JPS6216865A - Production of hollow casting - Google Patents

Production of hollow casting

Info

Publication number
JPS6216865A
JPS6216865A JP15364085A JP15364085A JPS6216865A JP S6216865 A JPS6216865 A JP S6216865A JP 15364085 A JP15364085 A JP 15364085A JP 15364085 A JP15364085 A JP 15364085A JP S6216865 A JPS6216865 A JP S6216865A
Authority
JP
Japan
Prior art keywords
casting
base metal
solid substance
cavity
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15364085A
Other languages
Japanese (ja)
Other versions
JPH0236350B2 (en
Inventor
Kaneo Hamashima
浜島 兼男
Tadashi Donomoto
堂ノ本 忠
Atsuo Tanaka
淳夫 田中
Masahiro Kubo
雅洋 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15364085A priority Critical patent/JPS6216865A/en
Priority to US06/883,825 priority patent/US4712600A/en
Priority to CA000513601A priority patent/CA1271615A/en
Priority to EP86109510A priority patent/EP0209090B1/en
Priority to DE8686109510T priority patent/DE3680965D1/en
Priority to AU60093/86A priority patent/AU597889B2/en
Publication of JPS6216865A publication Critical patent/JPS6216865A/en
Publication of JPH0236350B2 publication Critical patent/JPH0236350B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To easily produce an internally hollow casting by executing pressure casting while a solid material which gasifies at a prescribed temp. is held coated with a porous material then heating the casting to the temp. above the prescribed temp. CONSTITUTION:The porous body 1 consisting of an alumina short fiber molding, etc. the solid material 2 consisting of an epoxy resin, etc. having the desired hollow shape in the casting and a heat resistant metallic plate 3 are respectively prepd. and are disposed in a metallic mold 5. After the melt of an Al alloy 8 is poured into the mold, the high-pressure casting is executed by a pressing punch 6. The casting after solidification is taken out of the mold 5 and a vent passage 10 is worked. The casting is then subjected to a heat treatment at the prescribed temp. to gasify the solid material 2 and to form the cavity part having the same shape as the shape thereof. The casting is in succession machine by which a product piston is obtd. The casting having the cavity part of an optional shape in the inside is easily produced by the above-mentioned method.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ディーピルエンジン用断熱ビス1〜ンの如
く、断熱等の目的のための空洞(中空部)を内部に形成
した中空鋳物を′!A造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a hollow casting having a cavity (hollow part) formed therein for purposes such as heat insulation, such as heat insulating screws 1 to 1 for deep-pil engines. This relates to a method of building A.

従来の技術 近年に至り、ディーゼルエンジンにおいてはその燃焼室
を高温化して燃費の改善を図るとともに始動初期の不完
全燃焼を防止するため、ピストン頂面部を断熱化するこ
とが検討されている。
BACKGROUND OF THE INVENTION In recent years, in diesel engines, in order to raise the temperature of the combustion chamber of the engine to improve fuel efficiency and to prevent incomplete combustion at the initial stage of engine startup, it has been considered to make the top surface of the piston insulated.

ピストン頂面部を断熱化するための右動な手段としては
、ピストン頂面の直下に空洞を形成してその空洞部によ
り断熱を図り、かつ断熱による頂面温度上昇に対処する
ために、頂面を耐熱材で形成しておく方法が知られてい
る。具体的には、例えばインコネルの如き超合金などか
らなる耐熱材によって頂面を形成し、その頂面耐熱材と
ピストン母材との間に空洞部を設けて両者をボルト止め
する方法が知られている。しかしながらこの方法では、
頂面材やピストン母材に予め穴加工、ネジ加工等の機械
加工を施しておく必要があり、しかもボルト止めの作業
を必要とするため、生産性が低く、高コストとならざる
を得ないという問題がおり、またピストン稼動時に母材
、特にボルト穴の部分がクリープ変形して頂面耐熱材−
母材間の有効な接合強度が得られなくなるという問題か
あつ Iこ。
As a right-handed means to insulate the top surface of the piston, a cavity is formed directly below the top surface of the piston, and the cavity is used to insulate the top surface. A method is known in which the material is made of a heat-resistant material. Specifically, a method is known in which the top surface is formed of a heat-resistant material made of a superalloy such as Inconel, a cavity is provided between the top heat-resistant material and the piston base material, and the two are bolted together. ing. However, with this method,
The top surface material and piston base material must be machined in advance, such as holes and screws, and bolting is also required, resulting in low productivity and high costs. There is also the problem that when the piston operates, the base material, especially the bolt hole part, creeps and deforms, causing the heat-resistant material on the top surface to deform.
The problem is that effective bonding strength between the base materials cannot be obtained.

そこで頂面耐熱材を母材に強固に接合することができ、
しかも高コス1へ化を招いたり生産性の低下を招いたり
することなく、頂面直下に断熱用の空洞を右するピスト
ンを製造し得る方法の開発が強く望まれている。このよ
うな方法の一つとしては、ピストン母材の鋳造時に頂面
耐熱材を鋳ぐるみによって一体に保持しかつ頂面耐熱材
の直下に空洞部を残して鋳造する鋳ぐるみvi若造法適
用が考えられる。この場合、鋳ぐるみを円滑に行ない、
しかもピストン母材の鋳造欠陥の発生防止や組織微細化
を図るために、鋳造法としては所謂高圧鋳造法などの加
圧鋳造法を適用することが最適と考えられる。
Therefore, the top heat-resistant material can be firmly bonded to the base material,
Moreover, there is a strong desire to develop a method for manufacturing a piston with a heat-insulating cavity just below the top surface without causing high cost or a decrease in productivity. One such method is to apply the casting method, in which the top heat-resistant material is held together by the casting while casting the piston base material, and a cavity is left directly below the top heat-resistant material. Conceivable. In this case, the casting should be carried out smoothly,
Moreover, in order to prevent the occurrence of casting defects and to refine the structure of the piston base material, it is considered optimal to apply a pressure casting method such as a so-called high-pressure casting method as the casting method.

ところで鋳物の内部に空洞を形成する方法としては、シ
ェル中子等の砂中子を鋳ぐるんで鋳造した後、中子砂を
鋳物内部から取出す方法が一般的であり、また一部では
水等の溶媒に容易に溶解さけ得る材料からなる中子、例
えば塩中子を使用して鋳造し、鋳造後に中子を溶出除去
さヒる方法も採用されている。
By the way, a common method for forming a cavity inside a casting is to cast a sand core such as a shell core, and then take out the core sand from inside the casting. Another method has been adopted in which a core made of a material that can be easily dissolved in a solvent, such as a salt core, is used for casting, and the core is eluted and removed after casting.

発明が解決すべき問題点 前述のように砂中子を用いて高圧鋳造法を適用した場合
、溶湯に加わる高圧によって溶湯が中子内に含浸され、
その結果、鋳物内から中子砂を除去することが困難とな
る。また塩中子を用いた場合も、圧縮成形した塩中子で
は高圧鋳造により溶湯が中子に含浸されて前記同様な問
題が生じ、一方溶@凝固させた塩中子を用いた場合、塩
中子に割れが発生し易い問題がある。
Problems to be Solved by the Invention As mentioned above, when high pressure casting is applied using a sand core, the molten metal is impregnated into the core due to the high pressure applied to the molten metal.
As a result, it becomes difficult to remove core sand from within the casting. In addition, when a salt core is used, the same problem occurs when a compression-molded salt core is impregnated with molten metal due to high-pressure casting, whereas when a molten salt core is used, There is a problem that the core is prone to cracking.

したがって従来は高圧鋳造法の如ぎ加圧鋳造法によって
鋳物内部に任意の形状の空洞部を形成することは極めて
困難であった。
Therefore, conventionally, it has been extremely difficult to form a cavity of an arbitrary shape inside a casting by a pressure casting method such as a high-pressure casting method.

この発明は以上の事情を背景としてなされたもので、前
述のような問題が発生することなく、加圧鋳造により内
部に空洞を有する鋳物、例えば断熱ピストンを支障なく
製造し得る方法を提供することを目的とするものである
The present invention has been made against the background of the above-mentioned circumstances, and an object of the present invention is to provide a method for producing a casting having an internal cavity, such as an insulating piston, without any trouble by pressure casting without causing the above-mentioned problems. The purpose is to

問題点を解決するための手段 この発明の方法は、加圧鋳造によって内部に空洞を有す
る中空鋳物を鋳造するにあたり、常温では固体状態を保
ちかつ鋳物母材金属の融点よりも低い加熱湿度でガス化
する固体物質を前記空洞の形状に作っておき、その固体
物質を母材金属溶湯に対して安定な多孔質体で覆った状
態で鋳型内に配置し、母材金属溶湯を鋳型内に注湯して
加圧鋳造することにより前記固体物質を鋳ぐるんだ鋳物
を作成し、その後母材金属の融点より低くかつ前記固体
物質のガス化温度以上の温度で前記鋳物を加熱して前記
固体物質をガス化し、内部に空洞を有する中空鋳物を製
造することを特徴とするものである。
Means for Solving the Problems The method of the present invention, when casting a hollow casting having an internal cavity by pressure casting, maintains a solid state at room temperature and generates gas at a heating humidity lower than the melting point of the casting base metal. A solid material to be oxidized is made in the shape of the cavity, and the solid material is placed in a mold while being covered with a porous material that is stable against the molten base metal, and the molten base metal is poured into the mold. A casting is created by casting the solid substance in hot water and pressure casting, and then the casting is heated at a temperature lower than the melting point of the base metal and higher than the gasification temperature of the solid substance to form the solid substance. This method is characterized by gasifying a substance and producing a hollow casting having a cavity inside.

ここで、鋳物母材金属の融点よりも低い加熱温度でガス
化する固体物質とは、その加熱温度で燃焼、昇華、蒸発
もしくは分解する固体物質を意味する。また前記多孔質
体としては、注湯時の母材金属の溶湯温度(したがって
注湯温度)よりも融点が高い物質を用いるのが通常であ
る。
Here, the solid substance that gasifies at a heating temperature lower than the melting point of the casting base metal means a solid substance that burns, sublimates, evaporates, or decomposes at that heating temperature. Further, as the porous body, a substance having a melting point higher than the molten metal temperature of the base metal at the time of pouring (therefore, the pouring temperature) is usually used.

作  用 この発明の方法においては、前述のように常温では固体
状態を保ちかつ鋳物母材金属の融点よりも低い加熱温度
でガス化する固体物質を用い、最終的に形成すべき空洞
の形状にその固体物質を成形しておき、その固体物質を
母材に対し安定な多孔質体で覆った状態で鋳型内に配置
してアルミニウム合金等の母材溶湯を注湯し、加圧鋳造
する。
Function: As described above, the method of the present invention uses a solid substance that remains solid at room temperature and gasifies at a heating temperature lower than the melting point of the casting base metal, and is shaped into the shape of the cavity to be finally formed. The solid material is shaped, and the solid material is placed in a mold with the base material covered with a stable porous material, and a molten base material such as an aluminum alloy is poured into the mold, followed by pressure casting.

ここで、前記固体物質を多孔質体で覆わずに高温の母材
溶湯を注湯した場合には、固体物質は母材溶湯との接触
により急速に温度上昇して直ちに燃焼、昇華、蒸発もし
くは分解してガス化し、そのガスが母材溶湯中へ分散し
てブローホールや巣などの鋳造欠陥を招く原因となり、
また溶湯加圧力に対し空洞形状を保てなくなって、最終
製品鋳物において所要の形状の空洞が得られなくなる。
If the solid material is not covered with a porous material and the high-temperature base metal is poured into it, the solid material will rapidly rise in temperature due to contact with the base metal and immediately burn, sublimate, evaporate, or It decomposes and gasifies, and the gas disperses into the molten base metal, causing casting defects such as blowholes and cavities.
In addition, the cavity shape cannot be maintained against the pressure applied to the molten metal, making it impossible to obtain a cavity of the desired shape in the final product casting.

しかしながらこの発明の方法の場合には、固体物質を多
孔質体で覆っているため、注湯した母材溶湯は直ちには
固体物質に接触しない。すなわち母材溶湯に加圧力が加
えられて多孔質体に含浸され、その母材溶湯が多孔質体
内の空隙を透過してかrうはじめて固体物質に接触する
ことになる。このように注湯時には母材溶湯が直接固体
物質に接触せず、しかも母材溶湯と固体物質との間に介
在する多孔質体は多孔質であるが故にその断熱性が高い
から、注湯時においては固体物質の温度はさほど−L昇
u′?J″、したがって固体物質が燃焼、昇華、蒸発も
しくは分解によりカス化することが防止される。そして
加圧力が加えられれば母材溶湯は前述のように多孔質体
の空隙を透過して固体物質に接づ゛る状態も生じ得るが
、高圧鋳造の如き加圧鋳造では、その加圧ノJによって
母材溶湯と金型表面との接触状1照が極めて良好となる
ため母材溶湯は急速に冷却凝固され、したがって母材と
固体物質との接触によりその接触部からたとえガスが発
生しても母材中に分散することがなく、鋳物に鋳造欠陥
が生じることが防止される。また上述のように加圧vi
造により母材溶湯が急速冷却されるため、母材溶湯が多
孔質体を透過して固体物質に母材が接触してもその接触
部で固体物質がそのガス化温度以上となっている期間は
極めて短時間に過ぎず、したがって接触部でのガス発生
量もさほど多くはなく、このことも鋳造欠陥の発生防止
に寄与する。
However, in the method of the present invention, since the solid material is covered with a porous material, the poured molten base metal does not immediately come into contact with the solid material. That is, a pressure is applied to the molten base metal to impregnate the porous body, and the molten base metal passes through the voids in the porous body and comes into contact with the solid substance for the first time. In this way, the molten base metal does not come into direct contact with the solid substance during pouring, and the porous body interposed between the molten base metal and the solid substance is porous and therefore has high heat insulation properties. Sometimes the temperature of a solid substance is so much that -L rises u'? J'', therefore, the solid material is prevented from becoming a scum due to combustion, sublimation, evaporation, or decomposition.If pressurized pressure is applied, the molten base material passes through the voids of the porous body and forms the solid material as described above. However, in pressure casting such as high-pressure casting, the contact between the molten base metal and the mold surface is very good due to the pressure, so the molten base metal rapidly melts. Therefore, even if gas is generated from the contact area due to contact between the base metal and the solid substance, it will not be dispersed into the base metal, thereby preventing casting defects from occurring in the casting. pressurize vi
As the molten base metal is rapidly cooled by the process, even if the molten base metal passes through the porous body and comes into contact with the solid material, there is a period during which the solid material is at or above its gasification temperature at the contact area. The period of time is only extremely short, and therefore the amount of gas generated at the contact portion is not so large, which also contributes to the prevention of casting defects.

さらに、母材溶湯が急速に冷却・凝固される結果、多孔
質体を連通して固体物質の部分まで侵入する母材の量は
極くわずかとなり、そのため俊に空洞となるべき部分の
形状は実質的に保持されることになる。
Furthermore, as the molten base metal is rapidly cooled and solidified, the amount of base metal that communicates with the porous body and penetrates into the solid material is extremely small, so the shape of the part that should become a cavity can be changed quickly. will essentially be retained.

このようにして加圧Vt?iして1qられた鋳物を、金
型から取出した後、母材の融点よりも低くかつ固体物質
のガス化温度以上の温度で加熱すれば、固体物質が燃焼
、昇華、蒸発もしくは分解によりカス化して、所定のガ
ス抜通路を経て外部へ放散され、その固体物質が存在し
ていた部分が空洞として残ることになる。ここで、前記
ガス抜通路としては、通常は鋳造後に鋳物外部から固体
物質の部分まで連通する穴を形成ずれは良いが、鋳造時
に固体物質の一部か金型表面に接するようにした場合に
は、その部分が鋳物外部に露呈することとなり、したが
ってその露呈部分がガス抜通路となるから、鋳造後に改
めてガス抜通路を形成する必要はない。
In this way, pressurize Vt? If the casting made by step i and step 1q is removed from the mold and heated at a temperature lower than the melting point of the base material and higher than the gasification temperature of the solid material, the solid material will be stubbed out by combustion, sublimation, evaporation, or decomposition. The solid substance will be oxidized and dissipated to the outside through a predetermined gas vent passage, leaving the area where the solid substance was present as a cavity. Here, as the gas vent passage, it is usually good to form a hole that communicates from the outside of the casting to the part of the solid material after casting, but if a part of the solid material is in contact with the mold surface during casting, Since that portion is exposed to the outside of the casting, and therefore the exposed portion serves as a gas vent passage, there is no need to form a gas vent passage again after casting.

以上のようにして、鋳造時に配置した固体物質の部分に
、その固体物質の彩状寸法に実質的に相当する空洞部を
有する鋳物を(昇ることができる。
In this manner, it is possible to form a casting having a cavity substantially corresponding to the color dimension of the solid material in the portion of the solid material placed during casting.

ここで、固体物質を覆っていた多孔質体は母材金属と複
合された層となり、この層は複合化により高強度となる
から、空洞部の周囲か強化されることになり、耐久性を
向上ざぜる役割を果たす。
Here, the porous material that covered the solid material becomes a layer that is composited with the base metal, and this layer has high strength due to the composite, so the area around the cavity is strengthened, increasing durability. It plays a role in improving people.

なお固体物質を最終的に燃焼、昇華、蒸発または分解に
よりガス化して除去する処理は、鋳物に 、に対する熱
処理と兼ねて行なうことができる。すなわち例えばアル
ミニウム合金製ピストン鋳物の場合、溶体化処理後焼入
れし、その後安定化処理する所謂T7処理を施すのが一
般的であるが、この処理で固体物質のガス化除去を行な
うことができ、したがってその場合には別にガス化除去
のための加熱を行なう必要がない。
Note that the process of finally gasifying and removing the solid substance by combustion, sublimation, evaporation, or decomposition can be performed simultaneously with the heat treatment of the casting. That is, for example, in the case of an aluminum alloy piston casting, it is common to perform a so-called T7 treatment, which is solution treatment, quenching, and subsequent stabilization treatment, but this treatment can gasify and remove solid substances. Therefore, in that case, there is no need to separately perform heating for gasification and removal.

発明を実施するための具体的な説明 この発明の具体的構成について、第1図に示すような断
熱ピストンを製造する場合を例にとって以下に説明する
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific configuration of the present invention will be described below, taking as an example a case where a heat insulating piston as shown in FIG. 1 is manufactured.

第1図に示すような断熱ピストンを製造する場合は、第
2図〜第4図に示すような多孔質体]、固体物質2、お
よび耐熱金属板3を予め用意しておき、これらを第5図
に示すように組合せる。
When manufacturing an insulating piston as shown in FIG. 1, a porous body as shown in FIGS. 2 to 4], a solid substance 2, and a heat-resistant metal plate 3 are prepared in advance, and Combine as shown in Figure 5.

前記固体物質2は、常温付近では固体状態を保ち、かつ
鋳造すべき母材金属例えばアルミニウム合金の融点より
も低い温度に加熱された場合に燃焼、昇華、蒸発あるい
は分解によってガス化し得る物質であればよく、有機材
料、無機材料のいずれを用いても良い。有機材料として
は例えばエポキシ樹脂やアクリル樹脂等で代表される樹
脂、あるいは木材または木材と樹脂との混合物(例えば
樹脂を含浸させた木片、あるいは樹脂とおがくずとの圧
縮成形体)、ゴム材料(例えばシリコンゴム)などがあ
り、無機材料としては例えば5802.5n8r4等が
あるが、これらに限定されないことは勿論である。この
固体物質2は最終的に形成すべき空洞4(第1図参照)
の形状に相当するように、例えば円盤状に形成しておく
The solid substance 2 may be a substance that maintains a solid state at around room temperature and can be gasified by combustion, sublimation, evaporation, or decomposition when heated to a temperature lower than the melting point of the base metal to be cast, such as an aluminum alloy. Either an organic material or an inorganic material may be used. Examples of organic materials include resins such as epoxy resins and acrylic resins, wood or mixtures of wood and resins (e.g., wood chips impregnated with resin, or compression molded bodies of resin and sawdust), rubber materials (e.g. Inorganic materials include, for example, 5802.5n8r4, but are of course not limited to these. This solid substance 2 has a cavity 4 to be finally formed (see Fig. 1).
For example, it is formed into a disk shape so as to correspond to the shape of .

多孔質体1は注湯すべき母材金属例えばアルミニウム合
金の溶湯に対して安定な物質、望ましくはその注湯温度
よりも高融点の物質からなるものである。この多孔質体
1は、母材金属溶湯の注湯時に固体物質の湿度が可及的
に上昇しないように、熱伝導率が低いことが望ましく、
その意味からセラミック多孔質体、例えばアルミナある
いは窒化ケイ素等の短繊維成形体を使用することが好ま
しく、またこのほかステンレス繊維成形体等の金属質多
孔質体を用いることもできるが、これらに限定されない
ことももちろんである。なお多孔質体1は、要は母材金
属注湯時にその母材溶湯が直接固体物質に接触すること
を防止するためのものであり、その観点から体積率5%
以上が望ましく、一方余り体積率が高過ぎれば母材金属
との複合化が困難となるから、体積率60%以下とする
ことが好ましい。このような多孔質体1は、前記固体物
質2を覆うような形状に予め作成しておく。但し固体物
質2の外面の全てを覆う必要はなく、要は注湯時に母材
金属溶湯が直接固体物質2に接しないように覆えば良い
。すなわら第1図の断熱ピストンを作成する場合、固体
物質2の一面は耐熱金属板3に覆われて母材金属に接し
ないから、その面を除いた残りの面を多孔質体1が覆う
ように、前記円盤状の固体物質2が嵌め込まれる凹部1
Aを一面側に形成しておけば良い。
The porous body 1 is made of a material that is stable with respect to the base metal to be poured, such as a molten aluminum alloy, and preferably has a melting point higher than the pouring temperature. This porous body 1 desirably has a low thermal conductivity so as to prevent the humidity of the solid substance from increasing as much as possible during pouring of the base metal molten metal.
In this sense, it is preferable to use a ceramic porous body, such as a short fiber molded body of alumina or silicon nitride, and it is also possible to use a metallic porous body such as a stainless steel fiber molded body, but it is limited to these. Of course, it may not be possible. The porous body 1 is basically used to prevent the molten base metal from coming into direct contact with a solid substance when pouring the base metal, and from that point of view, the volume ratio is 5%.
The above is desirable; on the other hand, if the volume fraction is too high, it becomes difficult to form a composite with the base metal, so the volume fraction is preferably 60% or less. Such a porous body 1 is created in advance in a shape so as to cover the solid substance 2. However, it is not necessary to cover the entire outer surface of the solid substance 2, and it is sufficient to cover the solid substance 2 so that the molten base metal does not come into direct contact with the solid substance 2 during pouring. In other words, when creating the heat-insulating piston shown in Fig. 1, one side of the solid material 2 is covered with the heat-resistant metal plate 3 and does not come into contact with the base metal, so the remaining surface except for that surface is covered with the porous material 1. a recess 1 into which the disc-shaped solid substance 2 is fitted so as to cover it;
It is sufficient to form A on one side.

耐熱金属板3はこの発明の方法では基本的に必須のもの
ではないが、特に断熱ピストンを対象とする場合には必
要となる。すなわらこの耐熱金属板3は断熱ピストンの
頂面部を形成するものであって、耐熱性の高い金属、例
えば5LJS304等のステンレス鋼、あるいはJIS
  5LIH系の耐熱鋼、さらにはインコロイ等のFe
基耐熱合金(Fe基超超合金、インコネル等のNi基耐
熱合金(Ni基超超合金 、N1VCO等のCo基耐熱
合金(CO基超超合金、ざらにはJIS  SCH系の
鋳鋼等を用いることができる。この耐熱金属板3は、図
示の例では円板の周囲をほぼ直角に折曲げて四部3Aを
形成し、かつその折曲げられた部分3Bの先端部3Cを
さらに内側へ直角に折曲げた形状に作られたものであり
、例えば液圧成形によって加工されている。
Although the heat-resistant metal plate 3 is not basically essential in the method of the present invention, it is necessary especially when a heat-insulating piston is targeted. In other words, this heat-resistant metal plate 3 forms the top surface of the heat-insulating piston, and is made of a highly heat-resistant metal, such as stainless steel such as 5LJS304, or JIS
5LIH heat-resistant steel, and even Fe such as Incoloy
Heat-resistant alloys (Fe-based superalloys, Ni-based heat-resistant alloys such as Inconel, Co-based heat-resistant alloys such as N1VCO (CO-based superalloys, JIS SCH cast steel, etc.) may be used. In the illustrated example, this heat-resistant metal plate 3 is formed by bending the periphery of a circular plate at approximately right angles to form four parts 3A, and further bending the tip 3C of the bent part 3B inward at right angles. It is made into a bent shape and is processed, for example, by hydroforming.

そしてこのような形状の耐熱金属板3の凹部3Aの底面
に前記固体物質2の一面りぐ接するように固体物質2お
よび多孔質体1が組合される。
The solid material 2 and the porous body 1 are combined so as to be in contact with one side of the solid material 2 on the bottom surface of the recess 3A of the heat-resistant metal plate 3 having such a shape.

以上のように多孔質体]、固体物質2および耐熱金属板
3を組合せて、第6図に示すように加圧鋳造用鋳型、例
えば高圧鋳造用金型5内の所要位置に配置する。すなわ
ら図示の断熱ピストンの場合、耐熱金属板3が金型5の
底面に接するように配置する。なお第6図において6は
加圧パンチ、7は鋳物取出用のノックアウトピンである
As described above, the porous body], solid substance 2, and heat-resistant metal plate 3 are combined and placed at a predetermined position in a pressure casting mold, for example, a high pressure casting mold 5, as shown in FIG. That is, in the case of the illustrated heat-insulating piston, the heat-resistant metal plate 3 is arranged so as to be in contact with the bottom surface of the mold 5. In FIG. 6, 6 is a pressure punch, and 7 is a knockout pin for taking out the casting.

次いでアルミニウム合金溶湯等の鋳物母材溶湯8を金型
5内に注湯する。この際には、既に述べたように母材溶
湯8が直接固体物質2に接触せず、そのため固体物質2
は未だ燃焼、昇華、蒸発もしくは分解によりガス化しな
い。
Next, a casting base material molten metal 8 such as an aluminum alloy molten metal is poured into the mold 5. At this time, as already mentioned, the base metal molten metal 8 does not come into direct contact with the solid substance 2, and therefore the solid substance 2
is not yet gasified by combustion, sublimation, evaporation or decomposition.

続いて加圧パンチ6などによって母材溶湯8を加圧ずれ
ば、その加圧力によって母材溶88は多孔質体1に含浸
され、その部分が複合部9となる。
Subsequently, when the base metal molten metal 8 is pressurized using a pressure punch 6 or the like, the base metal melt 88 is impregnated into the porous body 1 by the pressurizing force, and that portion becomes the composite part 9.

この際、多孔質体1の内部の空隙を透過した母材溶湯8
が多孔質体1で覆われた固体物質2に接触してその接触
部で固体物質が一面ガス化することもあるが、既に述べ
たように加圧力によって母材溶湯8が急速に冷却凝固せ
しめられる結果、そのガスが鋳物母材中に分散すること
が防止され、鋳造欠陥の発生が防止される。ここで、加
圧力の程度は特に限定しないが、引は巣等の発生を防止
しかつ鋳造組織を微細化させ、しかも金型5と母材溶湯
8との接触状態を良好にして急速冷却凝固を促進させる
とともに多孔質体1に母材溶湯8を充分に含浸ざぜるた
めには、300kMcm程度以上の加圧力とすることが
望ましい。また加圧鋳造法としては、パンチによって加
圧する高圧鋳造法のほか、いわゆるグイキャスト法など
を適用でき、また鋳物の形状によっては遠心鋳造法を適
用することもできる。なお加圧力は母材溶湯8の完全凝
固まで保持する。
At this time, the base material molten metal 8 that has passed through the voids inside the porous body 1
may come into contact with the solid substance 2 covered with the porous body 1, and the solid substance may be entirely gasified at the contact area, but as already mentioned, the molten base metal 8 is rapidly cooled and solidified by the applied pressure. As a result, the gas is prevented from dispersing into the casting base material, and the occurrence of casting defects is prevented. Here, the degree of pressurizing force is not particularly limited, but it can be used to prevent the occurrence of shrinkage cavities, etc., to make the casting structure finer, and to improve the contact state between the mold 5 and the base metal molten metal 8 for rapid cooling and solidification. In order to promote this and to sufficiently impregnate the molten base metal 8 into the porous body 1, it is desirable that the pressing force be about 300 kmcm or more. Further, as the pressure casting method, in addition to the high pressure casting method in which pressure is applied using a punch, a so-called Gui casting method can be applied, and depending on the shape of the casting, a centrifugal casting method can also be applied. Note that the applied pressure is maintained until the base metal molten metal 8 completely solidifies.

このようにして多孔質体1が母材との複合部つとなりか
つ固体物質2と耐熱金属板3がアルミニウム合金等の母
材12によって鋳ぐるみされた断熱ピストン用鋳物を金
型5から取出した状態を第7図に示す。
In this way, the porous body 1 became a composite part with the base material, and the casting for the insulating piston, in which the solid substance 2 and the heat-resistant metal plate 3 were surrounded by the base material 12 such as an aluminum alloy, was taken out from the mold 5. The state is shown in FIG.

次いで、第7図の断熱ピストン用鋳物の場合には、固体
物質2に連通するガス抜通路10を形成した後、母材の
融点よりも低くかつ固体物質のガス化温度(すなわち燃
焼温度、昇華温度、蒸発温度もしくは分解温度)以上の
温度に加熱する。斯くJれば固体物質がガス化してその
部分か空1fil14となる。この後には必要に応じて
適宜機械加工し、前記ガス抜通路10を例えばネジ11
などによって埋めれば、第1図に示すような断熱ピスト
ンが得られる。
Next, in the case of the adiabatic piston casting shown in FIG. temperature, evaporation temperature or decomposition temperature). If J is done in this way, the solid substance will be gasified and that part will become empty 1fil14. After this, appropriate machining is performed as necessary to form the gas vent passage 10 with, for example, a screw 11.
If it is filled with a similar material, an adiabatic piston as shown in FIG. 1 can be obtained.

ここで、アルミニウム合金鋳物で自動車ピストンを作成
する場合、鋳造後にT7処理を行なうのが一般的である
が、その場合T7処理によって前記固体物質をガス化除
去することができ、したがって別途ガス化のための加熱
を行なう必要がない。
When making automobile pistons from aluminum alloy castings, it is common to carry out T7 treatment after casting. There is no need for additional heating.

以上のようにして得られた断熱ピストンは第1図に示す
ように、頂面部が耐熱金属板3で形成されるとともに、
その直下に断熱用の空洞部4が形成され、しかもその断
熱用の空洞部4の周囲および下側は金属−多孔質体の複
合部9で強化されていることになる。
As shown in FIG. 1, the heat-insulating piston obtained as described above has a top surface formed of a heat-resistant metal plate 3, and
A heat insulating cavity 4 is formed directly below the heat insulating cavity 4, and the periphery and lower side of the heat insulating cavity 4 are reinforced with a metal-porous composite part 9.

なおここで耐熱金属板3の周辺の折曲げた部分3B、3
Cによって囲まれる部分3Dには、注湯時に多孔質体1
を透過した母材溶湯8が侵入し、したがって耐熱金属板
3はその部分で強固に保持されることになる。
Here, the bent parts 3B, 3 around the heat-resistant metal plate 3
In the portion 3D surrounded by C, the porous body 1 is
The base material molten metal 8 that has passed through the base metal enters, and therefore the heat-resistant metal plate 3 is firmly held in that part.

以上の例では断熱ピストンの例について説明したが、そ
の他の中空鋳物にもこの発明の方法を適用できることは
勿論である。
In the above example, an example of an adiabatic piston was explained, but it goes without saying that the method of the present invention can also be applied to other hollow castings.

実施例 [実施例1] 第1図に示すような断熱ピストンを製造するにあたり、
第2図〜第4図に示すような形状の多孔質体1、固体物
質2および耐熱金属板3を用意した。多孔質体1として
はかぎ密度0.17g/CCのアルミナ短繊維成形体を
用い、その寸法は外形70.2mm、全厚み3Qmm、
凹部1Aの径6Qmm、凹部1Aの深さ1Qmmとした
。固体物質2としてはエポキシ樹脂を用い、その径は5
Qmm、厚みは1Qmmとした。また耐熱金属板3とし
ては液圧成形した5US304の厚み4mmのステンレ
ス板を用い、その外径は83mm、高さは15mm、凹
部3Aの開口端の内径は7Qmmとした。
Example [Example 1] In manufacturing a heat insulating piston as shown in Fig. 1,
A porous body 1, a solid substance 2, and a heat-resistant metal plate 3 having shapes as shown in FIGS. 2 to 4 were prepared. As the porous body 1, an alumina short fiber molded body with a key density of 0.17 g/CC was used, and its dimensions were an outer diameter of 70.2 mm, a total thickness of 3 Q mm,
The diameter of the recess 1A was 6Qmm, and the depth of the recess 1A was 1Qmm. Epoxy resin is used as the solid substance 2, and its diameter is 5
Qmm, and the thickness was 1Qmm. Further, as the heat-resistant metal plate 3, a 4 mm thick stainless steel plate of 5US304 which had been hydroformed was used, and its outer diameter was 83 mm, the height was 15 mm, and the inner diameter of the opening end of the recess 3A was 7 Q mm.

これらを第5図に示すように組合Uて、第6図に示すよ
うに金型5内に配置し、温度720’Cのアルミニウム
合金(J Is  AC8A :Al−12%5i−1
,2%Cu−1,0%助−2%Ni−0.3%Fe)の
溶湯8を注湯し、続いて加圧パンチ6により500 k
g/ ciの圧力を加えて高圧鋳造を行なった。
These were combined as shown in FIG. 5, placed in a mold 5 as shown in FIG.
, 2% Cu - 1.0% Auxiliary - 2% Ni - 0.3% Fe) was poured into the molten metal 8, and then the pressure punch 6
High-pressure casting was performed by applying a pressure of g/ci.

なお加圧力はアルミニウム合金溶湯の完全凝固まで保持
した。凝固後に鋳物を金型から取出して第7図に示すよ
うな内径3mmのガス抜通路10を機械加工によって形
成した後、T7熱処理(溶体化490”CX4時間、時
効処理220’CX8時間)を施した。この熱処理後の
鋳物を調べたところ、内部のエポキシ樹脂(固体物質2
)は完全に分解気化しており、ピストン内部にそのエポ
キシ樹脂の当初の形状、寸法に実質的に相当する空洞部
4が形成されていることが確認された。
The applied pressure was maintained until the molten aluminum alloy completely solidified. After solidification, the casting was taken out of the mold, a gas vent passage 10 with an inner diameter of 3 mm as shown in Fig. 7 was formed by machining, and then T7 heat treatment (solution treatment 490'CX 4 hours, aging treatment 220'CX 8 hours) was performed. When we examined the casting after this heat treatment, we found that the epoxy resin (solid substance 2
) was completely decomposed and vaporized, and it was confirmed that a cavity 4 substantially corresponding to the original shape and dimensions of the epoxy resin was formed inside the piston.

その後、機械加工を行なってピストン形状とし、さらに
前記ガス抜通路10をステンレス製のネジ11で埋めて
最終的に第1図に示すような断熱ピストンを得た。
Thereafter, it was machined into a piston shape, and the gas vent passage 10 was filled with stainless steel screws 11 to finally obtain an adiabatic piston as shown in FIG.

また固体物質2としてエポキシ樹脂の代りに、ポリエス
テル樹脂を含浸させた木片、フェノール樹脂とおがくず
との圧縮成形体、およびシリコンゴムを用い、それぞれ
前記と同じ条件、同じ方法でピストンを製造したところ
、第1図に示すピストンと実質的に同様な空洞部を有す
るピストンをF?ることができた。また固体物質2とじ
てエポキシ樹脂の代りに5e02、SnBr4を用いた
場合、前者ではT7処理で昇華し、後者ではT7処理で
蒸発することにより、それぞれ第1図に示すピストンと
同様な空洞部を有するピストンを製造することができた
Furthermore, instead of the epoxy resin as the solid substance 2, a piece of wood impregnated with polyester resin, a compression molded product of phenol resin and sawdust, and silicone rubber were used, and pistons were manufactured under the same conditions and in the same method as described above. A piston having a cavity substantially similar to the piston shown in FIG. I was able to Furthermore, when 5e02 and SnBr4 are used instead of epoxy resin as the solid substance 2, the former sublimes in the T7 treatment, and the latter evaporates in the T7 treatment, creating a cavity similar to the piston shown in Figure 1. It was possible to manufacture a piston with

[実施例2] 第8図に示すような断熱ピストンを製造するにあたり、
多孔質体1として第9図(A)、(B)に示すような形
状寸法のステンレス短繊維成形体を用い、また固体物質
2として第10図に示すような形状寸法のエポキシ樹脂
を用い、さらに断熱金属板3として第11図(A)、(
B)に示すような寸法形状の5US304のステンレス
板を用い、これらを第12図に示すように組合せて、第
13図に示すように高圧鋳造用金型5内に配置し、以下
実施例1と同じ方法でJIS  AC8A合金を母材と
するピストンを製造した。なおステンレス短繊維成形体
としては、単位繊維形状が44μmX55μmx3mm
で成形体かさ密度が2.36 g/CCのものを用いた
。この場合にも第8図に示すように前記エポキシ樹脂の
当初の形状寸法に実質的に対応する空洞部4を有する断
熱ピストンを得ることができた。
[Example 2] In manufacturing a heat insulating piston as shown in Fig. 8,
A stainless steel short fiber molded body having the shape and dimensions as shown in FIGS. 9(A) and (B) was used as the porous body 1, and an epoxy resin having the shape and dimensions as shown in FIG. 10 was used as the solid substance 2. Furthermore, as the heat insulating metal plate 3, FIG. 11(A), (
Using 5US304 stainless steel plates having dimensions and shapes as shown in B), these plates were assembled as shown in Fig. 12 and placed in a high-pressure casting mold 5 as shown in Fig. 13. A piston using JIS AC8A alloy as a base material was manufactured in the same manner as described above. The stainless steel short fiber molded body has a unit fiber shape of 44 μm x 55 μm x 3 mm.
A molded body having a bulk density of 2.36 g/CC was used. In this case as well, as shown in FIG. 8, it was possible to obtain a heat insulating piston having a cavity 4 substantially corresponding to the original shape and dimensions of the epoxy resin.

以上の実施例1および実施例2により得られた断熱ピス
トンは、いずれも頂面耐熱材(耐熱金属板3)と母材と
の間の接合程度が極めて高く、断熱性も良好であり、か
つ空洞部周辺が複合強化された構造となっているため優
れた耐久性を示すことが確認された。また燃焼特性試験
を行なったところ、始動時から高負荷稼動時に至るまで
、従来の通常のアルミニウム合金製ピストンと比較して
不完全燃焼ガス(スモーク)の発生時間、量が明らかに
減少し、かつ燃費の向上も達成されており、ディーゼル
エンジン用ピストンとして極めて優れていることが明ら
かとなった。
Both of the heat-insulating pistons obtained in Example 1 and Example 2 have an extremely high degree of bonding between the top heat-resistant material (heat-resistant metal plate 3) and the base material, and have good heat insulation properties. It was confirmed that it exhibits excellent durability due to the composite reinforced structure around the cavity. In addition, when we conducted combustion characteristics tests, we found that the time and amount of incomplete combustion gas (smoke) was clearly reduced compared to conventional aluminum alloy pistons, from startup to high-load operation. Improvements in fuel efficiency have also been achieved, making it clear that the piston is extremely superior as a piston for diesel engines.

[実施例3] 次にピストン以外の中空鋳物、すなわち第14図に示す
ような鋳物を製造した実施例を記す。
[Example 3] Next, an example will be described in which a hollow casting other than a piston, that is, a casting as shown in FIG. 14 was manufactured.

第15図に示すような形状寸法にアクリル樹脂を成形し
て固体物質2とし、この固体物質2を第16図に示すよ
うに多孔質体1としてのアルミナ短繊維で覆い、その一
方の面1Bが金型底面側に接するように第17図に示す
如く高圧鋳造用金型5内に配置し、550℃のZn溶湯
8を注湯し、500kgZcdの加圧力を加えて高圧鋳
造して、第18図に示すようにアルミナ短繊維多孔黄体
1の部分が複合部9となった鋳物を作成した。なお第1
8図において13はZn母材でおる。得られた鋳物を大
気中において400’Cで3時間加熱保持した。
A solid material 2 is obtained by molding acrylic resin into the shape and dimensions shown in FIG. 15, and this solid material 2 is covered with alumina short fibers as a porous body 1 as shown in FIG. The mold is placed in a high-pressure casting mold 5 as shown in FIG. 17 so that it is in contact with the bottom surface of the mold, and 550°C molten Zn metal 8 is poured into the mold, followed by high-pressure casting by applying a pressing force of 500 kgZcd. As shown in FIG. 18, a casting was produced in which the part of the alumina short fiber porous corpus luteum 1 became the composite part 9. Note that the first
In Fig. 8, 13 is a Zn base material. The obtained casting was heated and held at 400'C in the atmosphere for 3 hours.

その結果、固体物質2としてのアクリル樹脂は完全に分
解気化して、内部が空洞化され、しかもその空洞部4の
周辺が複合強化された鋳物(第14図)を得ることがで
きた。
As a result, the acrylic resin as the solid material 2 was completely decomposed and vaporized to obtain a casting (FIG. 14) in which the inside was hollow and the periphery of the hollow part 4 was compositely reinforced.

発明の効果 以上の実施例からも明らかなようにこの発明の方法によ
れば、内部に任意の形状の空洞部を有する鋳物を簡単か
つ容易に製造することができ、しかも空洞部を形成する
と同時にその近傍を多孔質体と母材金属との複合部とし
て強化することができる。したがってこの発明の方法は
、頂面直下に空洞部を有する断熱ピストンの製造に適用
して有益なものである。
Effects of the Invention As is clear from the above embodiments, according to the method of the present invention, it is possible to simply and easily produce a casting having a cavity of any shape inside, and at the same time as forming the cavity. The vicinity thereof can be strengthened as a composite part of the porous body and the base metal. Therefore, the method of the present invention is useful when applied to the manufacture of an insulated piston having a cavity immediately below the top surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法により製造される中空鋳物の一
例としての断熱ピストンを示す切欠斜視図、第2図は第
1図のピストンの製造に使用される多孔質体を示す切欠
斜視図、第3図は第1図の   ゛ピストンの製造に使
用される固体物質を示す斜視図、第4図は第1図のピス
トンの製造に使用される耐熱金属板を示す切欠斜視図、
第5図は第2図から第4図に示される各部材を組合せた
状態を示す縦断面図、第6図は第1図のピストンの製造
過程における母材溶湯注湯時の状況を模式的に示す縦断
面図、第7図は第1図のピストンの製造過程における鋳
造後置体物質除去前の状況を示V縦断面図である。第8
図はこの発明の方法により製造される中空鋳物としての
断熱ピストンの他の例を示1縦断面図、第9図(A>、
(B)は第8図のピストンの製造に使用される多孔質体
を示す図で、(△)はその斜視図、(B)は縦断面図、
第10図は第8図のビス1〜ンの製造に使用される固体
物質(エポキシ樹脂成形体)の斜視図、第11図(A>
、(B)は第8図のピストンの製造に使用される耐熱金
属板を示す図で、(A)はその斜視図、(B)は縦断面
図、第12図は第9図〜第11図に示される各部材を組
合せた状態を示す縦断面図、第13図は第8図のビス]
・ンの製造過程における母材溶湯注湯時の状況を模式的
に示す縦断面図である。第14図はこの発明の方法によ
り製造される中空鋳物の他の例を示す縦断面図、第15
図は第14図の中空鋳物の製造に使用される固体物質(
アクリル樹脂成形体)の斜視図、第16図は第15図の
固体物質を多孔質体(アルミナ短!ja維成形体)で覆
った状態を示V縦断面図、第17図は第14図の中空鋳
物の製造過程にお(プる母材溶湯注湯時の状況を模式的
に承り縦断面図、第18図は第14図の中空鋳物の製造
過程における鋳造後置体物質除去前の状況を示す縦断面
図である。 1・・・多孔質体、 2・・・固体物質、 4・・・空
洞部、8・・・母材溶湯。
FIG. 1 is a cutaway perspective view showing a heat insulating piston as an example of a hollow casting manufactured by the method of the present invention, FIG. 2 is a cutaway perspective view showing a porous body used in manufacturing the piston of FIG. 1, 3 is a perspective view showing a solid material used in manufacturing the piston shown in FIG. 1; FIG. 4 is a cutaway perspective view showing a heat-resistant metal plate used in manufacturing the piston shown in FIG. 1;
Fig. 5 is a vertical cross-sectional view showing the assembled state of each member shown in Figs. 2 to 4, and Fig. 6 is a schematic diagram showing the situation during pouring of the molten base metal in the manufacturing process of the piston shown in Fig. 1. FIG. 7 is a vertical cross-sectional view showing the state of the piston shown in FIG. 1 in the manufacturing process before removing the post-casting material. 8th
The figures show other examples of heat insulating pistons as hollow castings produced by the method of the present invention.
(B) is a diagram showing a porous body used for manufacturing the piston of FIG. 8, (△) is a perspective view thereof, (B) is a longitudinal sectional view,
Fig. 10 is a perspective view of the solid material (epoxy resin molded body) used for manufacturing the screws 1 to 1 in Fig. 8, and Fig. 11 (A>
, (B) are views showing the heat-resistant metal plate used for manufacturing the piston shown in FIG. 8, (A) is a perspective view thereof, (B) is a longitudinal sectional view, and FIG. A vertical cross-sectional view showing the assembled state of each member shown in the figure, Figure 13 is the screw in Figure 8]
・It is a vertical cross-sectional view schematically showing the situation during pouring of molten base metal in the manufacturing process of . FIG. 14 is a longitudinal sectional view showing another example of a hollow casting manufactured by the method of the present invention, and FIG.
The figure shows the solid material (Fig. 14) used for manufacturing hollow castings.
16 is a vertical cross-sectional view of the solid material shown in FIG. 15 covered with a porous material (alumina short JA fiber molded product), and FIG. 17 is a vertical sectional view of the solid material shown in FIG. 14. Figure 18 is a vertical cross-sectional view schematically showing the situation during the pouring of molten base material during the manufacturing process of hollow castings. It is a vertical cross-sectional view showing the situation. 1... Porous body, 2... Solid substance, 4... Cavity part, 8... Molten base metal.

Claims (5)

【特許請求の範囲】[Claims] (1)加圧鋳造によって内部に空洞を有する中空鋳物を
鋳造するにあたり、常温では固体状態を保ちかつ鋳物母
材金属の融点よりも低い加熱温度でガス化する固体物質
を前記空洞の形状に作っておき、その固体物質を母材金
属溶湯に対して安定な多孔質体で覆った状態で鋳型内に
配置し、母材金属溶湯を鋳型内に注湯して加圧鋳造する
ことにより前記固体物質を鋳ぐるんだ鋳物を作成し、そ
の後母材金属の融点より低くかつ前記固体物質のガス化
温度以上の温度で前記鋳物を加熱して前記固体物質をガ
ス化し、内部に空洞を有する中空鋳物を製造することを
特徴とする中空鋳物の製造方法。
(1) When casting a hollow casting with a cavity inside by pressure casting, a solid substance that remains solid at room temperature and gasifies at a heating temperature lower than the melting point of the casting base metal is made in the shape of the cavity. Then, the solid substance is placed in a mold while being covered with a porous material that is stable against the molten base metal, and the molten base metal is poured into the mold and pressure cast to form the solid substance. A hollow material having a cavity inside is formed by creating a casting in which a substance is cast, and then heating the casting at a temperature lower than the melting point of the base metal and higher than the gasification temperature of the solid substance to gasify the solid substance. A method for producing a hollow casting, characterized by producing a casting.
(2)前記固体物質のガス化が燃焼、昇華、蒸発もしく
は分解である特許請求の範囲第1項記載の中空鋳物の製
造方法。
(2) The method for manufacturing a hollow casting according to claim 1, wherein the gasification of the solid substance is combustion, sublimation, evaporation, or decomposition.
(3)前記多孔質体として、注湯時の母材金属溶湯温度
よりも融点が高い物質を用いる特許請求の範囲第1項記
載の中空鋳物の製造方法。
(3) The method for producing a hollow casting according to claim 1, wherein the porous body is made of a substance whose melting point is higher than the temperature of the base metal molten metal during pouring.
(4)前記中空鋳物として、空洞部を断熱部とした断熱
部材用の鋳物を製造する特許請求の範囲第1項記載の中
空鋳物の製造方法
(4) The method for producing a hollow casting according to claim 1, wherein the hollow casting is a casting for a heat insulating member with a cavity as a heat insulating part.
(5)前記中空鋳物として、頂面直下の空洞部を断熱部
とした断熱ピストンを製造する特許請求の範囲第1項記
載の中空鋳物の製造方法。
(5) The method for manufacturing a hollow casting according to claim 1, wherein the hollow casting is an insulating piston in which a cavity immediately below the top surface is a heat insulating part.
JP15364085A 1985-07-12 1985-07-12 Production of hollow casting Granted JPS6216865A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP15364085A JPS6216865A (en) 1985-07-12 1985-07-12 Production of hollow casting
US06/883,825 US4712600A (en) 1985-07-12 1986-07-09 Production of pistons having a cavity
CA000513601A CA1271615A (en) 1985-07-12 1986-07-11 Production of pistons having a cavity
EP86109510A EP0209090B1 (en) 1985-07-12 1986-07-11 Production of pistons having a cavity
DE8686109510T DE3680965D1 (en) 1985-07-12 1986-07-11 MANUFACTURING PISTON WITH A CAVITY.
AU60093/86A AU597889B2 (en) 1985-07-12 1986-07-11 Production of pistons having a cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15364085A JPS6216865A (en) 1985-07-12 1985-07-12 Production of hollow casting

Publications (2)

Publication Number Publication Date
JPS6216865A true JPS6216865A (en) 1987-01-26
JPH0236350B2 JPH0236350B2 (en) 1990-08-16

Family

ID=15566935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15364085A Granted JPS6216865A (en) 1985-07-12 1985-07-12 Production of hollow casting

Country Status (1)

Country Link
JP (1) JPS6216865A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436863U (en) * 1990-07-26 1992-03-27
JP4983822B2 (en) * 2009-02-25 2012-07-25 トヨタ自動車株式会社 Method for producing hollow casting and method for producing hollow forming member used therein

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111458U (en) * 1980-12-26 1982-07-09
JPS60119348A (en) * 1983-11-30 1985-06-26 Izumi Jidosha Kogyo Kk Piston of internal-combustion engine and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111458U (en) * 1980-12-26 1982-07-09
JPS60119348A (en) * 1983-11-30 1985-06-26 Izumi Jidosha Kogyo Kk Piston of internal-combustion engine and manufacture thereof

Also Published As

Publication number Publication date
JPH0236350B2 (en) 1990-08-16

Similar Documents

Publication Publication Date Title
US5803151A (en) Soluble core method of manufacturing metal cast products
US6035923A (en) Method of and apparatus for producing light alloy composite member
CA1271615A (en) Production of pistons having a cavity
JPH0569082A (en) Lost-form casting and manufacture thereof
JPS6216865A (en) Production of hollow casting
JPS63126661A (en) Production of piston
JP3126704B2 (en) Casting method for castings with composite materials cast
JPS5838654A (en) Casting method for composite member
JPS6221456A (en) Production of hollow casting
JPH0230790B2 (en)
JPS60119348A (en) Piston of internal-combustion engine and manufacture thereof
JPS6224853A (en) Production of casting member having heat insulating part
JPH057099B2 (en)
JPS6411384B2 (en)
JPS60191654A (en) Piston for internal-combustion engine and production thereof
JP3758114B2 (en) Aluminum alloy member and manufacturing method thereof
JPS6330168A (en) Production of ceramic-metal composite body
JP2526608B2 (en) Aluminum alloy surface alloying method
JP2697851B2 (en) Method of manufacturing fiber reinforced metal member
JPH0159069B2 (en)
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
US3797556A (en) Methods of producing accurate bore surfaces
JP2000271728A (en) Production of composite stock with non-pressurize impregnating permeation method
JP4039042B2 (en) Forging mold equipment
JPS6099474A (en) Production of composite material member