JPH0235342A - Visual inspection method - Google Patents

Visual inspection method

Info

Publication number
JPH0235342A
JPH0235342A JP63186380A JP18638088A JPH0235342A JP H0235342 A JPH0235342 A JP H0235342A JP 63186380 A JP63186380 A JP 63186380A JP 18638088 A JP18638088 A JP 18638088A JP H0235342 A JPH0235342 A JP H0235342A
Authority
JP
Japan
Prior art keywords
window
inspection
value
subject
standard product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63186380A
Other languages
Japanese (ja)
Inventor
Isao Kido
木戸 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DATSUKU ENG KK
Original Assignee
DATSUKU ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DATSUKU ENG KK filed Critical DATSUKU ENG KK
Priority to JP63186380A priority Critical patent/JPH0235342A/en
Publication of JPH0235342A publication Critical patent/JPH0235342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To implement a high processing speed by obtaining the average values of the gradation levels of picture elements constituting respective windows in comparison between the picture elements of a standard product and the picture elements of a body under inspection, and comparing the average values. CONSTITUTION:The entire image of an engine as a standard product is sensed in multiple gradations. A window A including a part under inspection (a) is set. The multiple gradation data which are outputted from picture elements G1, G2...Gn constituting the window A are processed to obtain multiple values. The data are summed up. The average value of the gradation levels is obtained from the added data. Said value is stored as the reference value of the window. At the same time, an allowable error value is set and stored. Then, the object to be sensed is changed into a body under inspection. Engines which are sequentially supplied by an appropriate conveying means are sensed, and the average value of the gradation levels of the picture elements constituting the inspecting window is computed. The average value is compared with the reference value. When the difference is within the allowable error range, it is judged that the external appearance of the part to be checked of the body under inspection is normal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種装置における取イマ]部品の異品や欠品
の検出、更には位置ズレ等の検出を高速に行なうことが
できる外観検査方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a visual inspection system for various types of equipment that can quickly detect foreign or missing parts, as well as detect misalignment, etc. Regarding the method.

〔従来の技術〕[Conventional technology]

従来、各種装置における取付部品の欠品、異品検査や位
置ズレ検査等の外観検査は作業員が目視で行っていた。
Conventionally, visual inspections such as inspections for missing parts, foreign parts, and positional deviations for various types of equipment have been performed visually by workers.

しかしながら、かかる作業は単調で根気のいる作業であ
る為、疲労が激しく、作業効率が悪いばかりか、検査ミ
スも多い問題があった。このような問題を解消すべく近
年に至って画像処理技術を用いて外観検査を自動化する
試みがなされている。例えば、このような外観検査法と
しては、予め標準品等の正常な製品の画像情報を数値化
してメモリーに格納しておき、次いで被験体を撮像して
画像情報を得るとともに、両画像情報を比較することで
被験体の外観異常を検出するものが知られている。そし
て画像情報の比較方法としては、撮像画像を二値化処理
した後、画像における特徴点を抽出して比較したり、又
、両者の全体画像において、それぞれ対応する画素から
得られる二値化情報を逐一比較する方法等がある。
However, such work is monotonous and requires patience, resulting in severe fatigue and poor work efficiency, as well as frequent inspection errors. In order to solve these problems, attempts have been made in recent years to automate visual inspection using image processing technology. For example, in such a visual inspection method, image information of a normal product such as a standard product is digitized and stored in memory in advance, and then the subject is imaged to obtain image information, and both image information are combined. It is known to detect abnormalities in the appearance of a subject through comparison. Methods for comparing image information include binarizing the captured image, extracting feature points in the image and comparing them, or binarizing information obtained from corresponding pixels in the overall images of both. There is a method of comparing point by point.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、特徴点を抽出して比較する方法では、作
業者が比較すべき特徴点を予め指定しておく必要がある
為、多種多様な物品の外観検査を行なうには、物品毎に
特徴点を指定する必要があり、外観検査を完全自動化す
ることができない。
However, with the method of extracting and comparing feature points, it is necessary for the operator to specify the feature points to be compared in advance. Visual inspection cannot be fully automated.

又、検査部位を予め指定する為、予期しない部位に異常
があった場合は検出できないという問題がある。一方、
全体画像を構成する全ての画素情報を逐一比較する方法
では、処理時間が長くなり、高速処理ができないという
問題があった。そして最も重要なことは、特徴点を比較
する場合も全ての画素データを比較する場合も、いずれ
も比較される画素データは、二値化処理されて取扱われ
る為、中間値の処理如何によっては検査結果には、誤差
が混入することとなっていた。
Furthermore, since the inspection site is specified in advance, there is a problem in that if an abnormality is found in an unexpected site, it cannot be detected. on the other hand,
The method of comparing all the pixel information constituting the entire image one by one has the problem that the processing time is long and high-speed processing cannot be performed. The most important thing is that whether comparing feature points or all pixel data, the pixel data to be compared is treated as binarized, so depending on how intermediate values are processed, The test results were subject to errors.

本発明はかかる現況に鑑みてなされたものであり、人手
を全く介在させることなく検査を完全自動化することが
でき、且つ高速処理も可能で汎用性にも優れ、しかも検
査結果への誤差の混入も極めて少ない外観検査方法に関
する。
The present invention has been made in view of the current situation, and allows for complete automation of testing without any manual intervention, high-speed processing, excellent versatility, and the ability to prevent errors from entering test results. It also relates to an appearance inspection method, which is extremely rare.

[課題を解決するだめの手段] 本発明者は上記課題を達成する為に、検査部位の画像(
以下、検査画像と称す)を構成する全画素の諧調データ
を多諧調データとして取り込み、これら多諧調データを
集計処理して、諧調データの平均値を算出し、該平均値
を検査画像の特徴が反映された固有データとみなして、
この固有データと標準品のipi調平均とを比較するこ
とで検査対象の異常を検出する方法を着想した。
[Means for Solving the Problem] In order to achieve the above-mentioned problem, the present inventor created an image (
The gradation data of all pixels constituting the inspection image (hereinafter referred to as the inspection image) is captured as multi-tone data, these multi-tone data are aggregated, the average value of the gradation data is calculated, and the average value is used to determine the characteristics of the inspection image. Regarded as reflected unique data,
We came up with a method to detect abnormalities in the inspection target by comparing this unique data with the IPI average of standard products.

そして、比較は予め標準品の諧調平均を算出するととも
に許容誤差を設定しておき、適宜手段により撮像装置の
前に順次供給される被験体を撮像して、それぞれの被験
体の固有データを求める。
Then, for comparison, calculate the gradation average of the standard product in advance and set the tolerance, and then use appropriate means to image the subjects sequentially supplied in front of the imaging device to obtain unique data for each subject. .

次いで、該固有データを標準品の諧調平均と比較して、
両者の差が予め設定しておいた許容値の範囲内であれば
被験体は良品と判断することにした。
Then, comparing the specific data with the tone average of the standard product,
If the difference between the two was within a preset tolerance, the test subject was judged to be a good product.

又、撮像手段は長時間継続使用すると熱影響を受けて撮
像部位がズレることがある。このような事態を防止する
為に、被験体の近傍位置に固定した基準ポイントを設定
し、検査対象部位を撮像するときに、同時に該基準ポイ
ントも撮像することとして検査部位のズレを補正するこ
とが好ましい。
Furthermore, if the imaging means is used continuously for a long period of time, the imaged region may become misaligned due to the influence of heat. In order to prevent such a situation, a fixed reference point is set in the vicinity of the subject, and when the area to be examined is imaged, the reference point is also imaged at the same time to correct the deviation of the area to be examined. is preferred.

〔作 用〕[For production]

このような外観検査方法は、先ず、標準品を多諧調で撮
像して、撮像画像上で検査すべき部位を含むウィンドウ
を設定する。次いでウィンドウを構成する各画素の輝度
情報を多値化処理した後、集計処理し、ウィンドウ内の
諧調レヘルの平均値を求めて該平均値を基準値として設
定する。又、同時に予め該平均値からの偏りを許容する
許容誤差も設定しておく。
In such a visual inspection method, first, a standard product is imaged in multiple gradations, and a window containing a region to be inspected is set on the captured image. Next, the luminance information of each pixel constituting the window is subjected to multi-value processing, and then aggregated, and the average value of the gradation level within the window is determined, and the average value is set as a reference value. At the same time, a tolerance for allowing deviation from the average value is also set in advance.

次ぎに、前記標準品と同位置に被験体を配置して被験体
を標準品と同様、多諧調で撮像して撮像画像を得る。そ
して該撮像画像上には、標準品撮像時に設定したウィン
ドウと同一エリアが撮像できる検査ウィンドウを設定す
る。このとき検査ウィンドウ内にとらえられる被験体の
検査部位と前記標準品画像で設定した基準ウィンドウ内
にとらえられた標準品の検査部位とは完全一致させる必
要がある。
Next, a subject is placed in the same position as the standard product, and the subject is imaged in multiple tones like the standard product to obtain a captured image. Then, on the captured image, an inspection window is set that allows imaging of the same area as the window set when imaging the standard product. At this time, it is necessary that the test site of the subject captured within the test window and the test site of the standard product captured within the reference window set in the standard product image completely match.

次いで、検査ウィンドウ内の全ての画素の輝度情報を多
値化処理して集計するとともに該ウィンドウ内の諧調レ
ヘルの平均値を算出して、該検査ウィンドウの固有デー
タを得る。
Next, the luminance information of all pixels within the inspection window is multi-valued and aggregated, and the average value of the gradation levels within the window is calculated to obtain unique data of the inspection window.

最後に被験体の固有データと標準品の諧調平均値、即ち
基準値との比較を行い、両者の差が予め設定した許容値
内であれば、被験体の検査部位の外観は正常であるとの
結論を下すものである。
Finally, the unique data of the subject is compared with the gradation average value of the standard product, that is, the standard value, and if the difference between the two is within a preset tolerance, the appearance of the subject's test area is considered normal. This concludes the following.

そして、順次供給される被験体について、前記と同様の
手順を経て、それぞれの被験体の固有平均値を求め、各
固有平均値を基準平均値と比較することで各被験体の検
査部位の正常、異常を判定するものである。基準値は最
初に算出して設定すれば、検査対象の種類が変わらない
限り変更する必要はなく、最初に設定した値を適宜手段
に記憶させておくことで継続的に使用できる。
Then, for the subjects supplied sequentially, the unique average value of each subject is determined through the same procedure as above, and each unique average value is compared with the standard average value to determine whether the test site of each subject is normal. , to determine abnormality. If the reference value is calculated and set first, there is no need to change it unless the type of inspection object changes, and the initially set value can be stored in an appropriate means and used continuously.

本発明方法は、標準品の検査部位と被験体の検査部位と
の比較を、従来方法のようにそれぞれの部位における細
分化された各部分の諧調レベル相互を逐一比較して、そ
の都度各部分の類似性を判定し、最後に各判定結果を総
合することで検査部位全体に外観形状の類似性を判定す
るのではなく、最初から検査部位全体の諧調レベルの平
均値を求め、諧調レベルの平均値を互いに比較すること
で被験体と標準品のそれぞれの検査部位の外観形状の類
似性を判定するものであるから、複雑な演算過程を必要
とせず、判定処理の高速化がはかれる。
The method of the present invention compares the test site of the standard product and the test site of the subject by comparing the gradation levels of each subdivided part of each site point by point, as in the conventional method, and then Instead of determining the similarity of the appearance and shape of the entire inspection area by determining the similarity of the gradations and finally integrating each judgment result, we first calculate the average value of the gradation level of the entire inspection area and calculate the gradation level. Since the similarity of the appearance shapes of the test parts of the subject and the standard product is determined by comparing the average values with each other, a complicated calculation process is not required, and the speed of the determination process can be increased.

しかも、各画素の諧調レベルは多諧調としたので、検査
部位に濃淡があるときや、一画素に対応する撮像エリア
内の表面形状が複雑に入り組んでいる場合でも、正確に
判定することができる。
Moreover, since the gradation level of each pixel is multi-toned, accurate judgment can be made even when the inspection area has shading or the surface shape within the imaging area corresponding to one pixel is complex. .

又、被験体外部に基準ポイントを設けることにより、検
査部位の位置関係を監視することができ、撮像エリアの
ズレば補正できるから、撮像手段が熱影響を受けた場合
でも常に正確な検査ができる。
Additionally, by setting a reference point outside the subject, it is possible to monitor the positional relationship of the examination area, and any deviation in the imaging area can be corrected, so accurate examinations can always be performed even if the imaging means is affected by heat. .

ところで、本願発明においては標準品と被験体の外観比
較をウィンドウ内の諧調レヘルの平均値同士を比較する
ことで行っているが、ごの方法では次の事態の発生が懸
念される。即ち、被験体のウィンドウ内に標準品とは外
観形状が相違する部分が2つある場合であって、且つこ
の2つの部分の諧調データの平均値からの偏差が正負逆
で、両者を合計すると平均値からの偏差が相殺するとき
は、外観異常が検出されないおそれがあるのではないか
という懸念である。しかしながら、本発明は、この懸念
を言皆調データを多言皆言周データとして扱うことで回
避している。即ち、諧調データを従来のモノI・−ンデ
ータとして扱う場合は、偏差が相殺し合って外観異常を
見落とすおそれがあるが、本発明方法では諧調データは
多諧調データとしている為、たとえ偏差が相殺し合うこ
とがあっても、偏差が完全に零となることはほとんどあ
り得ない。
By the way, in the present invention, the appearance of the standard product and the test object is compared by comparing the average values of the gradation levels within the window, but with this method, there is a concern that the following situation may occur. In other words, if there are two parts within the test window that differ in external shape from the standard product, and the deviations from the average value of the gradation data of these two parts are opposite in sign and negative, and the sum of the two parts is When the deviations from the average value cancel each other out, there is a concern that an abnormality in appearance may not be detected. However, the present invention avoids this concern by treating the utterance data as multi-vocabulary data. In other words, when gradation data is treated as conventional monochrome data, deviations cancel each other out and there is a risk of overlooking abnormalities in appearance.However, in the method of the present invention, gradation data is multi-tone data, so even if deviations cancel each other out, abnormalities in appearance may be overlooked. Even if they do overlap, it is almost impossible for the deviation to be completely zero.

発明者は検査対象を変えて各種実験を行った結果、前記
現象が外観異常の検出にほとんど影響を及ぼさない事実
を知見した。又、仮に偶然にも偏差が完全に打ち消し合
った場合でも、この現象が諧調平均値に及ぼす影響が予
め設定した許容値の範囲内であれば、測定結果に影響は
ないことも知見した。
As a result of conducting various experiments with different inspection targets, the inventor found that the above phenomenon had almost no effect on the detection of external appearance abnormalities. It has also been found that even if the deviations completely cancel each other out by chance, the measurement results will not be affected as long as the effect of this phenomenon on the average gradation value is within a preset tolerance.

以上の経過を経て被験体の外観検査が行われ、取付は部
品の異品や欠品、更には位置ズレ検出を自動的に検出す
るものである。特に本発明方法は、各画素の諧調レヘル
を多諧調処理していることがら、画素数を増加させなく
ても、高精度な検査が可能であり、従来のモノトーン方
式では画素数を増加させる以外に対応不可能であったエ
ンジン部品等の複雑な形状の被験体についても高速に検
査処理できる利点がある。
After the above process, the external appearance of the test object is inspected, and installation automatically detects foreign or missing parts, as well as misalignment. In particular, since the method of the present invention performs multi-tone processing on the gradation level of each pixel, high-precision inspection is possible without increasing the number of pixels, whereas conventional monotone methods do not require increasing the number of pixels. It has the advantage of being able to quickly inspect test objects with complex shapes, such as engine parts, which were previously impossible to handle.

〔実施例] 次に本発明の詳細を図示した実施例に基づき説明する。〔Example] Next, details of the present invention will be explained based on illustrated embodiments.

第1図、第2図は木方法を用いて自動車エンジンの外観
検査を行った様子を示している。
Figures 1 and 2 show how an automobile engine was visually inspected using the wood method.

即ち第1図はエンジンを平面上方から撮像したときの撮
像画像であり、該画像は高感度CCD  (電荷結合素
子)等を用いて多諧調で撮像される。例えば、このエン
ジンにおいて図中aで示された部分の外観形状を検査す
るときには、次のようにする。
That is, FIG. 1 shows a captured image of the engine taken from above, and the image is captured in multiple tones using a high-sensitivity CCD (charge-coupled device) or the like. For example, when inspecting the external shape of the part indicated by a in the figure in this engine, the following procedure is performed.

先ず、標準品であるエンジンの全体像を多諧調で撮像す
るとともに、検査部位aを含むウィンドウAを設定する
。次いで該ウィンドウAを構成する画素Gl、 G2.
  ・・・Gnから出力される多諧調データを多値化処
理するとともに、多値化処理されたデータを集計処理す
る。本実施例では、諧調レヘルは8ヒ゛ツト、256言
皆言周としている。集計されたデータから諧調レヘルの
平均値を求め、この値をそのウィンドウの基準値として
記憶する。又、ウィンドウの基準値からの一定偏りを許
容する許容誤差も同時に設定して記憶する。許容誤差は
、マニュアル操作で設定することも可能であるが、ウィ
ンドウの大きさや、各多階調データの分布状況等を考慮
して、自動設定してもよい。
First, the entire image of a standard engine is imaged in multiple tones, and a window A including the inspection area a is set. Next, pixels Gl, G2 .
. . . The multi-level data output from Gn is subjected to multi-value processing, and the multi-value processed data is aggregated. In this embodiment, the tone level is 8 hits and 256 words. The average value of the gradation level is determined from the aggregated data, and this value is stored as the reference value for that window. Further, a tolerance for allowing a certain deviation from the reference value of the window is also set and stored at the same time. The allowable error can be set manually, but it may also be set automatically, taking into consideration the size of the window, the distribution of each multi-tone data, and the like.

標準品の平均値である基準値と、許容誤差値が設定され
れば、撮像対象を被験体に切り換え、以下、適宜移送手
段により順次検査位置に供給されて停止するエンジンを
撮像して、前記と同様、撮像画像内に検査用のウィンド
ウを設定し、該検査ウィンドウを構成する各画素の諧調
レベルの平均値を算出する。検査ウィンドウは標準品撮
像時に設定したウィンドウと位置と大きさの両方が完全
一致している必要がある。したがって、標準品と被験体
を撮像する撮像手段は、同じものを用いることが好まし
い。
Once the reference value, which is the average value of the standard product, and the allowable error value are set, the imaging target is switched to the test object, and the engines that are sequentially supplied to the inspection position and stopped by appropriate transport means are imaged, and the above-mentioned Similarly, an inspection window is set within the captured image, and the average value of the gradation levels of each pixel constituting the inspection window is calculated. The inspection window must completely match the window set when imaging the standard product in both position and size. Therefore, it is preferable to use the same imaging means for imaging the standard product and the subject.

被験体固有の平均値である固有データは、メモリに記憶
された基準値と比較され、その差が許容誤差内であれば
、被験体の検査部位の外観は正常と判断される。
The unique data, which is an average value unique to the subject, is compared with a reference value stored in memory, and if the difference is within a tolerance, the appearance of the subject's test region is determined to be normal.

ところで、CCD等の撮像手段は長時間継続使用すると
カメラの固定位置に変化がないにもかかわらず、熱等の
影響によってその撮像エリアが変動し、この結果、予め
設定されたウィンドウとの間にズレが発生ずることがあ
る。
By the way, when an imaging means such as a CCD is used continuously for a long period of time, the imaging area changes due to the influence of heat etc. even though the fixed position of the camera does not change. Misalignment may occur.

このウィンドウ設定位置とのズレを防止するには第1図
に図中Pとして示す如く、基準ポイントを設定し、その
位置を基に検査ウィンドウを設定することが考慮される
。この基準ポイン1〜Pは、例えばエンジンがベルトコ
ンヘアにで図中」一方向に移送される場合であれば、ヘ
ルドコンヘアにの側部位置に固定的に配置するのが好ま
しく、該基準ポイントの位置関係を監視することでウィ
ンドウと検査部位とのズレを補正することができる。
In order to prevent this deviation from the window setting position, it is considered to set a reference point as shown as P in FIG. 1 and set the inspection window based on that position. For example, if the engine is transferred to a belt conveyor in one direction (as shown in the figure), it is preferable that these reference points 1 to P are fixedly arranged at the sides of the belt conveyor. By monitoring the positional relationship, it is possible to correct the misalignment between the window and the inspection site.

基準ポイントを被験体外部に設けたのは、個々の被験体
に基準ボイドとなるべき印を付す必要をなくす為である
。しかしながら被験体上の特定部位に特定形状のマーク
を付したり、被験体上の特定部品に着目して、これを基
準ポイントとすることもできる。この場合、熱影響によ
る検査部位とウィンドウとのズレが検出できることに加
えて、被験体の設置位置のズレも検出できる。
The reason why the reference point is provided outside the subject is to eliminate the need to mark each subject as a reference void. However, it is also possible to attach a mark of a specific shape to a specific part on the subject, or to focus on a specific part on the subject and use this as a reference point. In this case, in addition to being able to detect a misalignment between the inspection area and the window due to thermal effects, it is also possible to detect a misalignment in the installation position of the subject.

尚、前述した実施例では検査部位は一箇所であるが、第
3図に示す如く、ウィンドウをAI、 A2゜A3. 
A4等、複数箇所設定して、これらウィンドウ内の外観
検査を同時に行なうこともできる。この場合、各ウィン
ドウの許容誤差は、一体数%に設定してもよいが、特に
精度を有するウィンドウや逆に精度を要しないウィンド
ウについては、前記許容誤差に個別の重みを加えること
で調整してもよい。
Incidentally, in the above-mentioned embodiment, only one area was inspected, but as shown in FIG. 3, the windows were set to AI, A2°A3.
It is also possible to set a plurality of windows, such as A4, and perform visual inspections in these windows at the same time. In this case, the tolerance for each window may be set to a few percent, but for windows with particular precision or windows that do not require precision, adjustments may be made by adding individual weights to the tolerance. It's okay.

〔発明の効果〕〔Effect of the invention〕

本発明の外観検査方法は、標準品の画像と被験体の画像
を比較するのに、それぞれのウィンドウを構成する画素
の諧調レベルの平均値を求め、該平均値同士を比較する
こととしたから、従来方法のように、ウィンドウ内の対
応する画素同士を逐一比較する方法に比して、処理速度
の高速化が可能である。
In the appearance inspection method of the present invention, when comparing the image of the standard product and the image of the subject, the average value of the gradation level of the pixels constituting each window is determined and the average values are compared. , the processing speed can be increased compared to the conventional method in which corresponding pixels within a window are compared point by point.

そして、各画素の諧調レベルは多階調データとして処理
することとしたから、従来のモノトーン処理では発生し
がちであった誤差同士の相殺現象に起因した外観異常の
見落としも防止することができる。
Furthermore, since the gradation level of each pixel is processed as multi-gradation data, it is possible to prevent appearance abnormalities caused by the cancellation phenomenon of errors that tend to occur in conventional monotone processing from being overlooked.

又、従来のモノトーン処理方法では、エンジン等の外観
形状が複雑なものを精密に検査するには画素数を増加さ
せる以外に方法はなかったが、本発明方法では各画素の
諧調レベルを多階調としているから、画素数を増加させ
なくても、高精度な検査が可能である。更に本発明方法
ではモノl−−ン方式では困難であった色彩比較も可能
となる。
In addition, with conventional monotone processing methods, the only way to accurately inspect objects with complex external shapes such as engines is to increase the number of pixels, but with the method of the present invention, the gradation level of each pixel can be multileveled. Because it has a 100% resolution, high-precision inspection is possible without increasing the number of pixels. Furthermore, the method of the present invention enables color comparison, which is difficult with the monochrome method.

そして、第2請求項に記載したように、被験体近傍位置
に基準ポイントを設定したときには、温度上昇や振動等
に起因したウィンドウのズレも検知して補正することが
可能となり、長時間の連続検査にも測定誤差が発生せず
、安定した外観検査が可能となる。
As stated in the second claim, when the reference point is set near the subject, it becomes possible to detect and correct window deviations caused by temperature rises, vibrations, etc. No measurement errors occur during inspection, and stable appearance inspection is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の外観検査方法で自動車エンジ
ンを検査した状態を示す説明図、第3図は他の実施例で
ある。 A:ウィンドウ、  Gl、G2.・・・:画素、K:
ヘルトコンヘア、P:基準ポイント。
FIGS. 1 and 2 are explanatory diagrams showing a state in which an automobile engine is inspected by the appearance inspection method of the present invention, and FIG. 3 is another embodiment. A: Window, Gl, G2. ...: pixel, K:
Hertconhair, P: Reference point.

Claims (1)

【特許請求の範囲】 1)標準品を多諧調で撮像し、該撮像画像内に、外観検
査しようとする部位を含んだウィンドウを設定するとと
もに、該ウィンドウを構成する各画素の多諧調データを
集計処理してウィンドウ内の諧調レベルの平均値を算出
して基準値となし、且つ該基準値からの一定の偏りを許
す許容誤差を設定する工程と、 前記標準品と配置状態を同一となした被験体を多諧調で
撮像し、該撮像画像内に、その撮像エリアが前記ウィン
ドウと同一エリアである検査ウィンドウを設定するとと
もに、該検査ウィンドウを構成する各画素の多諧調デー
タを集計処理して、検査ウィンドウ内の諧調レベルの平
均値を算出する工程と、 被験体の諧調平均値を基準値である標準品の諧調平均値
と比較して両者の差が前記許容誤差の範囲内であるか否
かを検査することにより、被験体の検査部位の正常若し
くは異常を判定する工程と、よりなる外観検査方法。 2)検査対象部位と同時撮像が可能な位置であって被験
体の近傍位置には固定的に基準ポイントを設け、その相
対的な位置に検査ウィンドウを設定し、基準ポイントの
位置関係を監視することで検査ウィンドウと検査部位と
のズレを補正してなる前記特許請求の範囲第1項記載の
外観検査方法。
[Scope of Claims] 1) A standard product is imaged in multiple tones, a window is set in the captured image that includes the part to be visually inspected, and multiple tones data of each pixel constituting the window is recorded. A process of performing aggregation processing to calculate the average value of the gradation levels within the window and using it as a reference value, and setting a tolerance that allows a certain deviation from the reference value, and a process of making the arrangement state the same as the standard product. The subject is imaged in multiple tones, an examination window whose imaging area is the same as the window is set in the captured image, and the multitone data of each pixel constituting the examination window is aggregated and processed. and calculating the average value of the gradation level within the inspection window, and comparing the average gradation value of the subject with the average gradation value of the standard product, which is a reference value, and determining that the difference between the two is within the range of the above-mentioned tolerance. A visual inspection method comprising: a step of determining whether a test site of a subject is normal or abnormal by testing whether or not the test site is normal or abnormal; 2) Set a fixed reference point near the subject at a position where simultaneous imaging can be performed with the part to be inspected, set an inspection window at that relative position, and monitor the positional relationship of the reference points. The external appearance inspection method according to claim 1, wherein the deviation between the inspection window and the inspection site is corrected by correcting the deviation between the inspection window and the inspection site.
JP63186380A 1988-07-25 1988-07-25 Visual inspection method Pending JPH0235342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63186380A JPH0235342A (en) 1988-07-25 1988-07-25 Visual inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63186380A JPH0235342A (en) 1988-07-25 1988-07-25 Visual inspection method

Publications (1)

Publication Number Publication Date
JPH0235342A true JPH0235342A (en) 1990-02-05

Family

ID=16187376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63186380A Pending JPH0235342A (en) 1988-07-25 1988-07-25 Visual inspection method

Country Status (1)

Country Link
JP (1) JPH0235342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269242A (en) * 1990-03-19 1991-11-29 Toshiba Eng Co Ltd Apparatus for inspecting nonmetallic enclosure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261049A (en) * 1986-05-07 1987-11-13 Omron Tateisi Electronics Co Printed circuit board inspecting device
JPS62261005A (en) * 1986-05-07 1987-11-13 Omron Tateisi Electronics Co Printed-circuit board processing apparatus
JPS6344281A (en) * 1986-08-08 1988-02-25 Sanyo Electric Co Ltd Image processor
JPH01131403A (en) * 1987-11-17 1989-05-24 Mitsubishi Motors Corp Outward appearance inspecting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261049A (en) * 1986-05-07 1987-11-13 Omron Tateisi Electronics Co Printed circuit board inspecting device
JPS62261005A (en) * 1986-05-07 1987-11-13 Omron Tateisi Electronics Co Printed-circuit board processing apparatus
JPS6344281A (en) * 1986-08-08 1988-02-25 Sanyo Electric Co Ltd Image processor
JPH01131403A (en) * 1987-11-17 1989-05-24 Mitsubishi Motors Corp Outward appearance inspecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269242A (en) * 1990-03-19 1991-11-29 Toshiba Eng Co Ltd Apparatus for inspecting nonmetallic enclosure

Similar Documents

Publication Publication Date Title
JP3597439B2 (en) Diagnosis method for paint deterioration of painted steel
EP0533440A1 (en) Method for inspecting components having complex geometric shapes
JP4739044B2 (en) Appearance inspection device
CN114998352A (en) Production equipment fault detection method based on image processing
JP3924796B2 (en) Pattern position measuring method and measuring apparatus
JP3972647B2 (en) Diagnostic imaging apparatus, diagnostic imaging system, and diagnostic imaging method
JPH0235342A (en) Visual inspection method
JP4255050B2 (en) Image processing device
JP2004170374A (en) Apparatus and method for detecting surface defect
JPH05203584A (en) Device for detecting characteristic amount on work surface
JP2638121B2 (en) Surface defect inspection equipment
JP5214323B2 (en) Visual inspection apparatus and method
JP2711643B2 (en) Apparatus and method for detecting surface flaw of inspection object
JPS6247504A (en) Shape inspection instrument
JP3012295B2 (en) Image processing apparatus and method
CN115760856B (en) Image recognition-based part spacing measurement method, system and storage medium
JPH06103968B2 (en) Image processor for overhead line inspection
JPS5981544A (en) Detecting method of internal defect
JPH0735699A (en) Method and apparatus for detecting surface defect
JPH01207878A (en) Contour inspection device
EP0428626B1 (en) Automated system for testing an imaging sensor
JPH07107711A (en) Detection of displacement of core coil
JP2006184254A (en) Method of setting nondefective determination reference and method of determining determination processing precision in inspection device, and device for setting nondefective determination reference and device for determining determination processing accuracy
Sethi et al. Automated Visual Inspection of Cracks, in Cast and Welded Components
JPH0438454A (en) Apparatus for inspecting surface state