JPH0236062B2 - HANDOTAISOCHI - Google Patents

HANDOTAISOCHI

Info

Publication number
JPH0236062B2
JPH0236062B2 JP24342983A JP24342983A JPH0236062B2 JP H0236062 B2 JPH0236062 B2 JP H0236062B2 JP 24342983 A JP24342983 A JP 24342983A JP 24342983 A JP24342983 A JP 24342983A JP H0236062 B2 JPH0236062 B2 JP H0236062B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor layer
thickness
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24342983A
Other languages
Japanese (ja)
Other versions
JPS60136268A (en
Inventor
Shigeru Kuroda
Takashi Mimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24342983A priority Critical patent/JPH0236062B2/en
Publication of JPS60136268A publication Critical patent/JPS60136268A/en
Publication of JPH0236062B2 publication Critical patent/JPH0236062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体装置、特に化合物半導体電界効
果トランジスタの信頼性並びに特性を向上せしめ
る構造の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an improvement in the structure of a semiconductor device, particularly to improve the reliability and characteristics of a compound semiconductor field effect transistor.

(b) 技術の背景 半導体装置の動作速度の向上、消費電力の低減
などを目的として、キヤリアの移動度がシリコン
(Si)より遥かに大きい砒化ガリウム(GaAs)
などの化合物半導体を用いるトランジスタが多数
提案されている。化合物半導体を用いるトランジ
スタとしては、電界効果トランジスタ(以下
FETと略称する)がその製造工程がバイポーラ
トランジスタより簡単であるなどの理由によつて
現在主流をなしており、特にシヨツトキーバリア
形FETが多く使用されている。
(b) Background of the technology Gallium arsenide (GaAs), which has a much higher carrier mobility than silicon (Si), is used to improve the operating speed of semiconductor devices and reduce power consumption.
A large number of transistors using compound semiconductors have been proposed. Field-effect transistors (hereinafter referred to as field-effect transistors) are transistors that use compound semiconductors.
FETs (abbreviated as FETs) are currently the mainstream because their manufacturing process is simpler than bipolar transistors, and Schottky barrier FETs are particularly popular.

従来の構造のSiもしくはGaAs等の半導体装置
においては、キヤリアが不純物イオンが存在して
いる半導体空間内を移動する。この移動に際して
キヤリアは格子振動および不純物イオンによつて
散乱を受けるが、格子振動による散乱の確率を小
さくするために温度を低下させると不純物イオン
による散乱の確率が大きくなり、キヤリアの移動
度はこれによつて制限される。
In a semiconductor device such as Si or GaAs having a conventional structure, carriers move within a semiconductor space where impurity ions are present. During this movement, carriers are scattered by lattice vibrations and impurity ions, but if the temperature is lowered to reduce the probability of scattering due to lattice vibrations, the probability of scattering by impurity ions increases, and the carrier mobility decreases. limited by.

この不純物散乱効果を排除するために不純物が
添加される領域とキヤリアが移動する領域とをヘ
テロ接合界面によつて空間的に分離して、特に低
温におけるキヤリアの移動度を増大せしめたヘテ
ロ接合形電界効果トランジスタ(以下ヘテロ接合
形FETと略称する)が開発され、これによつて
一層の高速化が実現されている。
In order to eliminate this impurity scattering effect, the region where impurities are added and the region where carriers move are spatially separated by a heterojunction interface, increasing carrier mobility especially at low temperatures. Field-effect transistors (hereinafter abbreviated as heterojunction FETs) have been developed, and have achieved even higher speeds.

(c) 従来技術と問題点 前記ヘテロ接合形FETの従来の構造の1例を
第1図aに示す。半絶縁性GaAs基板1上に、ノ
ンドープのi型GaAs層2とノンドープのi型砒
化アルミニウムガリウム(AlGaAs)層3とが設
けられている。この場合層2と層3とを、ここで
は第1半導体層とし、層2を層3と同様にi型
AlGaAsとしてもよい。
(c) Prior Art and Problems An example of the conventional structure of the heterojunction FET is shown in FIG. 1a. A non-doped i-type GaAs layer 2 and a non-doped i-type aluminum gallium arsenide (AlGaAs) layer 3 are provided on a semi-insulating GaAs substrate 1 . In this case, layer 2 and layer 3 are here referred to as first semiconductor layers, and layer 2 is i-type like layer 3.
It may also be AlGaAs.

この第1半導体層上に第2半導体層としてのノ
ンドープのi型GaAs層4が設けられ、更に第3
半導体層としてn型AlGaAs層5が設けられ、そ
の上にn型GaAs層6が設けられている。
A non-doped i-type GaAs layer 4 as a second semiconductor layer is provided on this first semiconductor layer, and a third
An n-type AlGaAs layer 5 is provided as a semiconductor layer, and an n-type GaAs layer 6 is provided thereon.

AlGaAsはGaAsより電子親和力が小さく、第
3半導体層としてのn型AlGaAs層5(電子供給
層という)から第2半導体層としてのi型GaAs
層(チヤネル層という)へ遷移した電子によつて
i型GaAs層4のヘテロ接合界面近傍に生成され
る2次元電子ガス4Aがチヤネルとして機能す
る。この2次元電子ガス4Aの面濃度を制御する
ゲート電極7は、通常n型GaAs層6を選択的に
除去したリセス構造によつて、n型AlGaAs層5
に接して設けられる。なお8はソース電極、9は
ドレイン電極であり、n型GaAs層6はこれらの
電極の良好な接続のため設けられ且つこれらの電
極は半導体基体との合金領域10によつて低抵抗
のオーミツク接触を得ている。
AlGaAs has a lower electron affinity than GaAs, and from the n-type AlGaAs layer 5 (referred to as electron supply layer) as the third semiconductor layer to the i-type GaAs as the second semiconductor layer.
A two-dimensional electron gas 4A generated near the heterojunction interface of the i-type GaAs layer 4 by electrons transferred to the layer (referred to as a channel layer) functions as a channel. The gate electrode 7 that controls the surface concentration of the two-dimensional electron gas 4A has a recessed structure in which the n-type GaAs layer 6 is selectively removed.
It is located adjacent to the Note that 8 is a source electrode and 9 is a drain electrode, and the n-type GaAs layer 6 is provided for good connection of these electrodes, and these electrodes are in low resistance ohmic contact with the semiconductor substrate by the alloy region 10. I am getting .

前記従来例において各半導体層の厚さの例は、
n型GaAs層6が50〔nm〕、n型AlGaAs層5が
30〔nm〕、i型GaAs層4が300〔nm〕、i型
AlGaAs層3が100〔nm〕、i型GaAs層2が200
〔nm〕程度であつて2次元電子ガス4Aの深さ
はヘテロ接合界面から1〔nm〕程度である。こ
の場合i型GaAs層4としての第2半導体層及び
i型AlGaAs層3とi型GaAs層2よりなる第1
半導体層が結晶性改善のためのバツフア層であ
り、第2半導体層の上面が真性結晶構造となるた
めの役目を有す。即ち基板上に化合物半導体をエ
ピタキシヤル成長させる場合の結晶性の改善に必
要な機能を果たすためにこの第1及び第2半導体
層はそれに必要な厚さとなつている。
In the conventional example, the thickness of each semiconductor layer is as follows:
The n-type GaAs layer 6 is 50 [nm] thick, and the n-type AlGaAs layer 5 is
30 [nm], i-type GaAs layer 4 is 300 [nm], i-type
AlGaAs layer 3 is 100 [nm], i-type GaAs layer 2 is 200 nm
[nm], and the depth of the two-dimensional electron gas 4A is about 1 [nm] from the heterojunction interface. In this case, the second semiconductor layer is the i-type GaAs layer 4 and the first semiconductor layer is made of the i-type AlGaAs layer 3 and the i-type GaAs layer 2.
The semiconductor layer is a buffer layer for improving crystallinity, and has the role of making the upper surface of the second semiconductor layer have an intrinsic crystal structure. That is, the first and second semiconductor layers have a thickness necessary to perform a function necessary for improving crystallinity when a compound semiconductor is epitaxially grown on a substrate.

ヘテロ接合形FET素子による集積回路におい
て素子間分離をメサ形エツチングによつて行つた
従来例の、ゲート幅方向の断面による断面図を第
1図bに示し、なお第1図aとの対応を同一符号
によつて示す。ゲート電極7の配線接続領域はメ
サ形動作領域の外に設けられてゲート電極部分と
の間に段差がある。
A cross-sectional view in the gate width direction of a conventional example in which isolation between elements is performed by mesa-shaped etching in an integrated circuit using a heterojunction FET element is shown in Fig. 1b, and the correspondence with Fig. 1a is shown in Fig. 1b. Indicated by the same reference numerals. The wiring connection region of the gate electrode 7 is provided outside the mesa-shaped operating region, and there is a step difference between the wiring connection region and the gate electrode portion.

この配線接続領域はメサエツチング及びリセス
エツチングの2回のエツチング処理を受けるが、
いづれの処理の場合もAlGaAsはGaAsを選択的
に除去する場合のストツパの機能をも有し、従つ
てメサエツチングの場合は第1半導体層としての
i型AlGaAs層が、又つづいてのリセスエツチン
グの場合には第3半導体層としてのn型AlGaAs
層がストツパとしての役目を果たす。このように
してゲート配線接続領域はi型AlGaAs層3の上
面となり、メサ構造の段差は本従来例においては
330〔nm〕程度となる。
This wiring connection area undergoes two etching processes: mesa etching and recess etching.
In either process, AlGaAs also has the function of a stopper when GaAs is selectively removed. Therefore, in the case of mesa etching, the i-type AlGaAs layer as the first semiconductor layer is used as a stopper for the subsequent recess etching. In some cases, n-type AlGaAs as the third semiconductor layer
The layer acts as a stopper. In this way, the gate wiring connection region becomes the upper surface of the i-type AlGaAs layer 3, and the step of the mesa structure is
It is approximately 330 [nm].

またゲート電極7を形成する金属層の厚さは従
来300〔nm〕程度が最も普通であつて前記段差以
下であり、この結果第1図bに示す如くこの段差
部分において金属層が薄くなつて抵抗値の上昇を
招き、またこの部分において断線する危険性を含
んでいる。
Furthermore, the thickness of the metal layer forming the gate electrode 7 is conventionally most commonly about 300 [nm], which is less than the above-mentioned step, and as a result, the metal layer becomes thinner at this step, as shown in FIG. 1b. This will lead to an increase in the resistance value, and there is also a risk of wire breakage at this part.

(d) 発明の目的 本発明は前記問題に対処して、ゲート電極の抵
抗値の上昇及び断線を抑制、防止する半導体装置
の構造を提供することを目的とする。
(d) Object of the Invention An object of the present invention is to address the above-mentioned problems and provide a structure of a semiconductor device that suppresses and prevents an increase in the resistance value and disconnection of the gate electrode.

(e) 発明の構成 前記目的は本発明により半導体基板上に第1半
導体層、第2半導体層、第3半導体層が積層さ
れ、第1半導体層はメサ形成のためのエツチング
の際のストツパ機能を有する如く少なくとも層の
上層部が第1の化合物半導体のノンドープ層より
なり、第2の半導体層は第1の化合物半導体とは
同一のエツチング液に対しエツチング速度の大で
かつ電子親和力の大なる第2の化合物半導体より
なり、第3半導体層は第1化合物半導体で電子供
給層として作用するドープ層よりなり、第1半導
体層と第2半導体層は第2半導体層表面の結晶性
改善に必要なバツフア層として機能しうる厚さ
で、そのうち第2半導体層は第3半導体層とのヘ
テロ接合界面近傍にあつてチヤンネル層として機
能する約1nmの2次元電子ガスの生成に必要な
最小限の厚さで、第1半導体層がバツフア層とし
て機能するに必要な厚さに略選ばれ、第1半導体
層上の第2半導体層と第3半導体層はメサ構造
で、ゲート電極は第3半導体層に接する如く設け
られ、ゲート電極を形成する金属層が第3と第2
の半導体層のメサ形成面に沿つて第1半導体層の
表出面に延伸される如き構造を有し、かつ金属層
の厚さが第2、第3半導体層の積層の厚さより大
なる如く選ばれていることを特徴とする半導体装
置によつて達成される。
(e) Structure of the Invention The object is to provide a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer stacked on a semiconductor substrate according to the present invention, and the first semiconductor layer has a stopper function during etching for forming a mesa. At least the upper layer of the layer is made of a non-doped layer of the first compound semiconductor, and the second semiconductor layer is made of a non-doped layer of the first compound semiconductor, which has a high etching rate and a high electron affinity with the same etching solution as the first compound semiconductor. The third semiconductor layer is made of a second compound semiconductor, and the third semiconductor layer is made of a doped layer of the first compound semiconductor that acts as an electron supply layer.The first semiconductor layer and the second semiconductor layer are necessary for improving the crystallinity of the surface of the second semiconductor layer. The second semiconductor layer has a thickness that can function as a buffer layer, and the second semiconductor layer is located near the heterojunction interface with the third semiconductor layer and has the minimum thickness necessary to generate a two-dimensional electron gas of approximately 1 nm that functions as a channel layer. The thickness is approximately selected to be the thickness necessary for the first semiconductor layer to function as a buffer layer, the second semiconductor layer and the third semiconductor layer on the first semiconductor layer have a mesa structure, and the gate electrode is formed on the third semiconductor layer. The metal layer forming the gate electrode is provided in contact with the third and second metal layers.
The metal layer has a structure such that it extends along the mesa-forming surface of the semiconductor layer to the exposed surface of the first semiconductor layer, and the thickness of the metal layer is selected to be larger than the thickness of the stack of the second and third semiconductor layers. This is achieved by a semiconductor device characterized by:

即ち従来は第2半導体層はチヤネル層としての
機能のほかに第1半導体層と共にバツフア層とし
ての機能を果たしていたが、本発明では第2半導
体層は約1nmの2次元電子ガスよりなるチヤネ
ルの構成に必要な最小限の厚さとされ、一方第1
半導体層は結晶性改善に必要な機能を果たしうる
厚さとされ、これによつてメサの段差である第
2、第3半導体層の厚さを小となし、且つゲート
電極の金属層の厚さをその段差より大となるよう
に半導体装置を構成している。
That is, in the past, the second semiconductor layer functioned not only as a channel layer but also as a buffer layer together with the first semiconductor layer, but in the present invention, the second semiconductor layer functions as a channel layer made of about 1 nm of two-dimensional electron gas. The minimum thickness required for the configuration, while the first
The thickness of the semiconductor layer is set so that it can fulfill the function necessary for improving crystallinity, so that the thickness of the second and third semiconductor layers, which are the steps of the mesa, can be made small, and the thickness of the metal layer of the gate electrode can be made small. The semiconductor device is configured such that the step is larger than the step.

(f) 発明の実施例 本発明の実施態様としては、前記第1の化合物
半導体をAlGaAs、前記第2の化合物半導体を
GaAsとする例がまず挙げられる。
(f) Embodiment of the invention In an embodiment of the invention, the first compound semiconductor is AlGaAs, and the second compound semiconductor is AlGaAs.
The first example is GaAs.

以下本発明を実施例により、図面を参照して具
体的に説明する。
Hereinafter, the present invention will be specifically described by way of examples with reference to the drawings.

第2図aは本発明の実施例を示す断面図であ
る。図において、11は半絶縁性GaAs基板、1
2はノンドープのi型GaAs層、13はノンドー
プのi型AlGaAs層でこの両層を一緒にして第1
半導体層とし、少なくともこの層の上層部がノン
ドープのi型AlGaAs層であればよく、更に層2
は層3と同様の構成であつてもよい、14は第2
半導体層としてのノンドープのi型GaAs層、1
5は第3半導体層としてのn型AlSaAs層、16
はn型GaAs層であつて、半導体層の構成は前記
従来例と同様である。
FIG. 2a is a sectional view showing an embodiment of the present invention. In the figure, 11 is a semi-insulating GaAs substrate;
2 is a non-doped i-type GaAs layer, 13 is a non-doped i-type AlGaAs layer, and these two layers are combined to form the first layer.
A semiconductor layer, at least the upper part of this layer may be a non-doped i-type AlGaAs layer, and the layer 2 may be a non-doped i-type AlGaAs layer.
may have the same configuration as layer 3, and 14 is the second layer.
Non-doped i-type GaAs layer as a semiconductor layer, 1
5 is an n-type AlSaAs layer as the third semiconductor layer, 16
is an n-type GaAs layer, and the structure of the semiconductor layer is the same as that of the conventional example.

更にn型GaAs層16の厚さは例えば50〔n
m〕、n型AlGaAs層15の厚さは例えば30〔n
m〕と前記従来例と同一でよい。加えてi型
GaAs層14、i型AlGaAs層13及びi型GaAs
層12の合計厚さも前記従来例と同様に600〔n
m〕程度としている。
Furthermore, the thickness of the n-type GaAs layer 16 is, for example, 50 [n
m], the thickness of the n-type AlGaAs layer 15 is, for example, 30 [n
m] may be the same as that of the conventional example. In addition, type i
GaAs layer 14, i-type AlGaAs layer 13 and i-type GaAs
The total thickness of the layer 12 is also 600 [n] as in the conventional example.
m].

しかし先に述べた如く2次元電子ガス14Aは
i型GaAs層14の上方ヘテロ接合界面近傍に生
成されるが、その深さは例えば1〔nm〕程度で
あるので第2半導体層はチヤネル層としての機能
を有しうるために、下方のヘテロ接合半導体層が
ノンドープのi型である場合にはi型GaAs層1
4とし例えば10nm程度まで薄くしてもよい。例
えば従来例では300nmであつたのを10〔nm〕程
度まで薄くしても2次元電子ガス14Aは影響を
受けず、ヘテロ接合形FETの特性が害されるこ
とはない。このためには結晶性改善のために必要
な厚さを第1半導体層(この実施例では層12と
13の合計)が有していることが前提となる。
However, as mentioned earlier, the two-dimensional electron gas 14A is generated near the upper heterojunction interface of the i-type GaAs layer 14, but the depth thereof is, for example, about 1 [nm], so the second semiconductor layer is used as a channel layer. Therefore, if the lower heterojunction semiconductor layer is non-doped i-type, the i-type GaAs layer 1
4, and may be made as thin as, for example, about 10 nm. For example, even if the thickness is reduced from 300 nm in the conventional example to about 10 [nm], the two-dimensional electron gas 14A is not affected, and the characteristics of the heterojunction FET are not impaired. This requires that the first semiconductor layer (in this example, the sum of layers 12 and 13) have a thickness necessary for improving crystallinity.

この事実に基づいて、本実施例においては、第
2半導体層としてのi型GaAs層14の厚さを50
〔nm〕、第1半導体層を構成するi型AlGaAs層
13及びi型GaAs層12の厚さを夫々250〔n
m〕及び300〔nm〕程度としている。従つてn型
GaAs層16の上面から第1半導体層としてのi
型AlGaAs層13の上面までの深さは130〔nm〕
程度、第3半導体層のn型AlGaAs層15の上面
からの深さは80〔nm〕程度となる。
Based on this fact, in this example, the thickness of the i-type GaAs layer 14 as the second semiconductor layer is set to 50 mm.
[nm], and the thickness of the i-type AlGaAs layer 13 and the i-type GaAs layer 12 constituting the first semiconductor layer is 250 [nm].
m] and about 300 [nm]. Therefore n-type
i as the first semiconductor layer from the top surface of the GaAs layer 16
The depth to the top surface of type AlGaAs layer 13 is 130 [nm]
The depth from the upper surface of the n-type AlGaAs layer 15 of the third semiconductor layer is approximately 80 [nm].

以上説明した如き半導体層の厚さによつて、素
子分離のメサエツチングについても第1半導体層
のi型AlGaAs層13を停止層とする選択的エツ
チングを有効に適用することができる。このメサ
エツチング後にリセス形成は第3半導体層として
のn型AlGaAs層15を停止層として選択ドライ
エツチングで可能となる。
With the thickness of the semiconductor layer as described above, selective etching using the i-type AlGaAs layer 13 of the first semiconductor layer as a stop layer can be effectively applied to mesa etching for element isolation. After this mesa etching, a recess can be formed by selective dry etching using the n-type AlGaAs layer 15 as a third semiconductor layer as a stop layer.

この結果、ゲート電極17の電極部分と配線接
続領域との段差は本実施例においては80〔nm〕
程度となり、第2図bに示す如く、ゲート電極金
属層の厚さを従来と同様の300〔nm〕程度とした
場合においてもその断線の危険性は排除され、か
つ抵抗値も低く保たれる。
As a result, the difference in level between the electrode portion of the gate electrode 17 and the wiring connection region is 80 [nm] in this embodiment.
As shown in Figure 2b, even if the thickness of the gate electrode metal layer is set to about 300 [nm], which is the same as before, the risk of wire breakage is eliminated and the resistance value is kept low. .

以上説明した実施例においてはゲート電極金属
層形成面間の段差が極めて小さくされているが、
この段差すなわち第1半導体のi型AlGaAs層1
3の上面から第3半導体層のn型AlGaAs層15
の上面までの距離が、第1半導体層のi型
AlGaAs層13面上のゲート電極金属層の厚さよ
り小ならば本願発明の目的は達成されたことにな
る。
In the embodiments described above, the step difference between the gate electrode metal layer forming surfaces is extremely small;
This step, that is, the i-type AlGaAs layer 1 of the first semiconductor
From the top surface of 3, the n-type AlGaAs layer 15 of the third semiconductor layer
The distance to the top surface of the first semiconductor layer is i-type
If the thickness is smaller than the thickness of the gate electrode metal layer on the surface of the AlGaAs layer 13, the object of the present invention has been achieved.

更に本発明の構造はGaAs/AlGaAs系化合物
に限られるものではなく、他の化合物半導体に拡
大することが可能である。
Furthermore, the structure of the present invention is not limited to GaAs/AlGaAs compounds, but can be extended to other compound semiconductors.

(g) 発明の効果 以上説明した如く本発明によれば、本発明の対
象とするような化合物半導体装置において従来問
題とされたゲート電極金属層の段差による抵抗値
の増大、断線の危険性が抑制、防止されて、その
性能及び信頼性が向上される。
(g) Effects of the Invention As explained above, according to the present invention, the increase in resistance value and the risk of disconnection due to the step difference in the gate electrode metal layer, which have been problems in the prior art in compound semiconductor devices as the object of the present invention, can be avoided. suppressed and prevented to improve its performance and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a及びbは従来の半導体装置の例を示
し、第2図a及びbは本発明の実施例を示す。 図において、11は半絶縁性GaAs基板、12
及び14はi型GaAs層、13はi型AlGaAs層、
15はn型AlGaAs層、16はn型GaAs層、1
7はゲート電極、18はソース電極、19はドレ
イン電極、20は合金領域を示す。
1A and 1B show an example of a conventional semiconductor device, and FIGS. 2A and 2B show an embodiment of the present invention. In the figure, 11 is a semi-insulating GaAs substrate, 12
and 14 is an i-type GaAs layer, 13 is an i-type AlGaAs layer,
15 is an n-type AlGaAs layer, 16 is an n-type GaAs layer, 1
7 is a gate electrode, 18 is a source electrode, 19 is a drain electrode, and 20 is an alloy region.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に第1半導体層、第2半導体
層、第3半導体層が積層され、第1半導体層はメ
サ形成のためのエツチングの際のストツパ機能を
有する如く少なくとも層の上層部が第1の化合物
半導体のノンドープ層よりなり、第2の半導体層
は第1の化合物半導体とは同一のエツチング液に
対しエツチング速度の大でかつ電子親和力の大な
る第2の化合物半導体よりなり、第3半導体層は
第1化合物半導体で電子供給層として作用するド
ープ層よりなり、第1半導体層と第2半導体層は
第2半導体層表面の結晶性改善に必要なバツフア
層として機能しうる厚さで、そのうち第2半導体
層は第3半導体層とのヘテロ接合界面近傍にあつ
てチヤンネル層として機能する約1nmの2次元
電子ガスの生成に必要な最小限の厚さで、第1半
導体層がバツフア層として機能するに必要な厚さ
に略選ばれ、第1半導体層上の第2半導体層と第
3半導体層はメサ構造で、ゲート電極は第3半導
体層に接する如く設けられ、ゲート電極を形成す
る金属層が第3と第2の半導体層のメサ形成面に
沿つて第1半導体層の表出面に延伸される如き構
造を有し、かつ金属層の厚さが第2、第3半導体
層の積層の厚さより大なる如く選ばれていること
を特徴とする半導体装置。
1 A first semiconductor layer, a second semiconductor layer, and a third semiconductor layer are laminated on a semiconductor substrate, and at least the upper layer of the first semiconductor layer has a stopper function during etching for forming a mesa. The second semiconductor layer is made of a non-doped layer of a compound semiconductor, and the second semiconductor layer is made of a second compound semiconductor that has a higher etching rate and electron affinity in the same etching solution as the first compound semiconductor. The layer is made of a first compound semiconductor and is a doped layer that acts as an electron supply layer, and the first semiconductor layer and the second semiconductor layer have a thickness that can function as a buffer layer necessary for improving the crystallinity of the surface of the second semiconductor layer. The second semiconductor layer is located near the heterojunction interface with the third semiconductor layer and has the minimum thickness necessary to generate a two-dimensional electron gas of about 1 nm, which functions as a channel layer, and the first semiconductor layer is a buffer layer. The second semiconductor layer and the third semiconductor layer on the first semiconductor layer have a mesa structure, and the gate electrode is provided in contact with the third semiconductor layer to form the gate electrode. The metal layer has a structure in which the metal layer extends along the mesa forming surfaces of the third and second semiconductor layers to the exposed surface of the first semiconductor layer, and the thickness of the metal layer is equal to the thickness of the second and third semiconductor layers. A semiconductor device characterized in that the thickness of the semiconductor device is selected to be greater than the thickness of the laminated layers.
JP24342983A 1983-12-23 1983-12-23 HANDOTAISOCHI Expired - Lifetime JPH0236062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24342983A JPH0236062B2 (en) 1983-12-23 1983-12-23 HANDOTAISOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24342983A JPH0236062B2 (en) 1983-12-23 1983-12-23 HANDOTAISOCHI

Publications (2)

Publication Number Publication Date
JPS60136268A JPS60136268A (en) 1985-07-19
JPH0236062B2 true JPH0236062B2 (en) 1990-08-15

Family

ID=17103736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24342983A Expired - Lifetime JPH0236062B2 (en) 1983-12-23 1983-12-23 HANDOTAISOCHI

Country Status (1)

Country Link
JP (1) JPH0236062B2 (en)

Also Published As

Publication number Publication date
JPS60136268A (en) 1985-07-19

Similar Documents

Publication Publication Date Title
JPH0624208B2 (en) Semiconductor device
JP2010016089A (en) Field effect transistor, method of manufacturing the same, and semiconductor device
US4771324A (en) Heterojunction field effect device having an implanted region within a device channel
JPH023540B2 (en)
JPH0355978B2 (en)
JPH0236062B2 (en) HANDOTAISOCHI
JP2569626B2 (en) Semiconductor integrated circuit device
JPS594085A (en) Semiconductor device
JPH0969611A (en) Semiconductor device and its manufacturing method
JPH05283439A (en) Semiconductor device
JP2695832B2 (en) Heterojunction field effect transistor
JPS6068661A (en) Semiconductor device
JP2834172B2 (en) Field effect transistor
JP3347837B2 (en) Compound semiconductor field effect transistor
JP2515777B2 (en) Compound semiconductor device and manufacturing method thereof
JPH0810704B2 (en) Method for manufacturing semiconductor device
JPH05235045A (en) Field-effect transistor
KR950001165B1 (en) Compound semiconductor device and manufacturing method thereof
JP2671553B2 (en) Field effect semiconductor device
JPS63204658A (en) Compound semiconductor device
JPS61290774A (en) Semiconductor device
JPH10107258A (en) Hetero-junction field-effect transistor and its manufacture
JPS63160280A (en) Gallium arsenioe semiconductor device
JPH01227455A (en) Semiconductor device
JPS6355225B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term