JPH0236350B2 - - Google Patents

Info

Publication number
JPH0236350B2
JPH0236350B2 JP60153640A JP15364085A JPH0236350B2 JP H0236350 B2 JPH0236350 B2 JP H0236350B2 JP 60153640 A JP60153640 A JP 60153640A JP 15364085 A JP15364085 A JP 15364085A JP H0236350 B2 JPH0236350 B2 JP H0236350B2
Authority
JP
Japan
Prior art keywords
casting
base metal
piston
hollow
solid substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60153640A
Other languages
Japanese (ja)
Other versions
JPS6216865A (en
Inventor
Kaneo Hamashima
Tadashi Donomoto
Atsuo Tanaka
Masahiro Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15364085A priority Critical patent/JPS6216865A/en
Priority to US06/883,825 priority patent/US4712600A/en
Priority to AU60093/86A priority patent/AU597889B2/en
Priority to DE8686109510T priority patent/DE3680965D1/en
Priority to CA000513601A priority patent/CA1271615A/en
Priority to EP86109510A priority patent/EP0209090B1/en
Publication of JPS6216865A publication Critical patent/JPS6216865A/en
Publication of JPH0236350B2 publication Critical patent/JPH0236350B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、デイーゼルエンジン用断熱ピスト
ンの如く、断熱等の目的のための空洞(中空部)
を内部に形成した中空鋳物を製造する方法に関す
るものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a cavity (hollow part) for purposes such as heat insulation, such as a heat insulating piston for a diesel engine.
The present invention relates to a method of manufacturing a hollow casting having a hollow casting formed inside the hollow casting.

従来の技術 近年に至り、デイーゼルエンジンにおいてはそ
の燃焼室を高温化して燃費の改善を図るとともに
始動初期の不完全燃焼を防止するため、ピストン
頂面部を断熱化することが検討されている。
BACKGROUND OF THE INVENTION In recent years, in diesel engines, in order to increase the temperature of the combustion chamber to improve fuel efficiency and to prevent incomplete combustion in the early stages of engine startup, it has been considered to insulate the top surface of the piston.

ピストン頂面部を断熱化するための有効な手段
としては、ピストン頂面の直下に空洞を形成して
その空洞部により断熱を図り、かつ断熱による頂
面温度上昇に対処するために、頂面を耐熱材で形
成しておく方法が知られている。具体的には、例
えばインコネルの如き超合金などからなる耐熱材
によつて頂面を形成し、その頂面耐熱材とピスト
ン母材との間に空洞部を設けて両者をボルト止め
する方法が知られている。しかしながらこの方法
では、頂面材やピストン母材に予め穴加工、ネジ
加工等の機械加工を施しておく必要があり、しか
もボルト止めの作業を必要とするため、生産性が
低く、高コストとならざるを得ないという問題が
あり、またピストン稼動時に母材、特にボルト穴
の部分がクリープ変形して頂面耐熱材−母材間の
有効な接合強度が得られなくなるという問題があ
つた。
An effective means for insulating the top surface of the piston is to form a cavity directly below the top surface of the piston and use that cavity to insulate the top surface. A method is known in which it is made of heat-resistant material. Specifically, there is a method in which the top surface is formed of a heat-resistant material made of a superalloy such as Inconel, a cavity is provided between the top heat-resistant material and the piston base material, and the two are bolted together. Are known. However, with this method, it is necessary to machine the top surface material and the piston base material in advance, such as drilling holes and threading, and also requires bolting, resulting in low productivity and high cost. There is also the problem that when the piston operates, the base metal, especially the bolt hole portion, undergoes creep deformation, making it impossible to obtain effective bonding strength between the top heat-resistant material and the base metal.

そこで頂面耐熱材を母材に強固に接合すること
ができ、しかも高コスト化を招いたり生産性の低
下を招いたりすることなく、頂面直下に断熱用の
空洞を有するピストンを製造し得る方法の開発が
強く望まれている。このような方法の一つとして
は、ピストン母材の鋳造時に頂面耐熱材を鋳ぐる
みによつて一体に保持しかつ頂面耐熱材の直下に
空洞部を残して鋳造する鋳ぐるみ鋳造法の適用が
考えられる。この場合、鋳ぐるみを円滑に行な
い、しかもピストン母材の鋳造欠陥の発生防止や
組織微細化を図るために、鋳造法としては所謂高
圧鋳造法などの加圧鋳造法を適用することが最適
と考えられる。
Therefore, it is possible to firmly bond the top heat-resistant material to the base material, and it is also possible to manufacture a piston with a heat-insulating cavity directly below the top surface without increasing costs or reducing productivity. Development of a method is strongly desired. One such method is the cast-in casting method, in which the top heat-resistant material is held together by the cast-ins during casting of the piston base material, and a cavity is left directly below the top heat-resistant material. Possible applications. In this case, it is best to apply a pressure casting method such as the so-called high-pressure casting method to ensure smooth casting, prevent casting defects in the piston base material, and refine the structure. Conceivable.

ところで鋳物の内部に空洞を形成する方法とし
ては、シエル中子等の砂中子を鋳ぐるんで鋳造し
た後、中子砂を鋳物内部から取出す方法が一般的
であり、また一部では水等の溶媒に容易に溶解さ
せ得る材料からなる中子、例えば塩中子を使用し
て鋳造し、鋳造後に中子を溶出除去させる方法も
採用されている。
By the way, a common method for forming a cavity inside a casting is to cast a sand core such as a shell core, and then take out the core sand from inside the casting. A method has also been adopted in which a core made of a material that can be easily dissolved in a solvent, such as a salt core, is used for casting, and the core is eluted and removed after casting.

発明が解決すべき問題点 前述のように砂中子を用いて高圧鋳造法を適用
した場合、溶湯に加わる高圧によつて溶湯が中子
内に含浸され、その結果、鋳物内から中子砂を除
去することが困難となる。また塩中子を用いた場
合も、圧縮成形した塩中子では高圧鋳造により溶
湯が中子に含浸されて前記同様な問題が生じ、一
方溶融凝固させた塩中子を用いた場合、塩中子に
割れが発生し易い問題がある。
Problems to be Solved by the Invention When a high-pressure casting method is applied using a sand core as described above, the molten metal is impregnated into the core due to the high pressure applied to the molten metal, and as a result, the core sand is removed from the casting. It becomes difficult to remove. In addition, when a salt core is used, the same problem occurs when a compression molded salt core is impregnated with molten metal due to high-pressure casting, whereas when a salt core is melted and solidified, There is a problem that cracks easily occur in the child.

したがつて従来は高圧鋳造法の如き加圧鋳造法
によつて鋳物内部に任意の形状の空洞部を形成す
ることは極めて困難であつた。
Therefore, conventionally, it has been extremely difficult to form a cavity of an arbitrary shape inside a casting by a pressure casting method such as a high-pressure casting method.

この発明は以上の事情を背景としてなされたも
ので、前述のような問題が発生することなく、加
圧鋳造により内部に空洞を有する鋳物、例えば断
熱ピストンを支障なく製造し得る方法を提供する
ことを目的とするものである。
The present invention has been made against the background of the above-mentioned circumstances, and an object of the present invention is to provide a method for producing a casting having an internal cavity, such as an insulating piston, without any trouble by pressure casting without causing the above-mentioned problems. The purpose is to

問題点を解決するための手段 この発明の方法は、加圧鋳造によつて内部に空
洞を有する中空鋳物を鋳造するにあたり、常温で
は固体状態を保ちかつ鋳物母材金属の融点よりも
低い加熱温度でガス化する固体物質を予め前記空
洞の形状に作つておき、その固体物質を母材金属
溶湯に対して安定な多孔質体で覆つた状態で鋳型
内に配置し、母材金属溶湯を鋳型内に注湯して加
圧鋳造することにより前記固体物質を鋳ぐるんだ
鋳物を作成し、その後母材金属の融点より低くか
つ前記固体物質のガス化温度以上の温度で前記鋳
物を加熱して前記固体物質をガス化により除去
し、内部に空洞を有する中空鋳物を製造すること
を特徴とするものである。
Means for Solving the Problems The method of the present invention, when casting a hollow casting having an internal cavity by pressure casting, maintains a solid state at room temperature and at a heating temperature lower than the melting point of the base metal of the casting. A solid substance to be gasified is prepared in advance in the shape of the cavity, and the solid substance is placed in a mold with a porous material that is stable against the molten base metal, and the molten base metal is placed in the mold. A casting in which the solid substance is cast is created by pouring molten metal into the metal and pressurizing it, and then heating the casting at a temperature lower than the melting point of the base metal and higher than the gasification temperature of the solid substance. The method is characterized in that the solid substance is removed by gasification to produce a hollow casting having a cavity inside.

ここで、鋳物母材金属の融点よりも低い加熱温
度でガス化する固体物質とは、その加熱温度で燃
焼、昇華、蒸発もしくは分解する固体物質を意味
する。また前記多孔質体としては、注湯時の母材
金属の溶湯温度(したがつて注湯温度)よりも融
点が高い物質を用いるのが通常である。
Here, the solid substance that gasifies at a heating temperature lower than the melting point of the casting base metal means a solid substance that burns, sublimates, evaporates, or decomposes at that heating temperature. Further, as the porous body, a substance having a melting point higher than the molten metal temperature of the base metal at the time of pouring (therefore, the pouring temperature) is usually used.

作 用 この発明の方法においては、前述のように常温
では固体状態を保ちかつ鋳物母材金属の融点より
も低い加熱温度でガス化する固体物質を用い、最
終的に形成すべき空洞の形状にその固体物質を成
形しておき、その固体物質を母材に対し安定な多
孔質体で覆つた状態で鋳型内に配置してアルミニ
ウム合金等の母材溶湯を注湯し、加圧鋳造する。
Function: As described above, the method of the present invention uses a solid substance that remains solid at room temperature and gasifies at a heating temperature lower than the melting point of the casting base metal, and is shaped into the shape of the cavity to be finally formed. The solid material is shaped, and the solid material is placed in a mold with the base material covered with a stable porous material, and a molten base material such as an aluminum alloy is poured into the mold, followed by pressure casting.

ここで、前記固体物質を多孔質体で覆わずに高
温の母材溶湯を注湯した場合には、固体物質は母
材溶湯との接触により急速に温度上昇して直ちに
燃焼、昇華、蒸発もしくは分解してガス化し、そ
のガスが母材溶湯中へ分散してブローホールや巣
などの鋳造欠陥を招く原因となり、また溶湯加圧
力に対し空洞形状を保てなくなつて、最終製品鋳
物において所要の形状の空洞が得られなくなる。
しかしながらこの発明の方法の場合には、固体物
質を多孔質体で覆つているため、注湯した母材溶
湯は直ちには固体物質に接触しない。すなわち母
材溶湯に加圧力が加えられて多孔質体に含浸さ
れ、その母材溶湯が多孔質体内の空隙を透過して
からはじめて固体物質に接触することになる。こ
のように注湯時には母材溶湯が直接固体物質に接
触せず、しかも母材溶湯と固体物質との間に介在
する多孔質体は多孔質であるが故にその断熱性が
高いから、注湯時においては固体物質の温度はさ
ほど上昇せず、したがつて固体物質が燃焼、昇
華、蒸発もしくは分解によりガス化することが防
止される。そして加圧力が加えられれば母材溶湯
は前述のように多孔質体の空隙を透過して固体物
質に接する状態も生じ得るが、高圧鋳造の如き加
圧鋳造では、その加圧力によつて母材溶湯と金型
表面との接触状態が極めて良好となるため母材溶
湯は急速に冷却凝固され、したがつて母材と固体
物質との接触によりその接触部からたとえガスが
発生しても母材中に分散することがなく、鋳物に
鋳造欠陥が生ずることが防止される。また上述の
ように加圧鋳造により母材溶湯が急速冷却される
ため、母材溶湯が多孔質体を透過して固体物質に
母材が接触してもその接触部で固体物質がそのガ
ス化温度以上となつている期間は極めて短時間に
過ぎず、したがつて接触部でのガス発生量もさほ
ど多くはなく、このことも鋳造欠陥の発生防止に
寄与する。さらに、母材溶湯が急速に冷却・凝固
される結果、多孔質体を連通して固体物質の部分
まで侵入する母材の量は極くわずかとなり、その
ため後に空洞となるべき部分の形状は実質的に保
持されることになる。
If the solid material is not covered with a porous material and the high-temperature base metal is poured into it, the solid material will rapidly rise in temperature due to contact with the base metal and immediately burn, sublimate, evaporate, or It decomposes and gasifies, and the gas is dispersed into the molten base metal, causing casting defects such as blowholes and cavities.It also becomes impossible to maintain the cavity shape against the pressure applied to the molten metal, resulting in It becomes impossible to obtain a cavity with the shape of .
However, in the method of the present invention, since the solid material is covered with a porous material, the poured molten base material does not immediately come into contact with the solid material. That is, pressure is applied to the molten base metal to impregnate the porous body, and the molten base metal comes into contact with the solid substance only after passing through the voids within the porous body. In this way, the molten base metal does not come into direct contact with the solid substance during pouring, and the porous body interposed between the molten base metal and the solid substance is porous and therefore has high heat insulation properties. Sometimes the temperature of the solid material does not rise appreciably, thus preventing the solid material from becoming gasified by combustion, sublimation, evaporation or decomposition. If pressure is applied, the molten base metal may pass through the voids of the porous body and come into contact with the solid material as described above, but in pressure casting such as high-pressure casting, Since the contact between the molten metal and the mold surface is extremely good, the molten base metal is rapidly cooled and solidified. Therefore, even if gas is generated from the contact area due to the contact between the base metal and the solid substance, the molten metal will not be absorbed into the base metal. It will not be dispersed in the material and will prevent casting defects from occurring in the casting. In addition, as mentioned above, the molten base metal is rapidly cooled by pressure casting, so even if the molten base metal passes through the porous body and comes into contact with the solid material, the solid material will be gasified at the contact area. The period during which the temperature is higher than that is only an extremely short time, and therefore the amount of gas generated at the contact portion is not so large, which also contributes to preventing the occurrence of casting defects. Furthermore, as the molten base material is rapidly cooled and solidified, the amount of base material that communicates with the porous body and penetrates into the solid material is extremely small, so the shape of the part that will later become a cavity is substantially the same. It will be maintained as follows.

このようにして加圧鋳造して得られた鋳物を、
金型から取出した後、母材の融点よりも低くかつ
固体物質のガス化温度以上の温度で加熱すれば、
固体物質が燃焼、昇華、蒸発もしくは分解により
ガス化して、所定のガス抜通路を経て外部へ放散
され、その固体物質が存在していた部分が空洞と
して残ることになる。ここで、前記ガス抜通路と
しては、通常は鋳造後に鋳物外部から固体物質の
部分まで連通する穴を形成すれば良いが、鋳造時
に固体物質の一部が金型表面に接するようにした
場合には、その部分が鋳物外部に露呈することと
なり、したがつてその露呈部分がガス抜通路とな
るから、鋳造後に改めてガス抜通路を形成する必
要はない。
The casting obtained by pressure casting in this way,
After removing it from the mold, if it is heated at a temperature lower than the melting point of the base material and higher than the gasification temperature of the solid substance,
The solid substance is gasified by combustion, sublimation, evaporation, or decomposition and is dissipated to the outside through a predetermined gas vent passage, leaving the area where the solid substance was present as a cavity. Here, as the gas vent passage, normally it is sufficient to form a hole that communicates from the outside of the casting to the part of the solid material after casting, but if a part of the solid material comes into contact with the mold surface during casting, Since that portion is exposed to the outside of the casting and therefore serves as a gas vent passage, there is no need to form a gas vent passage again after casting.

以上のようにして、鋳造時に配置した固体物質
の部分に、その固体物質の形状寸法に実質的に相
当する空洞部を有する鋳物を得ることができる。
ここで、固体物質を覆つていた多孔質体は母材金
属と複合された層となり、この層は複合化により
高強度となるから、空洞部の周囲が強化されるこ
とになり、耐久性を向上させる役割を果たす。
In this manner, a casting can be obtained in which the portion of the solid material placed during casting has a cavity substantially corresponding to the shape and dimensions of the solid material.
Here, the porous material that covered the solid material becomes a layer that is composited with the base metal, and this layer has high strength due to the composite, so the area around the cavity is strengthened and the durability is increased. play a role in improving

なお固体物質を最終的に燃焼、昇華、蒸発また
は分解によりガス化して除去する処理は、鋳物に
に対する熱処理と兼ねて行なうことができる。す
なわち例えばアルミニウム合金製ピストン鋳物の
場合、溶体化処理後焼入れし、その後安定化処理
する所謂T7処理を施すのが一般的であるが、こ
の処理で固体物質のガス化除去を行なうことがで
き、したがつてその場合には別にガス化除去のた
めの加熱を行なう必要がない。
Note that the process of finally gasifying and removing the solid substance by combustion, sublimation, evaporation, or decomposition can be performed concurrently with the heat treatment of the casting. That is, for example, in the case of an aluminum alloy piston casting, it is common to perform a so-called T7 treatment in which the piston is solution-treated, quenched, and then stabilized, but solid substances can be gasified and removed by this treatment. Therefore, in that case, there is no need to separately perform heating for gasification and removal.

発明を実施するための具体的な説明 この発明の具体的構成について、第1図に示す
ような断熱ピストンを製造する場合を例にとつて
以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific configuration of the present invention will be described below, taking as an example a case where a heat insulating piston as shown in FIG. 1 is manufactured.

第1図に示すような断熱ピストンを製造する場
合は、第2図〜第4図に示すような多孔質体1、
固体物質2、および耐熱金属板3を予め用意して
おき、これらを第5図に示すように組合せる。
When manufacturing a heat insulating piston as shown in FIG. 1, a porous body 1 as shown in FIGS. 2 to 4,
A solid substance 2 and a heat-resistant metal plate 3 are prepared in advance, and these are combined as shown in FIG.

前記固体物質2は、常温付近では固体状態を保
ち、かつ鋳造すべき母材金属例えばアルミニウム
合金の融点よりも低い温度に加熱された場合に燃
焼、昇華、蒸発あるいは分解によつてガス化し得
る物質であればよく、有機材料、無機材料のいず
れを用いても良い。有機材料としては例えばエポ
キシ樹脂やアクリル樹脂等で代表される樹脂、あ
るいは木材または木材と樹脂との混合物(例えば
樹脂を含浸させた木片、あるいは樹脂とおがくず
との圧縮成形体)、ゴム材料(例えばシリコンゴ
ム)などがあり、無機材料としては例えばSeO2
SnBr4等があるが、これらに限定されないことは
勿論である。この固体物質2は最終的に形成すべ
き空洞4(第1図参照)の形状に相当するよう
に、例えば円盤状に形成しておく。
The solid substance 2 is a substance that remains solid at around room temperature and can be gasified by combustion, sublimation, evaporation, or decomposition when heated to a temperature lower than the melting point of the base metal to be cast, such as an aluminum alloy. Any organic material or inorganic material may be used. Examples of organic materials include resins such as epoxy resins and acrylic resins, wood or mixtures of wood and resins (e.g., wood chips impregnated with resin, or compression molded bodies of resin and sawdust), rubber materials (e.g. silicone rubber), and inorganic materials such as SeO 2 ,
Examples include SnBr 4 , but it goes without saying that the material is not limited to these. This solid substance 2 is formed into, for example, a disk shape so as to correspond to the shape of the cavity 4 (see FIG. 1) to be finally formed.

多孔質体1は注湯すべき母材金属例えばアルミ
ニウム合金の溶湯に対して安定な物質、望ましく
はその注湯温度よりも高融点の物質からなるもの
である。この多孔質体1は、母材金属溶湯の注湯
時に固体物質の温度が可及的に上昇しないよう
に、熱伝導率が低いことが望ましく、その意味か
らセラミツク多孔質体、例えばアルミナあるいは
窒化ケイ素等の短繊維成形体を使用することが好
ましく、またこのほかステンレス繊維成形体等の
金属質多孔質体を用いることもできるが、これら
に限定されないことももちろんである。なお多孔
質体1は、要は母材金属注湯時にその母材溶湯が
直接固体物質に接触することを防止するためのも
のであり、その観点から体積率5%以上が望まし
く、一方余り体積率が高過ぎれば母材金属との複
合化が困難となるから、体積率60%以下とするこ
とが好ましい。このような多孔質体1は、前記固
体物質2を覆うような形状に予め作成しておく。
但し固体物質2の外面の全てを覆う必要はなく、
要は注湯時に母材金属溶湯が直接固体物質2に接
しないように覆えば良い。すなわち第1図の断熱
ピストンを作成する場合、固体物質2の一面は耐
熱金属板3に覆われて母材金属に接しないから、
その面を除いた残りの面を多孔質体1が覆うよう
に、前記円盤状の固体物質2が嵌め込まれる凹部
1Aを一面側に形成しておけば良い。
The porous body 1 is made of a material that is stable with respect to the base metal to be poured, such as a molten aluminum alloy, and preferably has a melting point higher than the pouring temperature. It is desirable that the porous body 1 has low thermal conductivity so that the temperature of the solid substance does not rise as much as possible during pouring of the molten base metal, and for that reason, it is preferable to use a ceramic porous body such as alumina or nitride. It is preferable to use short fiber molded bodies such as silicon, and in addition, metallic porous bodies such as stainless steel fiber molded bodies can also be used, but it is needless to say that the present invention is not limited to these. The purpose of the porous body 1 is to prevent the molten base metal from coming into direct contact with a solid substance during pouring of the base metal, and from this point of view, it is desirable that the volume ratio is 5% or more. If the ratio is too high, it will be difficult to form a composite with the base metal, so it is preferable that the volume ratio is 60% or less. Such a porous body 1 is created in advance in a shape so as to cover the solid substance 2.
However, it is not necessary to cover the entire outer surface of the solid substance 2;
In short, it is sufficient to cover the solid substance 2 so that the base metal molten metal does not come into direct contact with the solid substance 2 during pouring. In other words, when creating the heat-insulating piston shown in FIG.
A recess 1A into which the disk-shaped solid substance 2 is fitted may be formed on one side so that the porous body 1 covers the remaining surface except for that surface.

耐熱金属板3はこの発明の方法では基本的に必
須のものではないが、特に断熱ピストンを対象と
する場合には必要となる。すなわちこの耐熱金属
板3は断熱ピストンの頂面部を形成するものであ
つて、耐熱性の高い金属、例えばSUS304等のス
テンレス鋼、あるいはJIS SUH系の耐熱鋼、さ
らにはインコロイ等のFe基耐熱合金(Fe基超合
金)、インコネル等のNi基耐熱合金(Ni基超合
金)、Nivco等のCo基耐熱合金(Co基超合金)、
さらにはJIS SCH系の鋳鋼等を用いることがで
きる。この耐熱金属板3は、図示の例では円板の
周囲をほぼ直角に折曲げて凹部3Aを形成し、か
つその折曲げられた部分3Bの先端部3Cをさら
に内側へ直角に折曲げた形状に作られたものであ
り、例えば液圧成形によつて加工されている。そ
してこのような形状の耐熱金属板3の凹部3Aの
底面に前記固体物質2の一面が接するように固体
物質2および多孔質体1が組合される。
Although the heat-resistant metal plate 3 is not basically essential in the method of the present invention, it is necessary especially when a heat-insulating piston is targeted. That is, this heat-resistant metal plate 3 forms the top surface of the heat-insulating piston, and is made of a highly heat-resistant metal, such as stainless steel such as SUS304, JIS SUH heat-resistant steel, or Fe-based heat-resistant alloy such as Incoloy. (Fe-based superalloys), Ni-based heat-resistant alloys such as Inconel (Ni-based superalloys), Co-based heat-resistant alloys such as Nivco (Co-based superalloys),
Furthermore, JIS SCH cast steel or the like can be used. In the illustrated example, the heat-resistant metal plate 3 has a shape in which the periphery of a circular plate is bent approximately at right angles to form a recessed portion 3A, and the tip portion 3C of the bent portion 3B is further bent inward at a right angle. It is manufactured by, for example, hydroforming. Then, the solid material 2 and the porous body 1 are combined so that one surface of the solid material 2 is in contact with the bottom surface of the recess 3A of the heat-resistant metal plate 3 having such a shape.

以上のように多孔質体1、固体物質2および耐
熱金属板3を組合せて、第6図に示すように加圧
鋳造用鋳型、例えば高圧鋳造用金型5内の所要位
置に配置する。すなわち図示の断熱ピストンの場
合、耐熱金属板3が金型5の底面に接するように
配置する。なお第6図において6は加圧パンチ、
7は鋳物取出用のノツクアウトピンである。
As described above, the porous body 1, the solid substance 2, and the heat-resistant metal plate 3 are combined and placed at a predetermined position in a pressure casting mold, for example, a high pressure casting mold 5, as shown in FIG. That is, in the case of the illustrated heat-insulating piston, the heat-resistant metal plate 3 is arranged so as to be in contact with the bottom surface of the mold 5. In addition, in Fig. 6, 6 is a pressure punch,
7 is a knockout pin for taking out the casting.

次いでアルミニウム合金溶湯等の鋳物母材溶湯
8を金型5内に注湯する。この際には、既に述べ
たように母材溶湯8が直接固体物質2に接触せ
ず、そのため固体物質2は未だ燃焼、昇華、蒸発
もしくは分解によりガス化しない。
Next, a casting base material molten metal 8 such as an aluminum alloy molten metal is poured into the mold 5. At this time, as described above, the base metal molten metal 8 does not come into direct contact with the solid substance 2, and therefore the solid substance 2 is not yet gasified by combustion, sublimation, evaporation, or decomposition.

続いて加圧パンチ6などによつて母材溶湯8を
加圧すれば、その加圧力によつて母材溶湯8は多
孔質体1に含浸され、その部分が複合部9とな
る。この際、多孔質体1の内部の空隙を透過した
母材溶湯8が多孔質体1で覆われた固体物質2に
接触してその接触部で固体物質が一部ガス化する
こともあるが、既に述べたように加圧力によつて
母材溶湯8が急速に冷却凝固せしめられる結果、
そのガスが鋳物母材中に分散することが防止さ
れ、鋳造欠陥の発生が防止される。ここで、加圧
力の程度は特に限定しないが、引け巣等の発生を
防止しかつ鋳造組織を微細化させ、しかも金型5
と母材溶湯8との接触状態を良好にして急速冷却
凝固を促進させるとともに多孔質体1に母材溶湯
8を充分に含浸させるためには、300Kg/cm2程度
以上の加圧力とすることが望ましい。また加圧鋳
造法としては、パンチによつて加圧する高圧鋳造
法のほか、いわゆるダイキヤスト法などを適用で
き、また鋳物の形状によつては遠心鋳造法を適用
することもできる。なお加圧力は母材溶湯8の完
全凝固まで保持する。
Subsequently, when the base material molten metal 8 is pressurized using a pressure punch 6 or the like, the base material molten metal 8 is impregnated into the porous body 1 by the pressurizing force, and that portion becomes a composite portion 9. At this time, the molten base metal 8 that has passed through the voids inside the porous body 1 may come into contact with the solid substance 2 covered with the porous body 1, and some of the solid substance may be gasified at the contact area. As already mentioned, as a result of the molten base metal 8 being rapidly cooled and solidified by the applied pressure,
This gas is prevented from dispersing into the casting base material, and casting defects are prevented from occurring. Here, the degree of pressurizing force is not particularly limited, but it is necessary to prevent the occurrence of shrinkage cavities, etc., to refine the casting structure, and to
In order to improve the contact state between the base metal 8 and the base metal molten metal 8 to promote rapid cooling and solidification, and to sufficiently impregnate the base metal 8 into the porous body 1, the pressure should be approximately 300 kg/cm 2 or more. is desirable. Further, as the pressure casting method, in addition to a high pressure casting method in which pressure is applied by a punch, a so-called die casting method can be applied, and depending on the shape of the casting, a centrifugal casting method can also be applied. Note that the applied pressure is maintained until the base metal molten metal 8 completely solidifies.

このようにして多孔質体1が母材との複合体9
となりかつ固体物質2と耐熱金属板3がアルミニ
ウム合金等の母材12によつて鋳ぐるみされた断
熱ピストン用鋳物を金型5から取出した状態を第
7図に示す。
In this way, the porous body 1 forms a composite body 9 with the base material.
FIG. 7 shows a state in which a casting for an insulating piston, in which a solid substance 2 and a heat-resistant metal plate 3 are surrounded by a base material 12 such as an aluminum alloy, is taken out from a mold 5.

次いで、第7図の断熱ピストン用鋳物の場合に
は、固体物質2に連通するガス抜通路10を形成
した後、母材の融点よりも低くかつ固体物質のガ
ス化温度(すなわち燃焼温度、昇華温度、蒸発温
度もしくは分解温度)以上の温度に加熱する。斯
くすれば固体物質がガス化してその部分が空洞4
となる。この後には必要に応じて適宜機械加工
し、前記ガス抜通路10を例えばネジ11などに
よつて埋めれば、第1図に示すような断熱ピスト
ンが得られる。
Next, in the case of the adiabatic piston casting shown in FIG. temperature, evaporation temperature or decomposition temperature). In this way, the solid substance will be gasified and that part will become a cavity 4
becomes. After this, if necessary, the piston is machined as required and the gas vent passage 10 is filled with, for example, a screw 11, thereby obtaining a heat insulating piston as shown in FIG.

ここで、アルミニウム合金鋳物で自動車ピスト
ンを作成する場合、鋳造後にT7処理を行なうの
が一般的であるが、その場合T7処理によつて前
記固体物質をガス化除去することができ、したが
つて別途ガス化のための加熱を行なう必要がな
い。
Here, when making automobile pistons from aluminum alloy castings, it is common to perform T7 treatment after casting, but in that case, the solid substances can be gasified and removed by T7 treatment. There is no need to separately heat for gasification.

以上のようにして得られた断熱ピストンは第1
図に示すように、頂面部が耐熱金属板3で形成さ
れるとともに、その直下に断熱用の空洞部4が形
成され、しかもその断熱用の空洞部4の周囲およ
び下側は金属−多孔質体の複合部9で強化されて
いることになる。
The adiabatic piston obtained as above is the first
As shown in the figure, the top surface is formed of a heat-resistant metal plate 3, and a heat-insulating cavity 4 is formed directly below it, and the surroundings and lower side of the heat-insulating cavity 4 are made of metal-porous material. This means that the composite part 9 of the body is strengthened.

なおここで耐熱金属板3の周辺の折曲げた部分
3B,3Cによつて囲まれる部分3Dには、注湯
時に多孔質体1を透過した母材溶湯8が侵入し、
したがつて耐熱金属板3はその部分で強固に保持
されることになる。
Note that the base material molten metal 8 that has passed through the porous body 1 during pouring enters the portion 3D surrounded by the bent portions 3B and 3C around the heat-resistant metal plate 3, and
Therefore, the heat-resistant metal plate 3 is firmly held at that portion.

以上の例では断熱ピストンの例について説明し
たが、その他の中空鋳物にもこの発明の方法を適
用できることは勿論である。
In the above example, an example of an adiabatic piston was explained, but it goes without saying that the method of the present invention can also be applied to other hollow castings.

実施例 実施例 1 第1図に示すような断熱ピストンを製造するに
あたり、第2図〜第4図に示すような形状の多孔
質体1、固体物質2および耐熱金属板3を用意し
た。多孔質体1としてはかさ密度0.17g/c.c.のア
ルミナ短繊維成形体を用い、その寸法は外形70.2
mm、全厚み30mm、凹部1Aの径60mm、凹部1Aの
深さ10mmとした。固体物質2としてはエポキシ樹
脂を用い、その径は60mm、厚みは10mmとした。ま
た耐熱金属板3としては液圧成形したSUS304の
厚み4mmのステンレス板を用い、その外径は83
mm、高さは15mm、凹部3Aの開口端の内径は70mm
とした。
Examples Example 1 In manufacturing a heat insulating piston as shown in FIG. 1, a porous body 1, a solid substance 2, and a heat-resistant metal plate 3 having shapes as shown in FIGS. 2 to 4 were prepared. As the porous body 1, an alumina short fiber molded body with a bulk density of 0.17 g/cc is used, and its dimensions are 70.2 mm.
mm, the total thickness was 30 mm, the diameter of the recess 1A was 60 mm, and the depth of the recess 1A was 10 mm. Epoxy resin was used as the solid substance 2, and its diameter was 60 mm and the thickness was 10 mm. In addition, as the heat-resistant metal plate 3, a 4 mm thick stainless steel plate of SUS304 formed by hydraulic pressure is used, and its outer diameter is 83 mm.
mm, height is 15mm, inner diameter of opening end of recess 3A is 70mm
And so.

これらを第5図に示すように組合せて、第6図
に示すように金型5内に配置し、温度720℃のア
ルミニウム合金(JIS AC8A;Al−12%Si−1.2
%Cu−1.0%Mg−2%Ni−0.3%Fe)の溶湯8を
注湯し、続いて加圧パンチ6により500Kg/cm2
圧力を加えて高圧鋳造を行なつた。なお加圧力は
アルミニウム合金溶湯の完全凝固まで保持した。
凝固後に鋳物を金型から取出して第7図に示すよ
うな内径3mmのガス抜通路10を機械加工によつ
て形成した後、T7熱処理(溶体化490℃×4時
間、時効処理220℃×8時間)を施した。この熱
処理後の鋳物を調べたところ、内部のエポキシ樹
脂(固体物質2)は完全に分解気化しており、ピ
ストン内部にそのエポキシ樹脂の当初の形状、寸
法に実質的に相当する空洞部4が形成されている
ことが確認された。
These were combined as shown in Fig. 5, placed in a mold 5 as shown in Fig. 6, and aluminum alloy (JIS AC8A; Al-12%Si-1.2
% Cu - 1.0% Mg - 2% Ni - 0.3% Fe) was poured, and then a pressure of 500 kg/cm 2 was applied using a pressure punch 6 to perform high-pressure casting. The applied pressure was maintained until the molten aluminum alloy completely solidified.
After solidification, the casting was taken out of the mold and a gas vent passage 10 with an inner diameter of 3 mm as shown in Fig. 7 was formed by machining, followed by T7 heat treatment (solution treatment at 490°C for 4 hours, aging treatment at 220°C for 8 hours). time) was applied. When we examined the casting after this heat treatment, we found that the epoxy resin (solid substance 2) inside had completely decomposed and vaporized, and a cavity 4 was formed inside the piston that substantially corresponded to the original shape and dimensions of the epoxy resin. It was confirmed that it was formed.

その後、機械加工を行なつてピストン形状と
し、さらに前記ガス抜通路10をステンレス製の
ネジ11で埋めて最終的に第1図に示すような断
熱ピストンを得た。
Thereafter, it was machined into a piston shape, and the gas vent passage 10 was filled with stainless steel screws 11 to finally obtain an adiabatic piston as shown in FIG.

また固体物質2としてエポキシ樹脂の代りに、
ポリエステル樹脂を含浸させた木片、フエノール
樹脂とおがくずとの圧縮成形体、およびシリコン
ゴムを用い、それぞれ前記と同じ条件、同じ方法
でピストンを製造したところ、第1図に示すピス
トンと実質的に同様な空洞部を有するピストンを
得ることができた。また固体物質2としてエポキ
シ樹脂の代りにSeO2、SnBr4を用いた場合、前
者ではT7処理で昇華し、後者ではT7処理で蒸発
することにより、それぞれ第1図に示すピストン
と同様な空洞部を有するピストンをを製造するこ
とができた。
Also, instead of epoxy resin as the solid substance 2,
A piston was manufactured using a piece of wood impregnated with polyester resin, a compression molded product of phenolic resin and sawdust, and silicone rubber under the same conditions and in the same method as described above, and the piston was substantially the same as the piston shown in Figure 1. It was possible to obtain a piston having a hollow portion. Furthermore, when SeO 2 or SnBr 4 is used instead of the epoxy resin as the solid substance 2, the former sublimes in the T7 treatment, and the latter evaporates in the T7 treatment, creating a cavity similar to the piston shown in Figure 1. We were able to manufacture a piston with

実施例 2 第8図に示すような断熱ピストンを製造するに
あたり、多孔質体1として第9図A,Bに示すよ
うな形状寸法のステンレス短繊維成形体を用い、
また固体物質2として第10図に示すような形状
寸法のエポキシ樹脂を用い、さらに耐熱金属板3
として第11図A,Bに示すような寸法形状の
SUS304のステンレス板を用い、これらを第12
図に示すように組合せて、第13図に示すように
高圧鋳造用金型5内に配置し、以下実施例1と同
じ方法でJIS AC8A合金を母材とするピストンを
製造した。なおステンレス短繊維成形体として
は、単位繊維形状が44μm×55μm×3mmで成形
体かさ密度が2.36g/c.c.のものを用いた。この場
合にも第8図に示すように前記エポキシ樹脂の当
初の形状寸法に実質的に対応する空洞部4を有す
る断熱ピストンを得ることができた。
Example 2 In manufacturing a heat insulating piston as shown in FIG. 8, a short stainless steel fiber molded body having the shape and dimensions as shown in FIGS. 9A and B was used as the porous body 1,
In addition, an epoxy resin having the shape and dimensions as shown in FIG. 10 is used as the solid material 2, and a heat-resistant metal plate 3 is used.
As shown in Figure 11A and B,
Using SUS304 stainless steel plates, these
The components were combined as shown in the figure and placed in a high-pressure casting mold 5 as shown in FIG. 13, and a piston using JIS AC8A alloy as a base material was manufactured in the same manner as in Example 1. The stainless steel short fiber molded body used had a unit fiber shape of 44 μm x 55 μm x 3 mm and a molded body bulk density of 2.36 g/cc. In this case as well, as shown in FIG. 8, it was possible to obtain a heat insulating piston having a cavity 4 substantially corresponding to the original shape and dimensions of the epoxy resin.

以上の実施例1および実施例2により得られた
断熱ピストンは、いずれも頂面耐熱材(耐熱金属
板3)と母材との間の接合程度が極めて高く、断
熱性も良好であり、かつ空洞部周辺が複合強化さ
れた構造となつているため優れた耐久性を示すこ
とが確認された。また燃焼特性試験を行なつたと
ころ、始動時から高負荷稼動時に至るまで、従来
の通常のアルミニウム合金製ピストンと比較して
不完全燃焼ガス(スモーク)の発生時間、量が明
らかに減少し、かつ燃費の向上も達成されてお
り、デイーゼルエンジン用ピストンとして極めて
優れていることが明らかとなつた。
Both of the heat-insulating pistons obtained in Example 1 and Example 2 have an extremely high degree of bonding between the top heat-resistant material (heat-resistant metal plate 3) and the base material, and have good heat insulation properties. It has been confirmed that the structure around the cavity has a composite reinforced structure, which provides excellent durability. In addition, when we conducted combustion characteristics tests, we found that the time and amount of incomplete combustion gas (smoke) was clearly reduced compared to conventional aluminum alloy pistons, from the time of startup to the time of high-load operation. Moreover, improved fuel efficiency was also achieved, making it clear that the piston is extremely excellent as a piston for diesel engines.

実施例 3 次にピストン以外の中空鋳物、すなわち第14
図に示すような鋳物を製造した実施例を記す。
Example 3 Next, hollow castings other than the piston, that is, the 14th
An example in which a casting as shown in the figure was manufactured will be described.

第15図に示すような形状寸法にアクリル樹脂
を成形して固体物質2とし、この固体物質2を第
16図に示すように多孔質体1としてのアルミナ
短繊維で覆い、その一方の面1Bが金型底面側に
接するように第17図に示す如く高圧鋳造用金型
5内に配置し、550℃のZn溶湯8を注湯し、500
Kg/cm2の加圧力を加えて高圧鋳造して、第18図
に示すようにアルミナ短繊維多孔質体1の部分が
複合部9となつた鋳物を作成した。なお第18図
において13はZn母材である。得られた鋳物を
大気中において400℃で3時間加熱保持した。そ
の結果、固体物質2としてのアクリル樹脂は完全
に分解気化して、内部が空洞化され、しかもその
空洞部4の周辺が複合強化された鋳物(第14
図)を得ることができた。
A solid material 2 is obtained by molding acrylic resin into the shape and dimensions shown in FIG. 15, and this solid material 2 is covered with alumina short fibers as a porous body 1 as shown in FIG. is placed in the high-pressure casting mold 5 as shown in FIG.
High-pressure casting was performed by applying a pressing force of Kg/cm 2 to produce a casting in which the alumina short fiber porous material 1 became a composite part 9 as shown in FIG. In addition, in FIG. 18, 13 is a Zn base material. The obtained casting was heated and held at 400° C. for 3 hours in the atmosphere. As a result, the acrylic resin as the solid substance 2 is completely decomposed and vaporized, and the inside is hollowed out, and the periphery of the hollow part 4 is compositely reinforced casting (No. 14).
Figure) was obtained.

発明の効果 以上の実施例からも明らかなようにこの発明の
方法によれば、内部に任意の形状の空洞部を有す
る鋳物を簡単かつ容易に製造することができ、し
かも空洞部を形成すると同時にその近傍を多孔質
体と母材金属との複合部として強化することがで
きる。したがつてこの発明の方法は、頂面直下に
空洞部を有する断熱ピストンの製造に適用して有
益なものである。
Effects of the Invention As is clear from the above embodiments, according to the method of the present invention, it is possible to simply and easily produce a casting having a cavity of any shape inside, and also to form the cavity at the same time. The vicinity thereof can be strengthened as a composite part of the porous body and the base metal. Therefore, the method of the present invention is useful when applied to the manufacture of an insulated piston having a cavity immediately below the top surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法により製造される中空
鋳物の一例としての断熱ピストンを示す切欠斜視
図、第2図は第1図のピストンの製造に使用され
る多孔質体を示す切欠斜視図、第3図は第1図の
ピストンの製造に使用される固体物質を示す斜視
図、第4図は第1図のピストンの製造に使用され
る耐熱金属板を示す切欠斜視図、第5図は第2図
から第4図に示される各部材を組合せた状態を示
す縦断面図、第6図は第1図のピストンの製造過
程における母材溶湯注湯時の状況を模式的に示す
縦断面図、第7図は第1図のピストンの製造過程
における鋳造後固体物質除去前の状況を示す縦断
面図である。第8図はこの発明の方法により製造
される中空鋳物としての断熱ピストンの他の例を
示す縦断面図、第9図A,Bは第8図のピストン
の製造に使用される多孔質体を示す図で、Aはそ
の斜視図、Bは縦断面図、第10図は第8図のピ
ストンの製造に使用される固体物質(エポキシ樹
脂成形体)の斜視図、第11図A,Bは第8図の
ピストンの製造に使用される耐熱金属板を示す図
で、Aはその斜視図、Bは縦断面図、第12図は
第9図〜第11図に示される各部材を組合せた状
態を示す縦断面図、第13図は第8図のピストン
の製造過程における母材溶湯注湯時の状況を模式
的に示す縦断面図である。第14図はこの発明の
方法により製造される中空鋳物の他の例を示す縦
断面図、第15図は第14図の中空鋳物の製造に
使用される固体物質(アクリル樹脂成形体)の斜
視図、第16図は第15図の固体物質を多孔質体
(アルミナ短繊維成形体)で覆つた状態を示す縦
断面図、第17図は第14図の中空鋳物の製造過
程における母材溶湯注湯時の状況を模式的に示す
縦断面図、第18図は第14図の中空鋳物の製造
過程における鋳造後固体物質除去前の状況を示す
縦断面図である。 1……多孔質体、2……固体物質、4……空洞
部、8……母材溶湯。
FIG. 1 is a cutaway perspective view showing a heat insulating piston as an example of a hollow casting manufactured by the method of the present invention, FIG. 2 is a cutaway perspective view showing a porous body used in manufacturing the piston of FIG. 1, FIG. 3 is a perspective view showing the solid material used in manufacturing the piston shown in FIG. 1, FIG. 4 is a cutaway perspective view showing a heat-resistant metal plate used in manufacturing the piston shown in FIG. 1, and FIG. Figures 2 to 4 are longitudinal cross-sectional views showing the assembled state of each member, and Figure 6 is a vertical cross-sectional view schematically showing the state of pouring the molten base metal in the manufacturing process of the piston shown in Figure 1. 7 are longitudinal cross-sectional views showing the state of the piston shown in FIG. 1 in the manufacturing process after casting and before removal of solid substances. FIG. 8 is a longitudinal sectional view showing another example of a heat insulating piston as a hollow casting manufactured by the method of the present invention, and FIGS. 9A and B show a porous body used in manufacturing the piston of FIG. 8. In the figures, A is a perspective view thereof, B is a longitudinal sectional view, FIG. 10 is a perspective view of the solid material (epoxy resin molded body) used for manufacturing the piston of FIG. 8, and FIGS. 11A and B are 8 is a diagram showing a heat-resistant metal plate used for manufacturing the piston of FIG. 8, A is a perspective view thereof, B is a vertical sectional view, and FIG. 12 is a combination of each member shown in FIGS. 9 to 11. FIG. 13 is a vertical cross-sectional view schematically showing the state of pouring molten base metal in the manufacturing process of the piston shown in FIG. 8. Fig. 14 is a longitudinal cross-sectional view showing another example of a hollow casting manufactured by the method of the present invention, and Fig. 15 is a perspective view of a solid material (acrylic resin molded body) used for manufacturing the hollow casting shown in Fig. 14. Figure 16 is a vertical cross-sectional view showing the state in which the solid material shown in Figure 15 is covered with a porous body (alumina short fiber compact), and Figure 17 is a molten base material in the process of manufacturing the hollow casting shown in Figure 14. FIG. 18 is a vertical cross-sectional view schematically showing the situation during pouring, and FIG. 18 is a vertical cross-sectional view showing the situation before solid material removal after casting in the manufacturing process of the hollow casting of FIG. 14. 1... Porous body, 2... Solid substance, 4... Cavity, 8... Molten base material.

Claims (1)

【特許請求の範囲】 1 加圧鋳造によつて内部に空洞を有する中空鋳
物を鋳造するにあたり、常温では固体状態を保ち
かつ鋳物母材金属の融点よりも低い加熱温度でガ
ス化する固体物質を予め前記空洞の形状に作つて
おき、その固体物質を母材金属溶湯に対して安定
な多孔質体で覆つた状態で鋳型内に配置し、母材
金属溶湯を鋳型内に注湯して加圧鋳造することに
より前記固体物質を鋳ぐるんだ鋳物を作成し、そ
の後母材金属の融点より低くかつ前記固体物質の
ガス化温度以上の温度で前記鋳物を加熱して前記
固体物質をガス化により除去し、内部に空洞を有
する中空鋳物を製造することを特徴とする中空鋳
物の製造方法。 2 前記固体物質のガス化が燃焼、昇華、蒸発も
しくは分解である特許請求の範囲第1項記載の中
空鋳物の製造方法。 3 前記多孔質体として、注湯時の母材金属溶湯
温度よりも融点が高い物質を用いる特許請求の範
囲第1項記載の中空鋳物の製造方法。 4 前記中空鋳物として、空洞部を断熱部とした
断熱部材用の鋳物を製造する特許請求の範囲第1
項記載の中空鋳物の製造方法。 5 前記中空鋳物として、頂面直下の空洞部を断
熱部とした断熱ピストンを製造する特許請求の範
囲第1項記載の中空鋳物の製造方法。
[Claims] 1. When casting a hollow casting having an internal cavity by pressure casting, a solid substance that remains solid at room temperature and gasifies at a heating temperature lower than the melting point of the casting base metal is used. The solid material is formed in the shape of the cavity in advance, and placed in a mold with the solid material covered with a porous material that is stable against the molten base metal, and the molten base metal is poured into the mold and heated. Creating a casting in which the solid substance is cast by pressure casting, and then heating the casting at a temperature lower than the melting point of the base metal and higher than the gasification temperature of the solid substance to gasify the solid substance. 1. A method for producing a hollow casting, comprising: removing the hollow casting by removing the hollow casting, and producing a hollow casting having a cavity inside. 2. The method for producing a hollow casting according to claim 1, wherein the gasification of the solid substance is combustion, sublimation, evaporation, or decomposition. 3. The method for producing a hollow casting according to claim 1, wherein the porous body is a substance having a melting point higher than the temperature of the base metal molten metal during pouring. 4. Claim 1, wherein the hollow casting is a casting for a heat insulating member in which the hollow part is a heat insulating part.
A method for producing a hollow casting as described in Section 1. 5. The method for manufacturing a hollow casting according to claim 1, wherein the hollow casting is an insulating piston in which a cavity directly below the top surface is a heat insulating part.
JP15364085A 1985-07-12 1985-07-12 Production of hollow casting Granted JPS6216865A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP15364085A JPS6216865A (en) 1985-07-12 1985-07-12 Production of hollow casting
US06/883,825 US4712600A (en) 1985-07-12 1986-07-09 Production of pistons having a cavity
AU60093/86A AU597889B2 (en) 1985-07-12 1986-07-11 Production of pistons having a cavity
DE8686109510T DE3680965D1 (en) 1985-07-12 1986-07-11 MANUFACTURING PISTON WITH A CAVITY.
CA000513601A CA1271615A (en) 1985-07-12 1986-07-11 Production of pistons having a cavity
EP86109510A EP0209090B1 (en) 1985-07-12 1986-07-11 Production of pistons having a cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15364085A JPS6216865A (en) 1985-07-12 1985-07-12 Production of hollow casting

Publications (2)

Publication Number Publication Date
JPS6216865A JPS6216865A (en) 1987-01-26
JPH0236350B2 true JPH0236350B2 (en) 1990-08-16

Family

ID=15566935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15364085A Granted JPS6216865A (en) 1985-07-12 1985-07-12 Production of hollow casting

Country Status (1)

Country Link
JP (1) JPS6216865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436863U (en) * 1990-07-26 1992-03-27
DE102010000450B4 (en) * 2009-02-25 2015-07-09 Toyota Jidosha Kabushiki Kaisha A method of making a hollow casting and method of making a void-forming member for use therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119348A (en) * 1983-11-30 1985-06-26 Izumi Jidosha Kogyo Kk Piston of internal-combustion engine and manufacture thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111458U (en) * 1980-12-26 1982-07-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119348A (en) * 1983-11-30 1985-06-26 Izumi Jidosha Kogyo Kk Piston of internal-combustion engine and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436863U (en) * 1990-07-26 1992-03-27
DE102010000450B4 (en) * 2009-02-25 2015-07-09 Toyota Jidosha Kabushiki Kaisha A method of making a hollow casting and method of making a void-forming member for use therefor

Also Published As

Publication number Publication date
JPS6216865A (en) 1987-01-26

Similar Documents

Publication Publication Date Title
US4712600A (en) Production of pistons having a cavity
US5803151A (en) Soluble core method of manufacturing metal cast products
US6035923A (en) Method of and apparatus for producing light alloy composite member
JP2002542035A (en) Dies and methods for manufacturing parts
US4966221A (en) Method of producing aluminum alloy castings and piston made of aluminum alloy
JP2008267158A (en) Piston for internal combustion engine and method for manufacturing the same
JPH0236350B2 (en)
JPH039821B2 (en)
JP3126704B2 (en) Casting method for castings with composite materials cast
JPS63126661A (en) Production of piston
JPS6224853A (en) Production of casting member having heat insulating part
JPH0230790B2 (en)
JPS60119348A (en) Piston of internal-combustion engine and manufacture thereof
JPH057099B2 (en)
KR101636762B1 (en) Method for manufacturing a vehicle engine piston joined with a combined sintered insert ring, and an engine piston made by it
JPS60191654A (en) Piston for internal-combustion engine and production thereof
JP3758114B2 (en) Aluminum alloy member and manufacturing method thereof
JPS6411384B2 (en)
JPH0755366B2 (en) Casting method and apparatus
JPS6245964A (en) Heat insulating piston and manufacture thereof
JPH02241644A (en) Core for manufacturing hollow casting
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
KR102541042B1 (en) Die casting using sintered material and die casting product manufactured therefrom
JP2000271728A (en) Production of composite stock with non-pressurize impregnating permeation method
JPH0360854A (en) Method for pressurizing-casting piston