficient of 0.85 at 500 to 2000 Hz, and the above two types of sound absorbing unit structures (Helmholtz resonance structure). ) And the predicted value 0.86 of the average sound absorption rate obtained by calculation from (1) well.
[実施例2]
図8及び図9(a)(b)(c)に、本発明の実施例2に係る両面型の吸音構造体が示されている。この両面型の吸音構造体は、本発明の多孔質吸音材で形成されて2種類の帯状吸音材9c,9dを備えた第一の音源対向部材9Aと、本発明の多孔質吸音材で形成され、上記の組をなす帯状吸音材9c,9dに相対向して配置された2種類の帯状吸音材9e,9fの合計4枚を備えたセットを4組備えた第二の音源対向部材9Bと、これら第一及び第二の音源対向部材9A,9Bの間に配設され、第一の音源対向部材9Aを構成する各組の帯状吸音材9c,9dの背後及び第二の音源対向部材9Bを構成する各組の帯状吸音材9e,9fの背後にそれぞれ所定の層厚の空気層11c,11d,11e,11fを形成する層形成部材10aと、上記各層形成部材10aに上記第一の音源対向部材9Aを構成する各組の帯状吸音材9c,9dを固着するための層形成部材10bと、上記層形成部材10aに配設された上記第二の音源対向部材9Bを構成する帯状吸音材9e,9fを一括して固着するための層形成部材10cとで構成されており、第一の音源対向部材9Aを構成する帯状吸音材9c,9d及び第二の音源対向部材9Bを構成する各組の帯状吸音材9e,9fは、互いに異なる吸音特性を発現する吸音単位構造を構成するために、それぞれその低透音部7及び高透音部8が所定の嵩密度で形成されている。
[Example 2]
8 and 9A, 9B, and 9C show a double-sided sound absorbing structure according to
そして、この実施例2において、上記層形成部材10aは、図8及び図9(a)に示されているように、その全体がアルミニウム合金押出形材で形成されており、また、平板状で互いに間隔(隙間)を置いて平行に位置する3箇所の水平部12aと、これら各水平部12aに相対向して配置された3箇所の水平部12bと、互いに相対向する上記水平部12aと水平部12bとの間を所定の間隔を置いて連結する垂直部13と、互いに隣接するこれら各垂直部13の間に水平に架設され、互いに段違いに位置する2箇所の背面部14とを有している。
In Example 2, the
また、上記層形成部材10bは、図8及び図9(b)に示されているように、その全体がアルミニウム押出形材に切り抜きを施すことにより形成するか、水平押さえ部16を押出形材で形成しておき水平押さえ部16を跨ぐように架設部15を固定することにより形成されており、また、上記層形成部材10aの各水平部12aと同じ位置関係で配置され、架設部15で互いに連結された水平押え部16を有し、そして、上記層形成部材10cも、図8及び図9(c)に示されているように、その全体がアルミニウム押出形材に切り抜きを施すことにより形成するか、水平押え部18を押出形材により形成しておき水平押え部18間を跨ぐように架設部15を固定することにより形成されており、また、上記層形成部材10aの各水平部12aと同じ位置関係で配置され、架設部17で互いに連結された水平押え部18を有している。なお、この層形成部材10cには、この層形成部材10cに固着される層形成部材10aを位置決めするための位置決めリブ19が設けられている。
Further, as shown in FIGS. 8 and 9 (b), the
そして、上記層形成部材10bは適宜手段で層形成部材10aに固定することにより帯状吸音材9c,9dを両層形成部材10aと10bとの間に挟んで固定し、層形成部材10cも適宜手段で層形成部材10aに固定することにより帯状吸音材9e,9fを両層形成部材10aと10cとの間に挟んで固定している。
Then, the
従って、この実施例2の両面型の吸音構造体によれば、2種類の帯状吸音材9c,9dを備えた第一の音源対向部材9Aと、2種類の帯状吸音材9e,9fを備えた第二の音源対向部材9Bと、これら第一及び第二の音源対向部材9A,9Bの間に配設されて空気層11c,11d,11e,11fを形成する層形成部材10aとにより、多種多様な吸音特性を発現する吸音単位構造を構成することができ、また、その設計が容易であり、設置場所や使用環境によって吸音特性を変える必要がある場合に容易に対応することができる。
Therefore, according to the double-sided sound absorbing structure of Example 2, the first sound
1…プレス金型、2…凹部、3…ピストン、4…アルミ切削屑、6…試験用吸音材(多孔質吸音材)、7…低透音部、8…高透音部、9…音源対向部材、9A…第一の音源対向部材、9B…第二の音源対向部材、9a,9b,9c,9d,9e,9f…帯状吸音材、10,10a,10b,10c…層形成部材、10d…押し縁材、11a,11b,11c,11d,11e,11f…空気層、12,12a,12b…水平部、13…垂直部、14,14a,14b…背面部、15,17…架設部、16,18…水平押え部、19…位置決めリブ。
DESCRIPTION OF
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007130552A JP2008285857A (en) | 2007-05-16 | 2007-05-16 | Porous sound-absorbing material and sound-absorbing structure using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007130552A JP2008285857A (en) | 2007-05-16 | 2007-05-16 | Porous sound-absorbing material and sound-absorbing structure using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008285857A true JP2008285857A (en) | 2008-11-27 |
Family
ID=40145853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007130552A Pending JP2008285857A (en) | 2007-05-16 | 2007-05-16 | Porous sound-absorbing material and sound-absorbing structure using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008285857A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012008428A1 (en) * | 2010-07-15 | 2012-01-19 | 日東紡音響エンジニアリング株式会社 | Open air layer-type vibration reduction structure |
CN107326818A (en) * | 2017-08-08 | 2017-11-07 | 正升环境科技股份有限公司 | Integral type sound absorbing-insulating baffle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0571109A (en) * | 1991-09-11 | 1993-03-23 | Kobe Steel Ltd | Multilayer sound absorbing panel |
JPH0962267A (en) * | 1995-08-25 | 1997-03-07 | Nok Megurasutikku Kk | Sound absorbing material |
JPH113082A (en) * | 1997-06-12 | 1999-01-06 | Kobe Steel Ltd | Acoustic material made of metal |
JPH11123733A (en) * | 1997-10-23 | 1999-05-11 | Tokai Rubber Ind Ltd | Sound absorber and its manufacture |
JP2004037582A (en) * | 2002-06-28 | 2004-02-05 | Nippon Light Metal Co Ltd | Sound absorption structure |
-
2007
- 2007-05-16 JP JP2007130552A patent/JP2008285857A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0571109A (en) * | 1991-09-11 | 1993-03-23 | Kobe Steel Ltd | Multilayer sound absorbing panel |
JPH0962267A (en) * | 1995-08-25 | 1997-03-07 | Nok Megurasutikku Kk | Sound absorbing material |
JPH113082A (en) * | 1997-06-12 | 1999-01-06 | Kobe Steel Ltd | Acoustic material made of metal |
JPH11123733A (en) * | 1997-10-23 | 1999-05-11 | Tokai Rubber Ind Ltd | Sound absorber and its manufacture |
JP2004037582A (en) * | 2002-06-28 | 2004-02-05 | Nippon Light Metal Co Ltd | Sound absorption structure |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012008428A1 (en) * | 2010-07-15 | 2012-01-19 | 日東紡音響エンジニアリング株式会社 | Open air layer-type vibration reduction structure |
CN103080598A (en) * | 2010-07-15 | 2013-05-01 | 日东纺音响工程株式会社 | Open air layer-type vibration reduction structure |
US8833514B2 (en) | 2010-07-15 | 2014-09-16 | Nittobo Acoustic Engineering Co., Ltd. | Open air layer-type vibration reduction structure |
JP5847715B2 (en) * | 2010-07-15 | 2016-01-27 | 日本音響エンジニアリング株式会社 | Open air layer vibration reduction structure |
CN107326818A (en) * | 2017-08-08 | 2017-11-07 | 正升环境科技股份有限公司 | Integral type sound absorbing-insulating baffle |
CN107326818B (en) * | 2017-08-08 | 2023-09-19 | 正升环境科技股份有限公司 | Integrated sound absorption and insulation barrier plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4057008B2 (en) | Soundproof panel with beads and manufacturing method thereof | |
RU2524730C1 (en) | Acoustic finishing of production premises | |
US20130020148A1 (en) | Partition panel | |
CN102926476A (en) | Sound insulation board | |
CN101139851B (en) | Full-frequency sound absorption component and making method | |
CN105803965A (en) | Wideband sound absorption unit plate | |
CN110473513B (en) | Micro-slit metamaterial acoustic sandwich plate | |
CN205529956U (en) | Broadband sound absorption cell board | |
CN102864846A (en) | Metal sound insulation low-frequency acoustical board | |
CN110576643A (en) | Micro-perforated plate double-layer level honeycomb sandwich sound absorption bearing composite structure | |
CN104499591A (en) | Plate | |
CN104167204A (en) | Particle board resonance sound absorption structure | |
JPS5825812B2 (en) | Bow-on Kouchi Kubutsu Koseiyou Bow-on Kouzoutai | |
JP2018537604A (en) | Soundproof drywall panel | |
JP6602655B2 (en) | Railway vehicle and railway vehicle processing method | |
CN2499461Y (en) | Structure improved sound absorption palte for decoration | |
JP2008285857A (en) | Porous sound-absorbing material and sound-absorbing structure using the same | |
JP4019820B2 (en) | Sound absorbing structure | |
JP2010036675A (en) | Sound insulating material having lightweight multilayer structure for vehicle | |
CN204010668U (en) | Particle board resonance sound-absorbing structure | |
CN202745228U (en) | Metal sound insulation low-frequency acoustic board | |
JP6575046B2 (en) | Multi-layer sound absorbing panel | |
JP6663659B2 (en) | Size setting method of through hole of perforated sound absorbing board that constitutes sound absorbing structure | |
JP2005043826A (en) | Sound insulating material | |
JP5517293B2 (en) | RC structural member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110913 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120131 |