JPH0237210B2 - - Google Patents

Info

Publication number
JPH0237210B2
JPH0237210B2 JP58103240A JP10324083A JPH0237210B2 JP H0237210 B2 JPH0237210 B2 JP H0237210B2 JP 58103240 A JP58103240 A JP 58103240A JP 10324083 A JP10324083 A JP 10324083A JP H0237210 B2 JPH0237210 B2 JP H0237210B2
Authority
JP
Japan
Prior art keywords
filament bundle
acrylonitrile
activated carbon
bundle
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58103240A
Other languages
Japanese (ja)
Other versions
JPS59227705A (en
Inventor
Hiroyasu Ogawa
Kazuo Izumi
Kenji Shimazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP58103240A priority Critical patent/JPS59227705A/en
Publication of JPS59227705A publication Critical patent/JPS59227705A/en
Publication of JPH0237210B2 publication Critical patent/JPH0237210B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アクリロニトリル系フイラメント束
活性炭およびその製造法に関するものである。更
に詳しくは、強度、吸着特性に優れたアクリロニ
トリル系フイラメント束活性炭およびその製造法
に関するものである。 繊維状活性炭は、繊維直径数ミクロンないし数
十ミクロンと細く、軽量である等の特徴を有して
いることから、そのまま、又は、糸、マツト、フ
エルト、不織布をはじめ織物、編物、編組等に加
工されて、有機溶剤回収装置、空気浄化装置、脱
臭装置、浄水装置等に広く使用されはじめてい
る。 特に、フイラメント束活性炭は、単独又は他の
有機繊維、例えば、ポリエステル、ナイロン、ア
クリル、レーヨン等の繊維とともに、織物、編
物、編組等に加工されて、低圧損と高い吸着性能
とを利用して、悪い作業環境での衣料に利用され
はじめている。 しかしながら、賦活して得た繊維を紡績してフ
イラメント束活性炭を作ることは、非常に難し
い。また、賦活する前に予め紡績糸とする方法、
あるいは、フイラメント糸条をそのまま、又は、
撚りを与えたストランドとして、これらを賦活す
る方法もあるが、紡績糸又は撚り糸からの活性炭
は、糸強度が低く織編物に加工することが難しい
上に、吸着特性、特に吸着速度が遅いフイラメン
ト束活性炭となる。他方、フイラメント糸条の無
撚り品からの活性炭の場合は、織編物に加工する
ことが難しいという欠点を有していた。 本発明者らは、上記欠点について検討した結
果、これら欠点は、紡績糸や撚り糸とするときの
機械的損傷、賦活時の単糸間の融着、あるいは、
単糸間のすき間や糸としての集束性等が深く関係
しており、特殊なアクリロニトリル系フイラメン
ト束活性炭を用いることにより、これらの欠点を
解消することを見い出した。 本発明は、下記のとおりである。 (1) 引き裂き強力2〜40gで且つ表面積300m2
g以上を有するアクリロニトリル系フイラメン
ト束活性炭。 (2) アクリロニトリル系フイラメント束を酸化性
雰囲気中で酸化処理して得た耐炎繊維フイラメ
ント束を交絡処理後、賦活処理することを特徴
とする引き裂き強力2〜40gで且つ表面積300
m2/g以上を有するアクリロニトリル系フイラ
メント束活性炭の製造法。 (3) アクリロニトリル系フイラメント束を酸化性
雰囲気中200〜300℃で酸化処理して得た密度
1.35〜1.45g/c.c.の耐炎繊維フイラメント束を
交絡処理後、賦活することを特徴とする特許請
求の範囲2のアクリロニトリル系フイラメント
束活性炭の製造法。 本発明のアクリロニトリル系フイラメント束活
性炭は、引き裂き強力が2〜40gである。ここに
引き裂き強力とは、フイラメント束活性炭の横断
面のほぼ中央から、フイラメント束の長さ方向に
約10cmにわたつて、2分割し、分割した2つの糸
条にそれぞれセロハンテープ等の薄いテープを、
先端から約5cm貼り、これを零点調整されたテン
シロン引張試験機のチヤツク部に、チヤツク間距
離10cmで装着し、引張り速度200mm/min、引張
り距離30cmで引き裂き、得られた平均強力(Ft)
と引き裂いたストランド重量(Ff)とから下式
で求められる。 引き裂き強力F=Ft−Ff(グラム) 引き裂き強力が2g未満のアクリロニトリル系
フイラメント束活性炭は、織物、編物、編組等に
加工することが難しく、40gを超えるものは、フ
イラメント束中の単繊維間の充填密度が増加する
ため、吸着性能、特に、吸着速度が遅くなるとと
もに、フイラメント束の強度も低くなるので好ま
しくない。 また、本発明のアクリロニトリル系フイラメン
ト束活性炭は、表面績が300m2/g以上、好まし
くは500〜2500m2/gのものである。表面積が300
m2/g未満の場合は、溶剤回収や空気清浄におい
て吸着能が低く、フイラメント束活性炭の大量使
用を余儀なくされ経済的でない。 更に、本発明のアクリロニトリル系フイラメン
ト束活性炭は、単糸デニール0.05〜2.0d、好まし
くは0.1〜1.5d、束強度1g/d以上、好ましく
は2g/d以上のものが好適である。単糸デニー
ルが0.05d未満の場合は、製造工程で単糸切れが
多くなり、2.0dを超える場合は、繊維が剛直化
し、しなやかさが低くなり、織物、編物等への加
工性が低下する。束強度が1g/d未満の場合
は、織物、編物等への加工時に束の切断を招き易
い傾向がある。ここに束強度とは、JIS L−1070
のタイヤコードの場合について記載された方法に
準じて測定した値である。 本発明の製造法は、前記特定の引き裂き強力と
表面積を有するアクリロニトリル系フイラメント
束活性炭の製造法であつて、アクリロニトリル系
フイラメント束を酸化性雰囲気中で酸化処理して
得た耐炎繊維フイラメント束を交絡処理後、賦活
処理することを特徴とするものである。 本発明の製造法の好適な実施態様は、アクリロ
ニトリル系フイラメント束を酸化性雰囲気中200
〜300℃で酸化処理して得た密度1.35〜1.45g/
c.c.の耐炎繊維フイラメント束を交絡処理後賦活処
理するアクリロニトリル系フイラメント束活性炭
の製造法である。 本発明のアクリロニトリル系フイラメント束活
性炭は、具体的には次のようにして製造すること
ができる。 ポリアクリロニトリルを原料として又はアクリ
ロニトリルを85%(重量)以上とアクリル酸メチ
ル、酢酸メチル、アクリルアミド、イタコン酸等
の公知のビニル単量体との共重合体を原料として
作成した単糸デニール0.1〜3d、構成本数500〜
100000本のアクリロニトリル系フイラメント糸条
を、空気又は酸化性雰囲気中で200〜300℃、200
mg/d以下の張力下、10〜200分酸化処理して得
た密度1.35〜1.45g/c.c.の耐炎繊維を、更に、二
酸化炭素、水蒸気又はそれらの混合物の存在下
500〜1200℃にて0.5〜30分間、200mg/d以下の
張力下で賦活処理する。 本発明において、交絡処理は、例えば、酸化処
理後のフイラメント束に、そのまま又は水を付着
させた後に、ジエツト気流を吹きつけて行う。そ
の際、束に撚りを1個/cmでかけたときの太さに
対し5〜20倍の直径を有する円筒形の穴にフイラ
メント束を通し、円筒内に設けた細孔から空気ジ
エツト気流をフイラメント束の単繊維の単糸が互
に絡み合うような速度で噴出させる。この場合、
交絡は円筒内の細孔直径と、吹きつける空気のゲ
ージ圧とに関係し、通常、細孔直径は0.1〜0.5
mm、ゲージ圧は1〜1.5Kg/cm2が適当である。 以下に、実施例を挙げて本発明を更に詳細に説
明するとともに比較例を示す。例中特に記載がな
い限り「部」、「%」は重量である。 実施例 1 アクリロニトリル96%、アクリル酸メチル4%
からなるアクリロニトリル系繊維(デニール1.0、
構成本数30000本、単繊維強度6.6g/d、伸度10
%)を空気中、張力50mg/dで、240℃3分、265
℃15分、275℃10分、285℃3分の間それぞれ処理
して、デニール1.1、単繊維強度30Kg/mm2、単繊
維伸度18%、密度1.41g/c.c.の耐炎繊維を得た。 この耐炎繊維に1個/cmで撚りを与えたときの
太さは1.5mmであつたので、内直径が12mm、長さ
80mmの円筒形のダイスを用いてダイスの穴に該耐
炎繊維を、張力80m2g/d下で通過させながら、
ダイスの内側に開口した直径0.2mmの細孔から、
ゲージ圧力1.4Kg/cm2の圧力の空気を吹きつけた
のち、長さ1.0m2の有効長を有する管状炉に水蒸
気0.5Kg/hr、温度880℃、滞留時間3分となるご
とき速度で、張力30mg/d(このときのデニール
は耐炎繊維のデニールを用いた)にて賦活した。 得られたアクリロニトリル系フイラメント束活
性炭は、デニール0.4、束強度2.8g/dで、表面
積805m2/gであり、引き裂き強力をテンシロン
(東洋ボールドウイン社)UM−型にて、本文
に記載の方法にて測定した結果、15gを有し、ベ
ンゼンに対する吸着速度は5%/minであつた。 この得られたアクリロニトリル系フイラメント
束活性炭を、たて糸とし、よこ糸に綿糸
(11.3Nm綿番手双糸)を使つて1m幅の目付100
g/m2の平織を織つたところ、停台することなく
700mを織ることができた。 比較例 1 実施例1において耐炎繊維を円筒形ダイスに通
さず、そのまま実施例1のごとき管状炉に通して
同条件下で賦活して得たアクリロニトリル系フイ
ラメント束活性炭は、引き裂き強力が0.5gであ
つた。このものから実施例1と同じ織物を織つた
が、停台回数は2回/mであり、100mを織るこ
とはできなかつた。得られたフイラメント束活性
炭のデニールは0.4、束強度は2.7g/d、表面積
は800m2/gであり、ベンゼンに対する吸着速度
は5%/minで実施例1と同じであつた。また、
ベンゼンに対する吸着速度は、100%ベンゼンの
500c.c.瓶に細孔内径5mmのガラス管を通して空気
1/minの速度で供給し、出てくるベンゼン蒸
気を該束活性炭5gをつめた10mm内径、長さ100
mmのガラス管に通過させ1分後の重量増加を求め
た値であり、実施例1と同一方法にて求めた。 実施例 2 実施例1において得られた耐炎繊維を、ダイス
に通過させる際のゲージ空気圧を0.2Kg/cm2、1.9
Kg/cm2、3.8Kg/cm2に変化させるとともに、賦活
温度を450℃、600℃、900℃でそれぞれ3分間処
理することによつて、表面積が100m2/g、1050
m2/g、2100m2/gで、引き裂き強力が1g、3
g、30g、60gを有する12種類のアクリロニトリ
ル系フイラメント束活性炭を得た。これらの繊維
を、綿糸を造る工程である空気精紡機にかけて、
フイラメント束活性炭が含有率10%の綿番手とし
て11.3Nm単糸のコアヤーンを製造した。コアヤ
ーンを造る際の工程の安定性や、得られたコアヤ
ーンの吸着速度について調べた結果は第1表のご
とくであり、本発明の範囲に入るものは優れた製
造工程安定性と高い吸着速度を示した。
The present invention relates to an acrylonitrile-based filament bundle activated carbon and a method for producing the same. More specifically, the present invention relates to an acrylonitrile-based filament bundle activated carbon having excellent strength and adsorption properties, and a method for producing the same. Fibrous activated carbon has the characteristics of being thin and lightweight, with fiber diameters ranging from several microns to several tens of microns, so it can be used as is or in textiles, knitting, braiding, etc. including yarn, mat, felt, and nonwoven fabrics. It has been processed and is beginning to be widely used in organic solvent recovery equipment, air purification equipment, deodorization equipment, water purification equipment, etc. In particular, filament bundle activated carbon can be processed alone or together with other organic fibers such as polyester, nylon, acrylic, rayon, etc. into woven fabrics, knitted fabrics, braids, etc. to take advantage of its low pressure drop and high adsorption performance. , and are beginning to be used in clothing for poor working environments. However, it is very difficult to spin activated fibers to make filament bundle activated carbon. Also, a method of preparing spun yarn before activation,
Alternatively, use the filament yarn as it is, or
There is a method of activating these as twisted strands, but activated carbon from spun yarn or twisted yarn has low yarn strength and is difficult to process into woven or knitted fabrics, and has poor adsorption properties, especially filament bundles with slow adsorption speed. It becomes activated carbon. On the other hand, activated carbon made from untwisted filament yarns has the disadvantage that it is difficult to process into woven or knitted fabrics. As a result of studying the above-mentioned drawbacks, the present inventors found that these drawbacks include mechanical damage during spinning or twisting, fusion between single yarns during activation, or
The gaps between the single yarns and the cohesiveness of the yarns are closely related to each other, and it has been discovered that these drawbacks can be overcome by using a special acrylonitrile-based filament bundle activated carbon. The present invention is as follows. (1) Tear strength 2-40g and surface area 300m 2 /
An acrylonitrile-based filament bundle activated carbon having a weight of at least g. (2) Flame-resistant fiber filament bundles obtained by oxidizing acrylonitrile filament bundles in an oxidizing atmosphere are subjected to interlacing treatment and then activation treatment, with a tear strength of 2 to 40 g and a surface area of 300 g.
A method for producing acrylonitrile-based filament bundle activated carbon having a carbon density of m 2 /g or more. (3) Density obtained by oxidizing acrylonitrile filament bundle at 200 to 300℃ in an oxidizing atmosphere
3. The method for producing acrylonitrile-based filament bundle activated carbon according to claim 2, wherein the flame-resistant fiber filament bundle of 1.35 to 1.45 g/cc is activated after being entangled. The acrylonitrile filament bundle activated carbon of the present invention has a tear strength of 2 to 40 g. Here, tear strength means that the filament bundle activated carbon is divided into two parts from approximately the center of the cross section for about 10 cm in the length direction of the filament bundle, and a thin tape such as cellophane tape is applied to each of the two divided threads. ,
Approximately 5 cm from the tip was attached, and this was attached to the chuck part of a tensilon tensile testing machine with zero point adjustment, with a distance of 10 cm between the chucks, and the average strength (Ft) was obtained by tearing at a pulling speed of 200 mm/min and a pulling distance of 30 cm.
It can be obtained from the following formula from and the weight of the torn strand (Ff). Tear strength F = Ft - Ff (grams) Acrylonitrile-based filament bundle activated carbon with a tear strength of less than 2g is difficult to process into woven fabrics, knitted fabrics, braids, etc., and those with a tear strength of more than 40g are difficult to process between single fibers in the filament bundle. Since the packing density increases, the adsorption performance, especially the adsorption speed, decreases, and the strength of the filament bundle also decreases, which is undesirable. Further, the acrylonitrile filament bundle activated carbon of the present invention has a surface roughness of 300 m 2 /g or more, preferably 500 to 2500 m 2 /g. surface area is 300
If it is less than m 2 /g, the adsorption capacity will be low in solvent recovery and air cleaning, and a large amount of filament bundle activated carbon will have to be used, which is not economical. Further, the acrylonitrile filament bundle activated carbon of the present invention preferably has a single filament denier of 0.05 to 2.0 d, preferably 0.1 to 1.5 d, and a bundle strength of 1 g/d or more, preferably 2 g/d or more. If the single yarn denier is less than 0.05d, there will be many single yarn breakages during the manufacturing process, and if it exceeds 2.0d, the fiber will become rigid and less flexible, reducing processability into woven fabrics, knitted fabrics, etc. . If the bundle strength is less than 1 g/d, the bundle tends to be easily cut when processed into woven fabrics, knitted fabrics, etc. Here, the bundle strength is JIS L-1070
This is a value measured according to the method described for the case of tire cord. The production method of the present invention is a method for producing an acrylonitrile-based filament bundle activated carbon having the above-described specific tearing strength and surface area, in which a flame-resistant fiber filament bundle obtained by oxidizing the acrylonitrile-based filament bundle in an oxidizing atmosphere is entangled. After the treatment, an activation treatment is performed. In a preferred embodiment of the production method of the present invention, the acrylonitrile filament bundle is heated at 200 °C in an oxidizing atmosphere.
Density 1.35-1.45g/obtained by oxidation treatment at ~300℃
This is a method for producing acrylonitrile-based filament bundle activated carbon, in which a CC flame-resistant fiber filament bundle is entangled and then activated. Specifically, the acrylonitrile-based filament bundle activated carbon of the present invention can be produced as follows. Single yarn denier 0.1 to 3 d made from polyacrylonitrile as a raw material or a copolymer of 85% (weight) or more of acrylonitrile and a known vinyl monomer such as methyl acrylate, methyl acetate, acrylamide, itaconic acid, etc. , Number of configurations: 500~
100,000 acrylonitrile filament yarns were heated at 200 to 300℃ in air or an oxidizing atmosphere at 200℃.
Flame-resistant fibers with a density of 1.35 to 1.45 g/cc obtained by oxidation treatment for 10 to 200 minutes under a tension of less than mg/d are further heated in the presence of carbon dioxide, water vapor, or a mixture thereof.
Activation treatment is performed at 500 to 1200°C for 0.5 to 30 minutes under a tension of 200 mg/d or less. In the present invention, the entangling treatment is performed, for example, by blowing a jet air stream onto the filament bundle after the oxidation treatment, either as it is or after adhering water. At that time, the filament bundle is passed through a cylindrical hole with a diameter 5 to 20 times the thickness of the bundle when the bundle is twisted at a rate of 1 twist/cm, and an air jet stream is passed through the filament through the pores provided in the cylinder. It is ejected at such a speed that the single fibers of the bundle are intertwined with each other. in this case,
Entanglement is related to the pore diameter within the cylinder and the gauge pressure of the air being blown; typically the pore diameter is between 0.1 and 0.5.
mm, and the gauge pressure is suitably 1 to 1.5 Kg/cm 2 . EXAMPLES Below, the present invention will be explained in more detail by way of examples, and comparative examples will also be shown. In the examples, "parts" and "%" are by weight unless otherwise specified. Example 1 Acrylonitrile 96%, methyl acrylate 4%
Acrylonitrile fiber (denier 1.0,
Number of components: 30,000, single fiber strength: 6.6g/d, elongation: 10
%) in air, tension 50mg/d, 240℃ for 3 minutes, 265
C. for 15 minutes, 275.degree. C. for 10 minutes, and 285.degree. C. for 3 minutes, respectively, to obtain flame-resistant fibers having a denier of 1.1, a single fiber strength of 30 Kg/ mm2 , a single fiber elongation of 18%, and a density of 1.41 g/cc. When this flame-resistant fiber was twisted at 1 piece/cm, the thickness was 1.5 mm, so the inner diameter was 12 mm and the length was
Using an 80 mm cylindrical die, the flame-resistant fiber was passed through the hole of the die under a tension of 80 m 2 g/d, while
From the 0.2mm diameter pore opened inside the die,
After blowing air at a gauge pressure of 1.4 Kg/cm 2 , it was placed in a tube furnace with an effective length of 1.0 m 2 at a rate such that steam was 0.5 Kg/hr, temperature was 880°C, and residence time was 3 minutes. Activation was performed under a tension of 30 mg/d (the denier at this time was that of the flame-resistant fiber). The obtained acrylonitrile-based filament bundle activated carbon had a denier of 0.4, a bundle strength of 2.8 g/d, and a surface area of 805 m 2 /g, and its tear strength was measured using Tensilon (Toyo Baldwin Co., Ltd.) UM-type by the method described in the text. As a result of measurement, the amount was 15g, and the adsorption rate for benzene was 5%/min. The obtained acrylonitrile-based filament bundle activated carbon was used as the warp yarn, and cotton thread (11.3Nm cotton count twin yarn) was used as the weft yarn to create a 1m wide fabric with a fabric weight of 100.
When weaving g/ m2 plain weave, the machine did not stop.
I was able to weave 700m. Comparative Example 1 The acrylonitrile-based filament bundle activated carbon obtained by passing the flame-resistant fibers in Example 1 without passing them through a cylindrical die, but passing them through a tube furnace as in Example 1 and activating them under the same conditions, had a tearing strength of 0.5 g. It was hot. The same fabric as in Example 1 was woven from this material, but the number of stops was 2 times/m, and it was not possible to weave 100 m. The obtained filament bundle activated carbon had a denier of 0.4, a bundle strength of 2.7 g/d, a surface area of 800 m 2 /g, and an adsorption rate of benzene of 5%/min, which was the same as in Example 1. Also,
The adsorption rate for benzene is 100% benzene.
Air is supplied at a rate of 1/min to a 500 c.c. bottle through a glass tube with a pore inner diameter of 5 mm, and the benzene vapor that comes out is filled with the bundle activated carbon 5 g, 10 mm inner diameter, 100 mm long.
This is the value obtained by calculating the weight increase after 1 minute of passing through a glass tube with a diameter of 1.5 mm. Example 2 The gauge air pressure when passing the flame-resistant fiber obtained in Example 1 through the die was 0.2 Kg/cm 2 and 1.9
By changing the surface area to 100 m 2 /g and 1050 kg/cm 2 and treating the activation temperature at 450°C, 600°C, and 900°C for 3 minutes each,
m 2 /g, 2100m 2 /g, tear strength is 1g, 3
Twelve types of acrylonitrile-based filament bundle activated carbons having weights of 30g, 30g, and 60g were obtained. These fibers are passed through an air spinning machine, which is the process of making cotton thread.
A single core yarn of 11.3 Nm was produced as a cotton count containing 10% filament bundle activated carbon. Table 1 shows the results of investigating the stability of the process for producing core yarn and the adsorption rate of the obtained core yarn, and those that fall within the scope of the present invention have excellent manufacturing process stability and high adsorption rate. Indicated.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 引き裂き強力2〜40gで且つ表面積300m2
g以上を有するアクリロニトリル系フイラメント
束活性炭。 2 アクリロニトリル系フイラメント束を酸化性
雰囲気中で酸化処理して得た耐炎繊維フイラメン
ト束を交絡処理後、賦活処理することを特徴とす
る引き裂き強力2〜40gで且つ表面積300m2/g
以上を有するアクリロニトリル系フイラメント束
活性炭の製造法。 3 アクリロニトリル系フイラメント束を酸化性
雰囲気中200〜300℃で酸化処理して得た密度1.35
〜1.45g/c.c.の耐炎繊維フイラメント束を交絡処
理後、賦活することを特徴とする特許請求の範囲
2のアクリロニトリル系フイラメント束活性炭の
製造法。
[Claims] 1. Tear strength of 2 to 40 g and surface area of 300 m 2 /
An acrylonitrile-based filament bundle activated carbon having a weight of at least g. 2 A flame-resistant fiber filament bundle obtained by oxidizing an acrylonitrile filament bundle in an oxidizing atmosphere is subjected to an activation treatment after an entangling treatment, and has a tear strength of 2 to 40 g and a surface area of 300 m 2 /g.
A method for producing acrylonitrile-based filament bundle activated carbon having the above. 3 Density 1.35 obtained by oxidizing acrylonitrile filament bundle at 200 to 300°C in an oxidizing atmosphere
3. The method for producing an acrylonitrile-based filament bundle activated carbon according to claim 2, wherein the flame-resistant fiber filament bundle of ~1.45 g/cc is activated after being entangled.
JP58103240A 1983-06-09 1983-06-09 Filament bundle of activated carbon and its manufacture Granted JPS59227705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58103240A JPS59227705A (en) 1983-06-09 1983-06-09 Filament bundle of activated carbon and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58103240A JPS59227705A (en) 1983-06-09 1983-06-09 Filament bundle of activated carbon and its manufacture

Publications (2)

Publication Number Publication Date
JPS59227705A JPS59227705A (en) 1984-12-21
JPH0237210B2 true JPH0237210B2 (en) 1990-08-23

Family

ID=14348916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58103240A Granted JPS59227705A (en) 1983-06-09 1983-06-09 Filament bundle of activated carbon and its manufacture

Country Status (1)

Country Link
JP (1) JPS59227705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536011U (en) * 1991-10-18 1993-05-18 三菱自動車工業株式会社 Blow-by gas outlet structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120322332A1 (en) * 2011-06-17 2012-12-20 Ut-Battelle, Llc Advanced oxidation method for producing high-density oxidized polyacrylonitrile fibers
KR102243001B1 (en) * 2013-10-29 2021-04-22 코오롱인더스트리 주식회사 Activated Carbon Fiber and Method for Preparing the Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133195A (en) * 1974-04-10 1975-10-22
JPS543973A (en) * 1977-06-06 1979-01-12 Fram Corp Fluid filter assemblied body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133195A (en) * 1974-04-10 1975-10-22
JPS543973A (en) * 1977-06-06 1979-01-12 Fram Corp Fluid filter assemblied body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536011U (en) * 1991-10-18 1993-05-18 三菱自動車工業株式会社 Blow-by gas outlet structure

Also Published As

Publication number Publication date
JPS59227705A (en) 1984-12-21

Similar Documents

Publication Publication Date Title
US2210774A (en) Fibers from ethylene polymers
US3367095A (en) Process and apparatus for making wrapped yarns
JP4568912B2 (en) Isotropic pitch-based carbon fiber spun yarn, composite yarn and fabric using the same, and production method thereof
US4570311A (en) Method for manufacturing water soluble fabric for chemical laces
JP4370034B2 (en) Pitch fiber bundle, pitch-based carbon fiber bundle and method for producing the same
JPS633974B2 (en)
US2414800A (en) Method of producing regenerated cellulose textile material
JPH0237210B2 (en)
JP4624571B2 (en) Method for producing carbon fiber precursor yarn
TWI226394B (en) Zero-twist glass yarn, its production method and glass fabric using zero-twist glass yarn as weft yarn
JPH0116932B2 (en)
JP2005042281A (en) Non-twisted yarn like twisted yarn and method for producing the same
CN112323195A (en) Preparation process before weaving of high-performance pearl yarn warp-making woven fabric
US2954270A (en) Process of producing a shrinkable cellulose textile filament
JP7408406B2 (en) Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device
EP0189134A2 (en) Improved warp knit fabric containing weft inserted activated carbon yarn
JPS60155708A (en) Production of mixed yarn of silk
JP3285696B2 (en) Manufacturing method of special rayon yarn
RU2099450C1 (en) Yarn for weaves and knitwear, method of manufacturing thereof, and fabric and knitted cloth
JPS63135535A (en) High heat resistant spinning body
CN117966334A (en) Inorganic fiber composite yarn mixed woven fabric and processing method and application thereof
JP2003301336A (en) Method for producing carbon fiber
JPS6452841A (en) Filament composite sewing yarn
JP2004204386A (en) Hot-melt type adhesive fiber with good unwinding performance and method for producing the same
JP2690346B2 (en) Slab yarn manufacturing method