JPH0236090Y2 - - Google Patents

Info

Publication number
JPH0236090Y2
JPH0236090Y2 JP6465883U JP6465883U JPH0236090Y2 JP H0236090 Y2 JPH0236090 Y2 JP H0236090Y2 JP 6465883 U JP6465883 U JP 6465883U JP 6465883 U JP6465883 U JP 6465883U JP H0236090 Y2 JPH0236090 Y2 JP H0236090Y2
Authority
JP
Japan
Prior art keywords
output
rotation angle
resolver
latch
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6465883U
Other languages
Japanese (ja)
Other versions
JPS59170212U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6465883U priority Critical patent/JPS59170212U/en
Publication of JPS59170212U publication Critical patent/JPS59170212U/en
Application granted granted Critical
Publication of JPH0236090Y2 publication Critical patent/JPH0236090Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案はレゾルバ使用の負荷位置検出装置に
関する。 負荷が減速機を介し電動機に連結される場合、
減速比をNとすれば、負荷の1回転は電動機のN
回転に相当し、負荷位置(負荷の回転角)を検出
するには電動機の回転角とともに回転回数の検出
が必要である。レゾルバを用いた電動機回転角の
検出は、レゾルバの出力信号を励磁信号で同期整
流することよりレゾルバ回転角情報θを求める方
法等があつたが、この方法は高調波成分を除去す
るべくフイルタを不可欠とし、検出遅れを生じる
等の欠点があり、またレゾルバを使用した電動機
回転回数の検出は末だ行われていなかつた。 この考案はレゾルバを用いて電動機回転角と回
転回数を求め負荷位置を検出するものでフイルタ
を不要とし検出遅れなく回転角を検出し正確な負
荷位置情報を得る、レゾルバ使用の負荷位置検出
装置の提供を目的とする。 図面は第1図に実施例のブロツク線図、第2図
はタイムチヤートを示す。 第1図において、1は一定周波の基準信号を出
力する基準発振器、2はこの一定周波基準信号を
適当周波数に分周してレゾルバ励磁用の2相発振
器3へ入力信号を供給する分周器、2相発振器3
はレゾルバ4の2相の励磁巻線4a,4bをそれ
ぞれ励磁する2相の正弦波を出力する発振器、レ
ゾルバ4の2相の励磁巻線4a,4bと、回転子
の回転角に対応した出力信号を発生の検出巻線4
cを備え電動機5に連結される。6は減速機で先
に述べたようにこの発明に係る負荷は電動機速度
より大幅に減速されて、駆動されるのであり、減
速比をNとすれば電動機5のN回転が負荷の1回
転に相当する。 すなわち、負荷の回転位置を検出するには、電
動機の回転角と回転回数の検出が必要であり、前
者の電動機回転角はレゾルバ検出巻線4cに生成
される回転角θの位相変調力より取り出すことが
でき、また後者の回転回数は先に検出の回転角θ
の推移を監視し例えば2π位相から零位相へ、あ
るいは逆に零位相から2π位相へと変化した場合
を正方向あるいは逆方向への1回転として捕らえ
カウンタをインクリメント、あるいはデイクリメ
ントしてやることにより検出できる。 先に回転角θの検出を説明する。レゾルバの2
相励磁巻線4a,4bは正弦波の励磁信号
coswt,sinwtが入力され、回転子位置が図示回
転角θにあるなれば、検出巻線4cは回転角θに
対応の正弦波sin(wt+θ)を出力し、この位相
差θを抽出すれば回転子回転角θを検出すること
になる。 8は波形変換回路でレゾルバの検出巻線出力信
号sin(wt+θ)を矩形波に変換する回路で回転
子の回転角θが変化するにつれてこの位相変調さ
れた正弦波出力sin(wt+θ)のゼロクロス点が
ずれていき上記矩形波の立上り、立下りのタイミ
ングが変化していく。9は第1のラツチ回路で先
の分周器2によるカウンタ値の反転出力を波形
変換回路8出力の矩形波の立上りでラツチし励磁
信号、出力信号の位相差θ即ち回転角θを出力す
る。もちろん、反転出力は励磁信号に同期し、
位相差θが2πあるいは零のときラツチ出力は最
大値か零のいずれかであり、従つて負荷のスター
ト地点を回転角θの零のところへ設定しておけ
ば、ラツチ出力が2πから零へあるいは逆に零か
ら2πへと推移することにより1回転したと判断
できる。 すなわち、回転回数の検出は、レゾルバ検出巻
線の回転角度情報を出力する第1のラツチ回路9
の他の、前回ラツチの回転角出力を記憶する第2
のラツチ回路10を備え、これら第1、第2のラ
ツチ回路9,10の前回、今回ラツチの回転角出
力を比較し、その差が正、負の符号をも含め予じ
め定めた2π近くの値、に達したか否かによつて
1回転云々の判断を行う。以下、詳細に説明す
る。第1のラツチ回路9は、分周器2のカウンタ
値反転出力を、レゾルバ検出巻線の位相変調出
力のゼロクロス点でラツチし回転角出力を得る
が、ラツチのタイミングは正弦波の位相変調出力
を矩形波に変換しその立上りにより行う。すなわ
ち、前回の回転角出力を記憶するには、先の第1
のラツチ回路9の回転角出力を半周期後の矩形波
立下りでラツチすればよく、第2のラツチ回路1
0を備え、第1のラツチ回路9の回転角出力を入
力とし、位相変調のレゾルバ出力波形に同期の上
記矩形波立下りタイミングで、ラツチして前回ラ
ツチの回転角情報として出力する。従つて、この
第1、第2のラツチ回路9,10の回転角出力を
比較し差をとれば、その差の推移状態の確認によ
り1回転か否かの判断ができ、かつ回転方向も上
記差の正、負により即ち前回ラツチ出力が2π近
くの値で今回ラツチ出力が零近くの値である場合
と逆に前回ラツチ出力が零近くで今回ラツチ出力
が2π近くの場合とで容易に判別できる。従つて、
2つの比較回路11,12を備え、一方の比較回
路11はラツチ回路の出力の差が正の一定値を超
えたときにパルス信号を出力し後のカウンタのイ
ンクリメント信号として使用され、また他方の比
較回路12はラツチ回路の出力差が逆に負の一定
値を超えたときにパルス信号を出力するものでカ
ウンタのデイクリメント信号として使用される。
すなわち、カウンタ回路13を備え、上記2つの
比較回路11,12のパルス信号によりその一方
をインクリメント信号、他方をデイクリメント信
号として当カウンタ回路13計数値のインクリメ
ント、デイクリメントを行い回転の方向を加味し
た回転回数を求め出力する。 このように第1のラツチ回路9から回転角が出
力されカウンタ回路13から回転回数が出力され
るが、これらの電動機回転角、回転回数の2つの
情報を加算して減速機を介した負荷の位置情報が
得られるのであり、第3のラツチ回路14を備
え、これら2つの情報をラツチし、負荷位置情報
として出力する。 第2図のタイムチヤートは、レゾルバ励磁信号
(三角波形で近似)に同期した分周器カウンタ値
の反転出力と、レゾルバ出力信号(三角波形で
近似)のゼロクロス点のラツチタイミングを示す
矩形波Aと、矩形波Aの立上りで上記カウント値
Qをラツチする第1のラツチ回路9の今回ラツチ
の回転角出力波形Bと、同じく矩形波Aの立下り
で第1のラツチ回路の回転角出力をラツチする第
2のラツチ回路10の前回ラツチの回転角出力波
形Cと、これら第1、第2のラツチ回路9,10
の今回、前回ラツチの回転角出力波形B,Cを比
較、差を求めその差が設定の値に達した際に出力
される第1、第2の比較回路11,12のパルス
波形D,E、をそれぞれ示し、カウンタ回路13
でこのパルス波形D,Eを各インクリメント、デ
イクリメント信号として用い回転回数を計数し、
先の第1のラツチ回路9の回転角を加算し負荷の
位置情報を得る。 このように、本考案は電動機より減速機を介し
連結された負荷にあつて、負荷の回転位置を検出
するのに、レゾルバを使用して電動機の回転角を
検出し、かつその電動機回転角の時間とともに推
移していく様を観察して、回転角の2π近くの値
から零近くの値への変化あるいはその逆の変化を
来たしたとき正あるいは逆方向への1回転と判
断・パルス信号を出力し、それをカウンタにより
計数し回転回数を求めるようにしたもので、レゾ
ルバを用いた負荷位置情報を得る方式は末だ実現
されておらず、また電動機回転角を検出する方法
も、従来のフイルタを用いた検出遅れを有するも
のに較べ、レゾルバ励磁信号に同期の鋸歯状波形
をレゾルバ出力信号のゼロクロス点でラツチする
という、ラツチ回路を備えるだけの極めて簡易の
構成でありコストダウンに寄与するところ大であ
る。 なお、実施例は、レゾルバの励磁を、基準発振
器、分周器を介し2相発振器により行つている
が、基準発振器、分周器を使用しない場合は、2
相発振器の励磁信号の整数倍周波数の信号を得る
べくPLL回路等を使用、カウンタ回路の入力信
号としその計数反転出力を先の分周器のカウンタ
値の反転出力に代えて使用すればよく、レゾルバ
励磁信号に同期した鋸歯状波形であればその形成
の態様には特にこだわらない。
[Detailed Description of the Invention] This invention relates to a load position detection device using a resolver. When the load is connected to the electric motor via a reducer,
If the reduction ratio is N, one revolution of the load is N of the motor.
This corresponds to rotation, and in order to detect the load position (rotation angle of the load), it is necessary to detect the rotation number as well as the rotation angle of the electric motor. To detect the motor rotation angle using a resolver, there is a method of obtaining resolver rotation angle information θ by synchronously rectifying the output signal of the resolver with an excitation signal, but this method uses a filter to remove harmonic components. However, there are drawbacks such as a delay in detection, and detection of the number of rotations of an electric motor using a resolver has not yet been carried out. This device uses a resolver to determine the motor rotation angle and number of rotations and detects the load position.This device eliminates the need for a filter, detects the rotation angle without any detection delay, and obtains accurate load position information. For the purpose of providing. In the drawings, FIG. 1 shows a block diagram of the embodiment, and FIG. 2 shows a time chart. In FIG. 1, 1 is a reference oscillator that outputs a constant frequency reference signal, and 2 is a frequency divider that divides this constant frequency reference signal into an appropriate frequency and supplies an input signal to a two-phase oscillator 3 for exciting the resolver. , two-phase oscillator 3
is an oscillator that outputs a two-phase sine wave that excites the two-phase excitation windings 4a and 4b of the resolver 4, respectively, and an output corresponding to the two-phase excitation windings 4a and 4b of the resolver 4 and the rotation angle of the rotor. Detection winding 4 that generates a signal
c and is connected to the electric motor 5. 6 is a speed reducer, and as mentioned earlier, the load according to the present invention is driven at a speed that is significantly reduced compared to the speed of the electric motor.If the speed reduction ratio is N, then N rotations of the electric motor 5 corresponds to one rotation of the load. Equivalent to. That is, in order to detect the rotational position of the load, it is necessary to detect the rotation angle and number of rotations of the motor, and the former motor rotation angle is extracted from the phase modulation force of the rotation angle θ generated in the resolver detection winding 4c. The number of rotations in the latter can be determined by first detecting the rotation angle θ.
It can be detected by monitoring the transition of , for example, from 2π phase to zero phase, or conversely from zero phase to 2π phase, as one rotation in the positive or reverse direction and incrementing or decrementing the counter. . First, detection of the rotation angle θ will be explained. Resolver 2
The phase excitation windings 4a and 4b are sine wave excitation signals.
coswt and sinwt are input, and if the rotor position is at the illustrated rotation angle θ, the detection winding 4c outputs a sine wave sin (wt + θ) corresponding to the rotation angle θ, and if this phase difference θ is extracted, the rotation The child rotation angle θ will be detected. 8 is a waveform conversion circuit that converts the resolver detection winding output signal sin (wt + θ) into a rectangular wave, and as the rotation angle θ of the rotor changes, the zero cross point of this phase-modulated sine wave output sin (wt + θ) As the waveform shifts, the timing of the rise and fall of the rectangular wave changes. 9 is a first latch circuit that latches the inverted output Q of the counter value from the frequency divider 2 at the rising edge of the rectangular wave output from the waveform conversion circuit 8, and outputs the phase difference θ between the excitation signal and the output signal, that is, the rotation angle θ. do. Of course, the inverted output Q is synchronized with the excitation signal,
When the phase difference θ is 2π or zero, the latch output is either the maximum value or zero. Therefore, if the starting point of the load is set to zero of the rotation angle θ, the latch output will change from 2π to zero. Or conversely, it can be determined that one revolution has occurred by transitioning from zero to 2π. That is, the number of rotations is detected by the first latch circuit 9 that outputs rotation angle information of the resolver detection winding.
The second one stores the rotation angle output of the previous latch.
The rotation angle outputs of the previous and current latches of the first and second latch circuits 9 and 10 are compared, and the difference, including positive and negative signs, is close to a predetermined value of 2π. Depending on whether the value of . This will be explained in detail below. The first latch circuit 9 latches the counter value inversion output Q of the frequency divider 2 at the zero cross point of the phase modulation output of the resolver detection winding to obtain a rotation angle output, but the latch timing is determined by the phase modulation of the sine wave. The output is converted to a rectangular wave and the rising edge of the wave is used. In other words, in order to memorize the previous rotation angle output, the previous first
It is sufficient to latch the rotation angle output of the second latch circuit 9 at the falling edge of the rectangular wave after half a cycle.
0, inputs the rotation angle output of the first latch circuit 9, latches it at the fall timing of the rectangular wave synchronized with the phase modulated resolver output waveform, and outputs it as the rotation angle information of the previous latch. Therefore, by comparing the rotational angle outputs of the first and second latch circuits 9 and 10 and taking the difference, it is possible to determine whether or not it is one rotation by checking the transition state of the difference, and the rotational direction is also the same as above. Depending on whether the difference is positive or negative, it is easy to distinguish between cases where the previous latch output was close to 2π and the current latch output is close to zero, and vice versa. can. Therefore,
It is equipped with two comparison circuits 11 and 12, and one comparison circuit 11 outputs a pulse signal when the difference between the outputs of the latch circuit exceeds a certain positive value, and is used as an increment signal for the subsequent counter. The comparator circuit 12 outputs a pulse signal when the output difference of the latch circuit exceeds a certain negative value, and is used as a decrement signal for the counter.
That is, it is equipped with a counter circuit 13, and uses pulse signals from the two comparison circuits 11 and 12 to increment or decrement the count value of the counter circuit 13 by using one of them as an increment signal and the other as a decrement signal, taking into account the direction of rotation. Find and output the number of rotations. In this way, the rotation angle is output from the first latch circuit 9 and the number of rotations is output from the counter circuit 13, but by adding these two pieces of information, ie, the motor rotation angle and the number of rotations, it is possible to calculate the load passing through the reducer. Position information can be obtained, and a third latch circuit 14 is provided to latch these two pieces of information and output it as load position information. The time chart in Figure 2 is a rectangular wave that shows the inverted output Q of the divider counter value synchronized with the resolver excitation signal (approximated by a triangular waveform) and the latch timing of the zero cross point of the resolver output signal (approximated by a triangular waveform). A, the rotation angle output waveform B of the current latch of the first latch circuit 9 which latches the count value Q at the rising edge of the square wave A, and the rotation angle output waveform B of the first latch circuit 9 at the falling edge of the square wave A. The rotation angle output waveform C of the previous latching of the second latch circuit 10 that latches, and these first and second latch circuits 9, 10.
This time, the rotation angle output waveforms B and C of the previous latch are compared, the difference is found, and the pulse waveforms D and E of the first and second comparison circuits 11 and 12 are output when the difference reaches the set value. , respectively, and the counter circuit 13
Using these pulse waveforms D and E as each increment and decrement signal, count the number of rotations,
The rotation angle of the first latch circuit 9 is added to obtain load position information. As described above, the present invention uses a resolver to detect the rotational angle of the electric motor in order to detect the rotational position of the load when the electric motor is connected to the load via the reducer. Observe the change over time, and when the rotation angle changes from a value close to 2π to a value close to zero, or vice versa, it is determined that it is one rotation in the forward or reverse direction.・Pulse signal is output and counted by a counter to determine the number of rotations.The method of obtaining load position information using a resolver has not yet been realized, and the method of detecting the motor rotation angle is also different from the conventional method. Compared to the detection delay using a filter, it has an extremely simple configuration that only includes a latch circuit that latches a sawtooth waveform synchronized with the resolver excitation signal at the zero-crossing point of the resolver output signal, contributing to cost reduction. It's a big deal. In the embodiment, the resolver is excited by a two-phase oscillator via a reference oscillator and a frequency divider, but if the reference oscillator and frequency divider are not used,
In order to obtain a signal with a frequency that is an integer multiple of the excitation signal of the phase oscillator, a PLL circuit or the like can be used, and its count inversion output can be used as the input signal of the counter circuit in place of the inversion output of the counter value of the frequency divider. As long as the sawtooth waveform is synchronized with the resolver excitation signal, there is no particular restriction on the form of the waveform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例のブロツク線図、第2図は動作
説明のタイムチヤートである。 1……基準発振器、2……分周器、3……2相
発振器、4……レゾルバ、8……波形変換回路、
9……第1のラツチ回路、10……第2のラツチ
回路、11……第1の比較回路、12……第2の
比較回路、13……カウンタ回路、14……第3
のラツチ回路。
FIG. 1 is a block diagram of the embodiment, and FIG. 2 is a time chart for explaining the operation. 1... Reference oscillator, 2... Frequency divider, 3... Two-phase oscillator, 4... Resolver, 8... Waveform conversion circuit,
9...First latch circuit, 10...Second latch circuit, 11...First comparison circuit, 12...Second comparison circuit, 13...Counter circuit, 14...Third
latch circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 1、2相の励磁巻線と回転子の回転角に対応し
た出力を発生する検出巻線を備えたレゾルバにお
いて、基準発振器と、基準発振器の出力を分周す
る分周器と、分周器からの分周出力を受け2相の
レゾルバ励磁信号を出力する2相発振器と、レゾ
ルバ検出巻線からの位相変調信号を矩形波に変換
する波形変換回路と、上記分周器のカウンタ値の
反転出力を波形変換回路の矩形波出力の立上りで
ラツチし回転角として出力する第1のラツチ回路
と、第1のラツチ回路の回転角出力を上記波形変
換回路の矩形波出力の立下りでラツチし前回ラツ
チの回転角を出力する第2のラツチ回路と、第
1、第2のラツチ回路の今回、前回ラツチの回転
角出力を比較しその差が正あるいは負の予じめ定
めた値以上にあるならばそれぞれパルス信号を出
力する2つの比較回路と、2つの比較回路のパル
ス信号の一方をインクリメント信号、他方をデイ
クリメント信号として用い正方向あるいは逆方向
の1回転を判断し回転回数を検出するカウンタ回
路と、このカウンタ回路の回転回数と先の第1の
ラツチ回路の回転角をラツチし負荷位置を出力す
る第3のラツチ回路、を備えたことを特徴とする
レゾルバ使用の負荷位置検出装置。
In a resolver equipped with one- and two-phase excitation windings and a detection winding that generates an output corresponding to the rotation angle of the rotor, a reference oscillator, a frequency divider that divides the output of the reference oscillator, and a frequency divider are used. a two-phase oscillator that outputs a two-phase resolver excitation signal after receiving the frequency-divided output from the resolver, a waveform conversion circuit that converts the phase modulation signal from the resolver detection winding into a rectangular wave, and an inversion of the counter value of the frequency divider. A first latch circuit that latches the output at the rising edge of the rectangular wave output of the waveform conversion circuit and outputs it as a rotation angle; and a first latch circuit that latches the output of the rotation angle of the first latch circuit at the falling edge of the rectangular wave output of the waveform conversion circuit. The second latch circuit that outputs the rotation angle of the previous latch is compared with the rotation angle output of the current and previous latch of the first and second latch circuits, and the difference is greater than a predetermined positive or negative value. If so, two comparison circuits each output a pulse signal, and one of the pulse signals of the two comparison circuits is used as an increment signal and the other as a decrement signal to determine one rotation in the forward or reverse direction and detect the number of rotations. Load position detection using a resolver, characterized in that it is equipped with a counter circuit that latches the number of rotations of this counter circuit and a rotation angle of the first latch circuit and outputs the load position. Device.
JP6465883U 1983-04-28 1983-04-28 Load position detection device using resolver Granted JPS59170212U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6465883U JPS59170212U (en) 1983-04-28 1983-04-28 Load position detection device using resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6465883U JPS59170212U (en) 1983-04-28 1983-04-28 Load position detection device using resolver

Publications (2)

Publication Number Publication Date
JPS59170212U JPS59170212U (en) 1984-11-14
JPH0236090Y2 true JPH0236090Y2 (en) 1990-10-02

Family

ID=30194842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6465883U Granted JPS59170212U (en) 1983-04-28 1983-04-28 Load position detection device using resolver

Country Status (1)

Country Link
JP (1) JPS59170212U (en)

Also Published As

Publication number Publication date
JPS59170212U (en) 1984-11-14

Similar Documents

Publication Publication Date Title
US5886486A (en) Sensorless brushless DC motor
US4839589A (en) Method and circuit for determining the speed of rotation of a rotating machine
US4409526A (en) Brushless DC motor
US20010030517A1 (en) Detection of rotor angle in a permanent magnet synchronous motor at zero speed
EP0458148B1 (en) Angle of rotation detector
US9651933B2 (en) Peak detection circuit and method
JPH0236090Y2 (en)
US4481468A (en) Velocity detecting apparatus having a two-phase resolver
JP3667465B2 (en) Method and apparatus for detecting position of linear stepping motor
US4734655A (en) Digital rotation detecting apparatus
JPH0347076B2 (en)
JPH0721119Y2 (en) 3-phase brushless motor
JPS61182579A (en) Resolver speed detection system
JPH01195321A (en) Digital position detecting system
JPS6211818B2 (en)
JPS60187864A (en) Rotational speed and its position detector using resolver
SU1106000A1 (en) Process for phasing rotary shaft of electric motor
JPH0528486Y2 (en)
JPS6038661A (en) Digital speed detecting apparatus
JPH0384463A (en) Speed detecting circuit
JPS63218818A (en) Resolver type rotation angle detector
JPH0415418B2 (en)
JPH01113670A (en) Rotation detector
JPH02145916A (en) Position detector
JPS58132604A (en) Rotary angle detecting method