JPH0235015B2 - - Google Patents

Info

Publication number
JPH0235015B2
JPH0235015B2 JP57072322A JP7232282A JPH0235015B2 JP H0235015 B2 JPH0235015 B2 JP H0235015B2 JP 57072322 A JP57072322 A JP 57072322A JP 7232282 A JP7232282 A JP 7232282A JP H0235015 B2 JPH0235015 B2 JP H0235015B2
Authority
JP
Japan
Prior art keywords
metal
mgcl
cylinder
outer cylinder
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57072322A
Other languages
Japanese (ja)
Other versions
JPS58189340A (en
Inventor
Hiroshi Ishizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7232282A priority Critical patent/JPS58189340A/en
Publication of JPS58189340A publication Critical patent/JPS58189340A/en
Publication of JPH0235015B2 publication Critical patent/JPH0235015B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はTi.Zr.Hf等の第4族金属並びにNb.
Ta等の第5族金属の塩化物から金属を得るため
の方法、特にこれらの塩化物の金属Mgによる還
元工程及びこれに続く真空分離工程を効率的に行
なう方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses group 4 metals such as Ti.Zr.Hf and Nb.
The present invention relates to a method for obtaining metals from chlorides of Group 5 metals such as Ta, and in particular to a method for efficiently performing a reduction step of these chlorides with metal Mg and a subsequent vacuum separation step.

上記金属は例えばTiの場合について述べると
通常TiCl4の溶融Mgによる還元、すなわち所謂
クロール法により工業的に生産されている。この
工程の実施のため多くの装置構成が提案され実用
化されている。その一つに生成金属がスポンジ状
で析出する反応容器からの析出物の取出し、さら
にこれに介在する未反応MgやMgCl2の除去を容
易するために、反応容器や溶融金属Mgbを保持
する容器乃至外筒とこの外筒内に配置され主とし
て生成金属を保持する内筒とで構成した所謂内外
筒方式があるが、この場合反応容器を例えば800
℃以上の高温に加熱して中に装填されているMg
を溶融保持し、このMg上にTiCl4を供給するこ
とによつて還元反応が進行される。生成した金属
TiはMg及びMgCl2から成る溶融体中を降下し
て、この内外筒方式の場合には内筒の底板上に堆
積し、副生成物のMgCl2は密度の差によつて金属
Mgと入れ替り、外筒の底部に蓄積される。従つ
てTiCl4に触れる溶融体の表面にはMgが液相ま
たは気相として常に存在し順次還元反応が進行す
る。外筒底部に蓄積されたMgCl2は還元反応の途
中で間欠的または連続的に液相として外筒底部か
ら外部へ通じる管を経て反応系外へ排出される。
反応が進行し溶融体表面へのMgの供給が実質的
に停止した時点でTiCl4の供給は打切られ還元工
程を終結し、次段階の真空分離(蒸溜)工程に移
る。こゝではスポンジ状の金属Tiと共に介在す
る副生成MgCl2及び未反応の金属Mgが溶融・気
化されてTiから除去される。
In the case of Ti, for example, the above-mentioned metal is usually produced industrially by reduction of TiCl 4 with molten Mg, that is, the so-called Kroll process. Many apparatus configurations have been proposed and put into practical use for carrying out this process. One of these is the reaction vessel and the vessel holding the molten metal Mgb, in order to facilitate the removal of the precipitate from the reaction vessel in which the formed metal precipitates in the form of a sponge, as well as the removal of unreacted Mg and MgCl 2 present therein. There is a so-called inner/outer cylinder system which is composed of an outer cylinder and an inner cylinder which is placed inside the outer cylinder and mainly holds the generated metal.
Mg heated to high temperatures above ℃ and loaded inside
The reduction reaction proceeds by keeping the Mg molten and supplying TiCl 4 onto this Mg. metal produced
Ti descends in the melt consisting of Mg and MgCl 2 and is deposited on the bottom plate of the inner cylinder in the case of this inner/outer cylinder method, and the by-product MgCl 2 becomes a metal due to the difference in density.
It replaces Mg and accumulates at the bottom of the outer cylinder. Therefore, Mg is always present in the liquid or gas phase on the surface of the melt that comes into contact with TiCl 4 and the reduction reaction proceeds sequentially. During the reduction reaction, the MgCl 2 accumulated at the bottom of the outer cylinder is intermittently or continuously discharged as a liquid phase out of the reaction system through a pipe leading from the bottom of the outer cylinder to the outside.
When the reaction progresses and the supply of Mg to the surface of the melt substantially stops, the supply of TiCl 4 is stopped, the reduction process is terminated, and the next stage of vacuum separation (distillation) is started. Here, the by-product MgCl 2 and unreacted metal Mg present together with the spongy metal Ti are melted and vaporized and removed from the Ti.

上記のような工程にて金属Tiを製造する場合、
還元工程においては副生成分MgCl2の沈降及びこ
れによる金属Mgbの上昇が生成金属Tiの層を経
て行なわれること、この層は従来底板の殆んど全
断面に形成され反応の進行に伴ないその厚さを次
第に増していくのでこのような液の流動に対する
抵抗が大きくなり、その結果MgCl2とMgとの交
換速度が還元反応自体を律し、反応速度が次第に
低下していく欠点が避けられなかつた。さらにこ
のスポンジ状のTi中にトラツプされたMgは移動
が困難なためMgの利用効率は必然的に低かつ
た。一方真空分離工程においても外部からの加熱
によつてMg及びMgCl2が蒸発・除去される際、
堆積物の内部で生成するこれらの蒸気は厚い堆積
物の層をTiスポンジの空孔乃至空隙づたいに上
面または底板に接する下面に到達せねばならず、
充分な分離を行なうためにはかなりの長時間を必
要とする。
When producing metal Ti using the process described above,
In the reduction process, the by-product MgCl 2 settles and the metal Mgb rises through the layer of produced metal Ti. Conventionally, this layer is formed on almost the entire cross section of the bottom plate and as the reaction progresses. As the thickness gradually increases, the resistance to the flow of the liquid increases, and as a result, the exchange rate of MgCl 2 and Mg controls the reduction reaction itself, avoiding the drawback that the reaction rate gradually decreases. I couldn't help it. Furthermore, since Mg trapped in this spongy Ti is difficult to move, the utilization efficiency of Mg is inevitably low. On the other hand, in the vacuum separation process, when Mg and MgCl 2 are evaporated and removed by external heating,
These vapors generated inside the deposit must pass through the thick layer of deposit through the pores or voids of the Ti sponge to the top surface or the bottom surface in contact with the bottom plate.
A considerable amount of time is required to achieve sufficient separation.

本発明は上記のように本質的に大気から隔離さ
れた筒構成乃至反応容器の空間にて金属塩化物、
例えばTiCl4のMgによる還元反応を行なう際に
該空間の中心部に固形物保持面から上方に延びる
液体(及び気体)が流通可能な小空間を堆積物中
に確保することにより上記の各欠点を除去したも
のであつて、発明の要旨とするところは、本質的
に密閉構造を持つ筒構成内に金属塩化物を供給し
て保持された溶融Mgによりこれを還元して金属
とし、筒構成内下方の保持面上に堆積せしめ、更
にこの生成金属を真空内で高温に供して介在物を
除去するにあたり、この筒構成内の保持面中央
(軸)付近に、側壁に小孔を多数有する円錐状乃
至円錐台状の中空筒状体を載置したのち溶融Mg
と金属塩化物との反応を行うことにより堆積する
生成金属の中央部に溶融液の経路を設け、この筒
構成内に所定量の生成金属を堆積せしめたあと、
生成金属並びに主としてMg及びMgCl2からなる
介在物を真空中で高温に供し、以てかかるMg及
びMgCl2を下面並びに、上記中空筒状体の小孔を
介して気相及び液相として生成金属から分離する
ことを特徴とする金属塩化物から金属を得る方法
を要旨とする。
As described above, the present invention is characterized in that metal chloride,
For example, when performing the reduction reaction of TiCl 4 with Mg, by securing a small space in the deposit that extends upward from the solid matter holding surface and allows the flow of liquid (and gas) in the center of the space, each of the above-mentioned drawbacks can be achieved. The gist of the invention is to reduce the metal chloride to metal by the molten Mg held in a tube structure that essentially has a closed structure. In order to remove inclusions by depositing on the inner lower holding surface and subjecting this formed metal to high temperature in a vacuum, a large number of small holes are formed in the side wall near the center (axis) of the holding surface within this cylindrical structure. After placing a hollow cylindrical body in the shape of a cone or truncated cone, molten Mg
A path for the molten liquid is provided in the center of the formed metal deposited by the reaction between the metal chloride and the metal chloride, and after depositing a predetermined amount of the formed metal within this cylindrical structure,
The generated metal and inclusions mainly consisting of Mg and MgCl 2 are subjected to high temperature in vacuum, and the Mg and MgCl 2 are transferred to the lower surface and through the small holes of the hollow cylindrical body as gas and liquid phases to form the generated metal. The gist of this invention is a method for obtaining metals from metal chlorides, which is characterized by separating them from metal chlorides.

本発明において上記小空間は多数の小孔を側面
に有する中空筒を底板上に載置することにより設
けられる。中空筒の断面は、減圧蒸発による金属
精製後にこの筒状体抜き易くするために、特に上
方が細くなつた円錐状乃至円錐台状とするのが良
い。該中空筒の下端は少くとも部分的に開いてい
る。頂部も閉じている方が好ましいが、多少の開
口を有してもよい。中空筒内空間の大きさは液相
及び気相の移動が可能であればよく、内径10cm程
度の円筒状で充分有効である。空間の長さは大き
い方が好ましいが還元反応開始時に溶融Mgの表
面より上方に出ないようにするのが好ましい。小
孔はいろんな形状に設けることができるが、いず
れにしても生成Tiが通過しない範囲でできるだ
け大きくするのがMg/MgCl2の交換効率及び真
空分離時の分離効率の点で有利である。具体的に
は側面に関して直径50mm以下の円形孔で充分有利
である。これらの小孔は中空筒の先端付近乃至堆
積物の最奥に配置するのが最適である。このよう
な中空筒は通常のステンレス鋼、構造用鋼または
Ti等各種の材質で構成することができる。
In the present invention, the small space is provided by placing a hollow cylinder having a large number of small holes on the side surface on the bottom plate. The cross section of the hollow cylinder is preferably a conical shape or a truncated conical shape, particularly tapered at the top, in order to facilitate removal of the cylindrical body after metal refining by vacuum evaporation. The lower end of the hollow tube is at least partially open. Although it is preferable that the top is also closed, it may have some openings. The size of the hollow cylinder internal space is sufficient as long as it allows movement of the liquid phase and the gas phase, and a cylindrical shape with an inner diameter of about 10 cm is sufficiently effective. Although the length of the space is preferably large, it is preferable that the space does not extend above the surface of molten Mg at the start of the reduction reaction. The small holes can be provided in various shapes, but in any case, it is advantageous to make them as large as possible without allowing the produced Ti to pass through them, in terms of Mg/MgCl 2 exchange efficiency and separation efficiency during vacuum separation. Specifically, a circular hole with a diameter of 50 mm or less on the side surface is sufficiently advantageous. These small holes are optimally placed near the tip of the hollow cylinder or at the deepest part of the deposit. Such hollow tubes are made of ordinary stainless steel, structural steel or
It can be made of various materials such as Ti.

本発明の実施には上記の内外筒からなる筒構成
の場合還元工程及び真空分離工程のために別々に
設けた各装置(例えば特公昭33−2104、及び同48
−34646に記載)を用い、還元工程終了後に堆積
物を保持した内筒を真空分離装置へ移し換えられ
る方式のものだけでなく、特公昭55−36254に記
載されているように両工程を共通の装置内で行な
い両工程間での内筒の移動の省いた構成も用いる
ことができる。
In the case of the above-mentioned cylindrical structure consisting of an inner and outer cylinder, the present invention is implemented using separate apparatuses for the reduction process and the vacuum separation process (for example, Japanese Patent Publication No. 33-2104 and No. 48
-34646) is used, and the inner cylinder holding the deposits is transferred to a vacuum separation device after the completion of the reduction process, as well as the method described in Japanese Patent Publication No. 55-36254, in which both processes are common. It is also possible to use a configuration in which the inner cylinder is not moved between the two steps, and the inner cylinder is not moved between the two steps.

本発明の有利性は実施に上記のような内外筒か
ら成る筒構成を用い堆積物下面からの気液化を促
進した時特に顕著になるが、この他の例えば米国
特許第3684264号明細書に記載されているような
単一筒から成る筒構成においても、還元工程にお
ける生成Tiの堆積、MgCl2の下降によるMgの上
昇機構は上記と同様であり、また真空分離工程に
おいて堆積物の収縮により形成される周囲の空隙
は堆積物下面からの介在物の除去を可能にするか
らそれなりの効果は期待できる。この場合中空筒
は容器中央に設けられた擬底(false bottom)
上に設置するのが便利である。
The advantages of the present invention become particularly noticeable when the above-mentioned cylindrical structure consisting of an inner and outer cylinder is used to promote vaporization from the bottom surface of the deposit. Even in the case of a single-tube configuration as shown in Figure 1, the mechanism of the deposition of Ti formed in the reduction process and the rise of Mg due to the fall of MgCl 2 is the same as above, and the mechanism of the rise of Mg due to the fall of MgCl 2 in the reduction process is the same as above. A certain effect can be expected because the surrounding voids made possible to remove inclusions from the lower surface of the deposit. In this case, the hollow cylinder is a false bottom provided in the center of the container.
It is convenient to install it on top.

次に本発明を図面によつて説明する。第1図は
本発明の実施に適した還元装置、第2図は真空分
離装置の概略を示す縦断面図である。図において
反応系を外界から遮断するための外筒1は下端が
閉じ上端が脱着可能な蓋2によつて密閉される本
質的に円筒状の容器であつて周囲に配置された鉄
皮3を有する炉4によつて加熱される。必須では
ないが外筒1と炉4との間の空間を例えば特願昭
56−50896(特開昭60−5653)に記載されているよ
うに密閉構造として不活性ガスで圧力を調整可能
とすれば該外筒の負荷を減ずることができる。一
方内筒5は上部が蓋2といろんな態様で接続され
るが、この場合ボルト締め等により脱着可能な構
成にするのが有利である。このような係合は例え
ば特願昭56−77461(特公平1−18134)に記載さ
れている。蓋2はこの例では分離可能な中央部6
及び外周部7から成り各部の下面には断熱材を詰
めた金属製のケース8,9が取付けられる。この
ように構成される蓋2を貫通してTiCl4供給管1
0並びに排気管11及び不活性ガス導入管12
が、また必要に応じ溶融Mg導入管13が内筒5
内へ延びている。内筒の下部には固形物保持のた
めロストル状の底板14がコマに支えられて取付
けられ、底板の中央付近には下端が開き上端が閉
じた中空筒15が載置される。側壁に多数の小孔
を有するこの中空筒は例えばSUS410のようなス
テンレス鋼円錐状乃至円錐台状に構成できる。こ
れらの中空筒は操作中倒れないように底部の断面
を他部より多少大きめに形成したり或は/さらに
1〜数ケ所底板14に溶接することができる。な
おMgCl2を液状で排出するために外筒1の底部か
ら炉4の外方へ延びる管16を設けると後述する
ように有利である。このような還元装置は底板1
4を内筒に取付ける際の溶融Mgの保持量から決
定した長さを有する中空筒を取付けるほかは、類
似の従来装置と同様に操作することができる。す
なわち蓋2を取付けた内筒5を外筒1内に固定
し、両筒からなる筒構成乃至反応容器内を不活性
ガス雰囲気とした後金属Mgを溶融保持し、この
浴表面へTiCl4を液相または気相として供給す
る。反応により生じるTi17は中空筒の周囲の
底板14上にスポンジ状に堆積し、副生成物の
MgCl218はスポンジの空隙及び中空筒空間を経
て外筒底部へ下降し、代りにMgb19を押上げ
る。溶融浴表面に有効なMgが少くなり内圧が上
昇し始めたらTiCl4の供給を停止し還元工程を終
結する。内筒内の空間を効率的に利用するため、
また次段階の真空分離工程での除去量を減ずるた
めにMgCl2は溶融液として還元工程の途中で連続
または間欠的に、また工程終了後に管16を経て
排出される。生成したTiスポンジは介在する
MgCl2及びMgの除去のため、冷却後内筒に保持
されたまゝ真空分離工程へと移される。これに用
いる装置は本発明の要件ではなく、いろんな構成
のものが利用し得るが、第1図の構成の還元装置
の場合には第2図の構成が有利に利用できる。つ
まりこの装置は基本的には分離可能な上部及び下
部から成る外筒20並びに上部の外周に取付けら
れた冷却水套21及び下部を外周から加熱する鉄
皮22で囲まれた炉23を有する。外筒20の上
部がはずされた該真空分離装置の外筒下部に上述
の還元工程からの内筒24が置かれ、この上部に
例えばリング状の鋼板群及び円錐板群から成る熱
遮蔽具25が置かれる。この上方に、還元工程で
用いられるのと同一構成の空の内筒26を同様の
ボルト締めにて蓋27を介して予め設置しておい
た外筒上部が接続される。蓋27の中央部には
こゝでは排気管28が還元装置における中央部に
代えて同様の手段にてはめこまれている。接続端
の下部には邪魔板29が設けられる。このような
組立において高真空度にまで減圧したあと炉23
により外筒下部を加熱する一方、上部を水套21
の作動により冷却する。この場合溶融・気化され
たMg及びMgCl2はTiスポンジの空隙を経て堆積
物の頂部及び底板30の穿孔から外部へ抜けると
共に、本発明においては中央の中空筒31内の空
間を経て出るので非常に効率的な分離が得られ
る。
Next, the present invention will be explained with reference to the drawings. FIG. 1 is a longitudinal sectional view schematically showing a reduction apparatus suitable for carrying out the present invention, and FIG. 2 is a schematic longitudinal sectional view of a vacuum separation apparatus. In the figure, an outer cylinder 1 for isolating the reaction system from the outside world is an essentially cylindrical container whose lower end is closed and whose upper end is sealed by a removable lid 2, and has an iron shell 3 disposed around it. It is heated by a furnace 4 having. Although it is not essential, the space between the outer cylinder 1 and the furnace 4 can be
56-50896 (Japanese Unexamined Patent Publication No. 60-5653), the load on the outer cylinder can be reduced if the pressure can be adjusted using an inert gas as a closed structure. On the other hand, the upper part of the inner cylinder 5 is connected to the lid 2 in various ways, but in this case, it is advantageous to configure the inner cylinder 5 to be detachable by tightening bolts or the like. Such engagement is described, for example, in Japanese Patent Application No. 1-18134. The lid 2 has a separable central part 6 in this example.
and an outer peripheral part 7, and metal cases 8 and 9 filled with a heat insulating material are attached to the lower surface of each part. A TiCl 4 supply pipe 1 is inserted through the lid 2 constructed in this way.
0, exhaust pipe 11 and inert gas introduction pipe 12
However, if necessary, the molten Mg introduction pipe 13 can be connected to the inner cylinder 5.
extends inward. A bottom plate 14 in the shape of a rooster is attached to the lower part of the inner cylinder supported by a piece for holding solid matter, and a hollow cylinder 15 whose lower end is open and whose upper end is closed is placed near the center of the bottom plate. This hollow cylinder having a large number of small holes in the side wall can be made of stainless steel such as SUS410, for example, and can be constructed in the shape of a cone or a truncated cone. These hollow cylinders can be formed with a cross section at the bottom somewhat larger than the other parts so as not to fall during operation, and/or can be welded to the bottom plate 14 at one to several places. As will be described later, it is advantageous to provide a pipe 16 extending from the bottom of the outer cylinder 1 to the outside of the furnace 4 in order to discharge MgCl 2 in liquid form. Such a reduction device has a bottom plate 1
It can be operated in the same manner as similar conventional devices, except that a hollow cylinder having a length determined based on the amount of molten Mg held when attaching No. 4 to the inner cylinder is installed. That is, the inner cylinder 5 with the lid 2 attached is fixed in the outer cylinder 1, and after creating an inert gas atmosphere in the cylinder structure consisting of both cylinders or the inside of the reaction vessel, metal Mg is molten and held, and TiCl 4 is applied to the surface of this bath. Supplied as liquid or gas phase. Ti17 generated by the reaction is deposited in a spongy manner on the bottom plate 14 around the hollow cylinder, and the by-products are
MgCl 2 18 descends to the bottom of the outer cylinder through the voids of the sponge and the hollow cylinder space, and pushes up Mgb 19 instead. When the amount of Mg available on the surface of the molten bath decreases and the internal pressure begins to rise, the supply of TiCl 4 is stopped and the reduction process is terminated. In order to efficiently utilize the space inside the inner cylinder,
Furthermore, in order to reduce the amount removed in the next vacuum separation step, MgCl 2 is discharged as a molten liquid either continuously or intermittently during the reduction step, or through the pipe 16 after the end of the step. The generated Ti sponge is interposed
In order to remove MgCl 2 and Mg, it is transferred to a vacuum separation process while being held in the inner cylinder after cooling. The device used for this is not a requirement of the present invention, and various configurations may be used, but in the case of the reduction device having the configuration shown in FIG. 1, the configuration shown in FIG. 2 can be advantageously used. That is, this device basically has an outer cylinder 20 consisting of a separable upper and lower part, a cooling water cannula 21 attached to the outer periphery of the upper part, and a furnace 23 surrounded by an iron shell 22 that heats the lower part from the outer periphery. The inner cylinder 24 from the above-mentioned reduction process is placed at the bottom of the outer cylinder of the vacuum separation device from which the upper part of the outer cylinder 20 has been removed, and a heat shielding device 25 made of, for example, a ring-shaped steel plate group and a conical plate group is placed on top of this inner cylinder 24. is placed. Above this, an empty inner cylinder 26 having the same configuration as that used in the reduction process is connected to the upper part of the outer cylinder, which has been previously installed via a lid 27 by tightening bolts in the same way. In this case, an exhaust pipe 28 is fitted into the center of the lid 27 in place of the center of the reducing device by the same means. A baffle plate 29 is provided at the bottom of the connection end. In such an assembly, after the pressure is reduced to a high degree of vacuum, the furnace 23
While heating the lower part of the outer cylinder, the upper part is heated by the water mantle 21.
It is cooled by the operation of In this case, the molten and vaporized Mg and MgCl 2 pass through the voids in the Ti sponge to the outside through the top of the deposit and the perforations in the bottom plate 30, and in the present invention, exit through the space in the central hollow cylinder 31, so it is extremely Efficient separation can be obtained.

上記から明らかなように本発明の特徴はスポン
ジ状金属の生成及び介在物分離工程において生成
金属中に通液・通気用の小空間を設けることであ
る。こゝで示した両装置の構成自体も従来の構成
に比して大幅な改良を達成するものであるがこゝ
では単に説明のため便宜上示すものである。従つ
て勿論他の各様の構成が利用可能である。
As is clear from the above, a feature of the present invention is that a small space for liquid passage and ventilation is provided in the produced metal in the process of producing a sponge-like metal and separating inclusions. Although the configurations of both devices shown here are themselves significantly improved over conventional configurations, they are shown here for convenience and explanation purposes only. Therefore, of course, various other configurations are possible.

実施例 本質的に第1図及び第2図に示される装置を用
いた。還元装置においてほゞ共軸的に配置される
外筒及び内筒はそれぞれ内径16m及び1.5m、肉
厚32mm及び16mm(除上端部)、外筒は全長5m、
内筒は有効長(炉内に位置する空間)が3.7mの
ステンレス鋼製で、底板と外筒底との間隔は0.5
mである。多数の穿孔を持つ底板上に底部外径40
cm、肉厚9mm、高さ1.5mのステンレス鋼
(SUS410)製の円錐形中空筒を配置した。この
中空筒の側面には直径35mmの円形孔が多数設けら
れている。この底板をコマを介して内筒に取付
け、一方上端は高張力鋼製のボルトを用いてSS
鋼製の、分離可能な中央部及び外周部から成る蓋
に接続した。これらは全高5.5m、内径2.1mの鉄
板外皮を有する電熱炉内に据付けられた。一方分
離装置については、外筒は内径1.6m、肉厚32mm、
長さは5m(下部)及び2.85m(上部)のステン
レス鋼製で、冷却筒として使用されるこの上部に
は外周に水冷ジヤケツトが設けられ、下部は炉内
に設置されている。
EXAMPLE An apparatus essentially shown in FIGS. 1 and 2 was used. The outer cylinder and inner cylinder, which are arranged almost coaxially in the reduction device, have an inner diameter of 16 m and 1.5 m, respectively, a wall thickness of 32 mm and 16 mm (excluding the upper end), and a total length of the outer cylinder of 5 m.
The inner cylinder is made of stainless steel with an effective length (the space located inside the furnace) of 3.7 m, and the distance between the bottom plate and the bottom of the outer cylinder is 0.5 m.
It is m. Bottom outer diameter 40 on the bottom plate with numerous perforations
A conical hollow cylinder made of stainless steel (SUS410) with a wall thickness of 9 mm and a height of 1.5 m was placed. A number of circular holes with a diameter of 35 mm are provided on the side surface of this hollow cylinder. This bottom plate is attached to the inner cylinder via the frame, while the upper end is attached to the SS using high-tensile steel bolts.
Connected to a lid made of steel and consisting of a separable center and outer periphery. These were installed in an electric furnace with a total height of 5.5 m and an inner diameter of 2.1 m. On the other hand, regarding the separation device, the outer cylinder has an inner diameter of 1.6 m and a wall thickness of 32 mm.
The length is 5 m (lower part) and 2.85 m (upper part) made of stainless steel.The upper part, which is used as a cooling cylinder, has a water cooling jacket around the outer circumference, and the lower part is installed in the furnace.

還元外筒内を脱気したあとアルゴンを満たし、
次いで炉により800℃まで加熱した。7トンの
Mgを溶融状態で導入管から外筒へ装入し内筒を
約900℃に昇温したあと液状TiCl4を400Kg/時の
割合で供給して反応操作を行なつた。各ボルトの
上部を水冷する一方副生成するMgCl2を外筒底部
から間欠的に排出しながら約50時間にわたり通算
20トン装入してTiCl4の吹込みを停止した。残り
のMgCl2の大部分を排出した後内筒を充分に冷却
した。この間次の真空分離工程の準備のため、分
離装置の外筒上部を組立てた。先づこの外筒上部
に上記内筒と同じ構成の別の空の内筒を係合した
同様の蓋外周部を取付け、中央部には排気管の接
続端を気密に取付けておいた。Tiスポンジ等の
堆積物を有する内筒を本特許出願人の特願昭57−
56041(特開昭58−174530)に記載の手順で真空分
離装置の外筒底部に収納したのち、熱遮蔽具を置
き、さらに上記の外筒上部を載置・固定した。こ
の構成にて頂部の排気管を通じて真空引きを行な
い、下部を約1000℃に加熱する一方、上部を水冷
し結局50時間で分離工程を完結した。この工程に
おいて外筒上部に取付けられていた内筒には下方
からのMgやMgCl2が付着しているので、これは
還元装置の外筒内に収納して用いた。このように
本発明方法の実施においては20トンのTiCl4の吹
込みを50時間で終了でき、しかも73%のMg利用
率で反応が行なわれている。
After deaerating the inside of the reduction cylinder, fill it with argon.
It was then heated to 800°C in a furnace. 7 tons
After charging Mg in a molten state into the outer cylinder from the inlet tube and raising the temperature of the inner cylinder to about 900°C, a reaction operation was carried out by supplying liquid TiCl 4 at a rate of 400 kg/hour. The top of each bolt was cooled with water while the by-product MgCl 2 was intermittently discharged from the bottom of the outer cylinder for a total of about 50 hours.
After charging 20 tons, the injection of TiCl 4 was stopped. After most of the remaining MgCl 2 was discharged, the inner cylinder was sufficiently cooled. During this time, the upper part of the outer cylinder of the separation apparatus was assembled in preparation for the next vacuum separation step. First, a similar outer periphery of the lid was attached to the upper part of the outer cylinder, which was engaged with another empty inner cylinder having the same structure as the inner cylinder, and the connecting end of the exhaust pipe was airtightly attached to the center part. A patent application filed by the present patent applicant in 1982-
56041 (Japanese Unexamined Patent Publication No. 58-174530), the sample was placed in the bottom of the outer cylinder of a vacuum separator, a heat shield was placed, and the upper part of the outer cylinder was further placed and fixed. With this configuration, a vacuum was drawn through the exhaust pipe at the top, and the lower part was heated to about 1000°C, while the upper part was cooled with water, and the separation process was completed in 50 hours. In this process, Mg and MgCl 2 from below were attached to the inner cylinder attached to the upper part of the outer cylinder, so this was stored in the outer cylinder of the reduction device for use. As described above, in carrying out the method of the present invention, the injection of 20 tons of TiCl 4 can be completed in 50 hours, and the reaction is carried out at a Mg utilization rate of 73%.

一方同様の構成を用い、たゞし本発明の特徴た
る通気・通液用の小空間を設けなかつた場合の操
作の例では、還元工程において最初の約40時間は
340Kg/時の割合でTiCl4を吹込むことができた
が、その後は溶融体表面に到達するMgの速度が
小さくなつたため吹込速度を次第に減じる必要が
あり、結局18トンのTiCl4の吹込みに65時間を要
した。またこの時のMgの利用率は約68%であつ
た。
On the other hand, in an example of an operation using the same configuration but without providing the small space for ventilation and liquid passage, which is a feature of the present invention, for the first approximately 40 hours in the reduction process,
It was possible to inject TiCl 4 at a rate of 340 kg/hour, but after that the speed of Mg reaching the melt surface became smaller, so the injection speed had to be gradually reduced, and in the end, 18 tons of TiCl 4 were injected. It took 65 hours. Also, the utilization rate of Mg at this time was approximately 68%.

上記の操作は便宜上還元工程及び真空分離工程
が独立の装置で行なわれる場合について説明した
が、例えば特公昭55−36254号公報に記載されて
いるような、両工程が共通の炉及び外筒内にて行
なわれる構成についても好結果が得られ、さらに
単一筒構成の反応容器にも適用できるものであ
る。
For the sake of convenience, the above operation has been explained for the case where the reduction process and the vacuum separation process are performed in independent equipment, but for example, as described in Japanese Patent Publication No. 55-36254, both processes are carried out in a common furnace and outer cylinder. Good results have also been obtained with the configuration carried out in a single-tube configuration, and it can also be applied to a reaction vessel with a single cylinder configuration.

以上詳述したように本発明においては反応容器
を構成する筒構成に保持される主としてTiスポ
ンジから成る堆積物中にこれを保持する面から上
方に延びる通液・通気用の小空間を設けることに
より、 (1) 還元工程における副生成物のMgCl2の排出及
び反応面乃至溶融体表面へのMgの供給が、相
当部分はこの小空間を経由して効率的に行なわ
れるので、堆積したTiスポンジの空隙を経て
しか行なわれない従来の構成に比して抵抗の大
きいスポンジ中を通る径路が短縮され、MgCl2
の排出がより容易となり、かつMgの使用率を
高めることが可能となつた。
As detailed above, in the present invention, a small space for liquid passage and ventilation is provided in the deposit mainly made of Ti sponge held in the cylindrical structure constituting the reaction vessel, extending upward from the surface holding the deposit. (1) Since the discharge of MgCl 2 , a byproduct in the reduction process, and the supply of Mg to the reaction surface or the melt surface are carried out efficiently through this small space, the deposited Ti The path through the sponge, which has a high resistance, is shortened compared to the conventional configuration in which the process is carried out only through the voids in the sponge, and the MgCl 2
It has become easier to discharge Mg, and it has become possible to increase the usage rate of Mg.

(2) 真空分離工程においてスポンジ状金属からの
Mgb及びMgCl2の除去が容易になるので、筒
構成内に堆積させるスポンジ金属の量を増すこ
とができる。
(2) Separation from spongy metal during vacuum separation process
The easier removal of Mgb and MgCl 2 allows for increased amounts of sponge metal to be deposited within the tube configuration.

(3) 内外筒方式において特に加熱部が下方に、冷
却部が上方に配置された真空分離装置を用い、
さらに還元工程からの内筒が収納された時、底
板下面が外筒空間を経て堆積物上面と通じてい
る場合にはMg及びMgCl2の放出が、堆積物の
上下面だけでなく、該小空間を経てスポンジの
内側からも行なわれるので分離操作に要する時
間を短縮できる。
(3) Using a vacuum separation device in which the heating part is located below and the cooling part is located above in the inner/outer cylinder method,
Furthermore, when the inner cylinder from the reduction process is stored, if the lower surface of the bottom plate communicates with the upper surface of the deposit through the outer cylinder space, Mg and MgCl 2 are released not only from the upper and lower surfaces of the deposit, but also from the small Since the separation is also carried out from inside the sponge via the space, the time required for the separation operation can be shortened.

等の利点を提供するものである。It offers advantages such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明方法の実施に適する
還元装置及び真空分離装置の概略を示す縦断面図
である。図において参照番号は下記の部材を示
す。 1……外筒(還元装置);2……蓋;3……鉄
皮;4……炉;5……内筒;6,7……蓋中央部
及び外周部;8,9……断熱材ケース;10……
TiCl4供給管;11……排気管;12……不活性
ガス導入管;13……溶融Mg導入管;14……
底板;15……中空筒;16……MgCl2排出管;
17……Tiスポンジ;18……MgCl2;19…
…Mg;20……外筒(真空分離装置);21…
…水套;22……鉄皮;23……炉;24……被
処理内筒;25……熱遮蔽具;26……内筒
(空);27……蓋;28……排気管;29……邪
魔板;30……底板;31……中空筒。
FIGS. 1 and 2 are vertical sectional views schematically showing a reduction apparatus and a vacuum separation apparatus suitable for carrying out the method of the present invention. In the figures, reference numbers indicate the following members. 1... Outer cylinder (reducing device); 2... Lid; 3... Iron shell; 4... Furnace; 5... Inner cylinder; 6, 7... Lid center and outer periphery; 8, 9... Heat insulation Material case; 10...
TiCl 4 supply pipe; 11... Exhaust pipe; 12... Inert gas introduction pipe; 13... Molten Mg introduction pipe; 14...
Bottom plate; 15...Hollow cylinder; 16...MgCl 2 discharge pipe;
17... Ti sponge; 18... MgCl 2 ; 19...
...Mg; 20... Outer cylinder (vacuum separation device); 21...
... Water mantle; 22 ... Iron shell; 23 ... Furnace; 24 ... Inner cylinder to be treated; 25 ... Heat shield; 26 ... Inner cylinder (empty); 27 ... Lid; 28 ... Exhaust pipe; 29... Baffle plate; 30... Bottom plate; 31... Hollow tube.

Claims (1)

【特許請求の範囲】[Claims] 1 本質的に密閉構造を持つ筒構成内に金属塩化
物を供給して保持された溶融Mgによりこれを還
元して金属とし、筒構成内下方の保持面上に堆積
せしめ、更にこの生成金属を真空内で高温に供し
て介在物を除去するにあたり、この筒構成内の保
持面中央(軸)付近に、側壁に小孔を多数有する
円錐状乃至円錐台状の中空筒状体を載置したのち
溶融Mgと金属塩化物との反応を行うことにより
堆積する生成金属の中央部に溶融液の経路を設
け、この筒構成内に所定量の生成金属を堆積せし
めたあと、生成金属並びに主としてMg及び
MgCl2からなる介在物を真空中で高温に供し、以
てかかるMg及びMgCl2を下面並びに、上記中空
筒状体の小孔を介して気相及び液相として生成金
属から分離することを特徴とする、金属塩化物か
ら金属を得る方法。
1. A metal chloride is supplied into a tube structure having an essentially sealed structure, and the molten Mg held therein reduces it to metal, which is deposited on the holding surface at the bottom of the tube structure, and further, this generated metal is When removing inclusions by subjecting the tube to high temperature in a vacuum, a conical or truncated conical hollow tube with many small holes in the side wall was placed near the center (axis) of the holding surface within this tube structure. A path for the molten liquid is provided in the center of the formed metal that is deposited by the reaction between the molten Mg and the metal chloride, and after a predetermined amount of formed metal is deposited within this cylinder structure, the formed metal and mainly Mg are deposited. as well as
The inclusions made of MgCl 2 are subjected to high temperature in vacuum, and the Mg and MgCl 2 are separated from the formed metal as a gas phase and a liquid phase through the lower surface and the small holes of the hollow cylindrical body. A method for obtaining metals from metal chlorides.
JP7232282A 1982-04-28 1982-04-28 Method for obtaining metal from metallic chloride Granted JPS58189340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7232282A JPS58189340A (en) 1982-04-28 1982-04-28 Method for obtaining metal from metallic chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7232282A JPS58189340A (en) 1982-04-28 1982-04-28 Method for obtaining metal from metallic chloride

Publications (2)

Publication Number Publication Date
JPS58189340A JPS58189340A (en) 1983-11-05
JPH0235015B2 true JPH0235015B2 (en) 1990-08-08

Family

ID=13485926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7232282A Granted JPS58189340A (en) 1982-04-28 1982-04-28 Method for obtaining metal from metallic chloride

Country Status (1)

Country Link
JP (1) JPS58189340A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604184B1 (en) * 1986-09-19 1988-11-10 Cezus Co Europ Zirconium PROCESS AND DEVICE FOR MANUFACTURING METAL ZIRCONIUM BY REDUCTION OF ZIRCONIUM TETRACHLORIDE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016733A (en) * 1973-06-15 1975-02-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016733A (en) * 1973-06-15 1975-02-21

Also Published As

Publication number Publication date
JPS58189340A (en) 1983-11-05

Similar Documents

Publication Publication Date Title
EP0162155B1 (en) Production of titanium metal sponge and apparatus therefor
US4441925A (en) Method and an apparatus for producing titanium metal from titanium tetrachloride
JPH059497B2 (en)
JPS62103328A (en) Production of zirconium or hafnium
EP0097135B1 (en) Apparatus and method for producing purified refractory metal from a chloride thereof
WO2001077396A1 (en) Process and apparatus for continuous vacuum purification of molten metal
JPH0235015B2 (en)
US4403769A (en) Vacuum separator
JPH0255490B2 (en)
EP0091414B1 (en) Apparatus and method for production of refractory metal from a chloride thereof
US4242136A (en) Process for producing metallic zirconium
JP2689520B2 (en) Method for producing metallic titanium
JPS5942060B2 (en) Method for producing metal Ti
JPH0256408B2 (en)
JPS591646A (en) Production of metallic ti
JPH059498B2 (en)
JPS5934218B2 (en) Metal titanium production equipment
JPH0617158A (en) Production of refractory metal
JPH0521970B2 (en)
JP3515541B2 (en) Titanium sponge manufacturing equipment
SU1696550A1 (en) Apparatus for production of alloys of titanium-based refractory metals
CA1261297A (en) Electrolytic recovery process and system for obtaining titanium metal from its ore
JPH0445571B2 (en)
JP4441278B2 (en) Titanium metal production equipment
JPS5915967B2 (en) Method for reducing zirconium tetrachloride