JPH0235473B2 - FUNYUGATATANSANGASUREEZAKAN - Google Patents

FUNYUGATATANSANGASUREEZAKAN

Info

Publication number
JPH0235473B2
JPH0235473B2 JP2682281A JP2682281A JPH0235473B2 JP H0235473 B2 JPH0235473 B2 JP H0235473B2 JP 2682281 A JP2682281 A JP 2682281A JP 2682281 A JP2682281 A JP 2682281A JP H0235473 B2 JPH0235473 B2 JP H0235473B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
discharge
laser
laser tube
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2682281A
Other languages
Japanese (ja)
Other versions
JPS57141983A (en
Inventor
Yukio Sakamoto
Nobuaki Iehisa
Norio Karube
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2682281A priority Critical patent/JPH0235473B2/en
Publication of JPS57141983A publication Critical patent/JPS57141983A/en
Publication of JPH0235473B2 publication Critical patent/JPH0235473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Description

【発明の詳細な説明】 本発明は封入型炭酸ガスレーザ管に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an enclosed carbon dioxide laser tube.

封入型炭酸ガスレーザの出力および寿命は、レ
ーザ管内の炭酸ガスの解離と密接な関係を有して
いる。即ち、放電により炭酸ガスが一酸化酸素と
酸素に解離するとレーザ出力は低下する。従つ
て、炭酸ガスの解離を抑制することにより、封入
型炭酸ガスレーザの出力低下の防止および長寿命
化が可能となる。
The output and life of a sealed carbon dioxide laser are closely related to the dissociation of carbon dioxide within the laser tube. That is, when carbon dioxide gas dissociates into oxygen monoxide and oxygen due to discharge, the laser output decreases. Therefore, by suppressing the dissociation of carbon dioxide gas, it is possible to prevent a decrease in the output of the enclosed carbon dioxide laser and extend its life.

従来より、レーザ管内の炭酸ガスの解離を抑制
する方法として、固体酸化触媒を用いる方法が知
られている。ところが、通常、固体酸化触媒は
100℃以上に加熱しないと触媒活性能を示さない。
そこで、従来は、酸化触媒である白金を電極に用
いる方法および熱白金線を非放電領域に装着する
方法が用いられた。しかし、これらの方法は、共
に欠点を有している。即ち、白金を電極に用いる
とスパツタリングが激しく起こり、レーザ管内壁
にスパツタリング生成物が付着する。一般に、ス
パツタリング生成物はガスを吸着する性質を有し
ており、白金の場合もその例外ではない。特に炭
酸ガスは、炭酸ガスレーザに通常使用される他の
ガス、即ち、窒素ガス、ヘリウムガスと比較し
て、著しくスパツタリング生成物に吸着されやす
いという性質を有している。従つて、白金を電極
に用いた場合には、封入型炭酸ガスレーザの長寿
命化は期待できない。
Conventionally, a method using a solid oxidation catalyst has been known as a method of suppressing the dissociation of carbon dioxide gas within a laser tube. However, solid oxidation catalysts are usually
It does not exhibit catalytic activity unless heated to 100°C or higher.
Conventionally, therefore, a method has been used in which platinum, which is an oxidation catalyst, is used as an electrode, and a hot platinum wire is attached to a non-discharge region. However, both of these methods have drawbacks. That is, when platinum is used for the electrode, sputtering occurs violently, and sputtering products adhere to the inner wall of the laser tube. Generally, sputtering products have the property of adsorbing gases, and the case of platinum is no exception. In particular, carbon dioxide gas has the property that it is much more likely to be adsorbed by sputtering products than other gases commonly used in carbon dioxide lasers, such as nitrogen gas and helium gas. Therefore, when platinum is used for the electrode, a long life of the enclosed carbon dioxide laser cannot be expected.

また、熱白金線を非放電領域に装着する方法に
ついては、白金を加熱するための電源が必要であ
る上に、レーザ出力に何ら寄与しない非放電領域
をレーザ管内に設けなければならず、はなはだ非
実用的である。
In addition, the method of attaching a hot platinum wire to a non-discharge area requires a power source to heat the platinum, and it is also necessary to provide a non-discharge area within the laser tube that does not contribute to the laser output. impractical.

本発明は、この様な点に鑑みてなされたもので
ありレーザ出力の低下が少く、且つ、長寿命の封
入型炭酸ガスレーザ管を提供するものである。
The present invention has been made in view of these points, and it is an object of the present invention to provide an enclosed carbon dioxide laser tube that has a long life and less decrease in laser output.

本発明は冷却部を有する非循環式封入型炭酸ガ
スレーザ管において、その放電電極間に形成され
る放電領域内の非冷却部分でかつ電極の近傍に固
体酸化触媒を装着したことを特徴とするものであ
る。レーザ管の放電領域内は高温プラズマになつ
ており、その温度は300℃を越える。したがつて、
放電領域内の非冷却部分に固体酸化触媒を配すれ
放電中に200℃以下の温度に下がることはなく十
分触媒を活性化させることができる。
The present invention is a non-circulating sealed carbon dioxide laser tube having a cooling section, characterized in that a solid oxidation catalyst is installed in the non-cooled portion of the discharge region formed between the discharge electrodes and near the electrodes. It is. The inside of the discharge region of the laser tube is a high-temperature plasma whose temperature exceeds 300°C. Therefore,
A solid oxidation catalyst is placed in the uncooled portion of the discharge region, and the temperature does not drop below 200°C during discharge, allowing the catalyst to be sufficiently activated.

一方、炭酸ガスの解離は放電電極の近傍で発生
し、また非循環式封入型炭酸ガスレーザ管におい
てはガスの拡散距離が約10cmであるので、炭酸ガ
スの解離を抑制するためには、固体酸化触媒を放
電領域内の非冷却部分でかつ炭酸ガス分子の解離
位置近傍、具体的には放電電極近傍に装着すれば
よい。また固体酸化触媒として白金を使用して
も、電極を兼ねて白金を使用する場合と異なり、
スパツタリングは全く起こらない。
On the other hand, dissociation of carbon dioxide occurs near the discharge electrode, and the gas diffusion distance in a non-circulating sealed carbon dioxide laser tube is about 10 cm, so in order to suppress the dissociation of carbon dioxide, solid oxidation is necessary. The catalyst may be installed in the uncooled portion of the discharge region and near the dissociation position of carbon dioxide molecules, specifically, near the discharge electrode. Also, even if platinum is used as a solid oxidation catalyst, unlike when platinum is used as an electrode,
No sputtering occurs at all.

次に、本発明の一実施例を図面に基いて説明す
る。
Next, one embodiment of the present invention will be described based on the drawings.

実施例 1 第1図に示すように、レーザ管は冷却部3を有
するガラス製の二重管構造になつており、放電部
2は内径10mmの円筒管で、両端はジンクセレナイ
ド(ZnSe)製の光学窓1によつて封止されてい
る。陽極4は直径4mmのステンレス製円柱電極で
構成されている。陰極5は外径10mmのステンレス
製円筒電極で構成され肉厚は0.1mmである。なお、
有効放電長は400mmである。固体酸化触媒6は、
白金製で、外径10mm、高さ10mm、肉厚0.1mmの円
筒形をしており、陽極4および陰極5の中心軸
と、固体触媒6の中心軸が一致し、且つ、各々の
電極との間隔が15mmとなる放電領域内の位置に装
着されている。このレーザ管に、混合比が11%
CO2、20%N2、69%Heで全圧30Torrの混合ガス
を封入した後、ミラー間隔600mmのレーザ共振器
に設置し、冷却部3を水道水で冷却しつつ、直流
20mAの放電電流でレーザ発振させた。その時の
動作時間対レーザ出力特性を第2図に実線Aで示
したが、本実施例においては、1000時間動作させ
てもレーザ出力の低下はほとんど見られなかつ
た。
Example 1 As shown in Fig. 1, the laser tube has a double tube structure made of glass with a cooling section 3, and the discharge section 2 is a cylindrical tube with an inner diameter of 10 mm, and both ends are made of zinc selenide (ZnSe). It is sealed with an optical window 1 made of The anode 4 consists of a stainless steel cylindrical electrode with a diameter of 4 mm. The cathode 5 is composed of a stainless steel cylindrical electrode with an outer diameter of 10 mm and a wall thickness of 0.1 mm. In addition,
The effective discharge length is 400mm. The solid oxidation catalyst 6 is
It is made of platinum and has a cylindrical shape with an outer diameter of 10 mm, a height of 10 mm, and a wall thickness of 0.1 mm.The central axes of the anode 4 and cathode 5 coincide with the central axis of the solid catalyst 6. It is installed at a position within the discharge area with a spacing of 15 mm. This laser tube has a mixing ratio of 11%
After filling a mixed gas of CO 2 , 20% N 2 , and 69% He with a total pressure of 30 Torr, it was installed in a laser resonator with a mirror spacing of 600 mm, and while the cooling part 3 was cooled with tap water, direct current was applied.
Laser oscillation was performed with a discharge current of 20 mA. The operating time vs. laser output characteristic at that time is shown by solid line A in FIG. 2, and in this example, almost no decrease in laser output was observed even after 1000 hours of operation.

実施例 2 固体酸化触媒6に、市販されているハニカム型
酸化触媒(松下電器産業株式会社製、商品名「パ
ナピユール」)を外径15mm、高さ10mmの円柱様に
加工したものを使用した以外は実施例1と全く同
じ条件でレーザ発振を行つた。その時の動作時間
対レーザ出力特性を第2図に破線Bで示す。本実
施例の場合も、実施例1の場合と同様、1000時間
動作させてもレーザ出力の低下はほとんど見られ
なかつた。
Example 2 The solid oxidation catalyst 6 was a commercially available honeycomb-type oxidation catalyst (manufactured by Matsushita Electric Industrial Co., Ltd., product name "Panapiyur") processed into a cylinder shape with an outer diameter of 15 mm and a height of 10 mm. Laser oscillation was performed under exactly the same conditions as in Example 1. The operating time vs. laser output characteristic at that time is shown by the broken line B in FIG. In the case of this example, as in the case of Example 1, almost no decrease in laser output was observed even after 1000 hours of operation.

以上述べた様に、本発明によると、レーザ出力
の低下が少く、且つ、長寿命の封入型炭酸ガスレ
ーザ管の製造が可能となり、その工業的価値は極
めて大なるものである。
As described above, according to the present invention, it is possible to manufacture an encapsulated carbon dioxide laser tube with a small decrease in laser output and a long life, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における封入型炭酸ガ
スレーザ管を示す簡略側面図、第2図は本実施例
における動作時間対レーザ出力特性を示す図であ
る。 1……光学窓、2……放電部、3……冷却部、
4……陽極、5……陰極、6……固体酸化触媒。
FIG. 1 is a simplified side view showing a sealed carbon dioxide laser tube in an embodiment of the present invention, and FIG. 2 is a diagram showing operating time versus laser output characteristics in this embodiment. 1... Optical window, 2... Discharge section, 3... Cooling section,
4... Anode, 5... Cathode, 6... Solid oxidation catalyst.

Claims (1)

【特許請求の範囲】[Claims] 1 冷却部を有する非循環式封入型炭酸ガスレー
ザ管の放電電極間に形成される放電領域内の非冷
却部分でかつ電極の近傍に固体酸化触媒を装着し
たことを特徴とする非循環式封入型炭酸ガスレー
ザ管。
1. A non-circulating enclosed type carbon dioxide laser tube having a cooling section, characterized in that a solid oxidation catalyst is installed in the non-cooled part of the discharge region formed between the discharge electrodes and in the vicinity of the electrodes. Carbon dioxide laser tube.
JP2682281A 1981-02-27 1981-02-27 FUNYUGATATANSANGASUREEZAKAN Expired - Lifetime JPH0235473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2682281A JPH0235473B2 (en) 1981-02-27 1981-02-27 FUNYUGATATANSANGASUREEZAKAN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2682281A JPH0235473B2 (en) 1981-02-27 1981-02-27 FUNYUGATATANSANGASUREEZAKAN

Publications (2)

Publication Number Publication Date
JPS57141983A JPS57141983A (en) 1982-09-02
JPH0235473B2 true JPH0235473B2 (en) 1990-08-10

Family

ID=12203963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2682281A Expired - Lifetime JPH0235473B2 (en) 1981-02-27 1981-02-27 FUNYUGATATANSANGASUREEZAKAN

Country Status (1)

Country Link
JP (1) JPH0235473B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043997A (en) * 1985-05-03 1991-08-27 Raytheon Company Hybrid cathode
DE3523926A1 (en) * 1985-07-04 1987-01-15 Eltro Gmbh METHOD AND DEVICE FOR OPERATING AN ELECTRICALLY EXCITED GAS LASER

Also Published As

Publication number Publication date
JPS57141983A (en) 1982-09-02

Similar Documents

Publication Publication Date Title
GB2028571A (en) Carbon dioxide gas lasers
GB2083687A (en) Circulating gas laser
US3934211A (en) Metal halide vapor laser
JPH0235473B2 (en) FUNYUGATATANSANGASUREEZAKAN
Schuebel Transverse-discharge slotted hollow-cathode laser
GB2031643A (en) Lasers
GB2177538A (en) Electrically activated gas laser
JPH0543490Y2 (en)
JPS58158982A (en) Sealed type carbonic acid gas laser
JPS5848484A (en) Sealed type carbon dioxide gas laser tube
JPH0268971A (en) Sealed co2 laser tube
US3781713A (en) Carbon monoxide laser by acetylene oxidation
JPS58158984A (en) Sealing type carbonic acid gas laser
JPS57141981A (en) Sealed type carbon dioxide gas laser oscillator
US4266200A (en) Metal halide laser tube structure
JPH01202877A (en) Sealed type co2 laser tube
JPH08770Y2 (en) External mirror type UV output laser resonator
JPH02177581A (en) Sealed type co2 laser tube
WO1981002954A1 (en) Carbon monoxide laser
JPH0318750B2 (en)
JPH0234827Y2 (en)
JPS6214486A (en) Carbonic acid gas laser apparatus
CA1246657A (en) Tungsten-halogen lamp with hydrogen fluoride
Vijh Interpretation of some aspects of catalytic oxidation of ammonia and propylene by semiconducting oxides in terms of volcano-shaped plots
JPS61125182A (en) Carbon dioxide laser device