JPH0256408B2 - - Google Patents

Info

Publication number
JPH0256408B2
JPH0256408B2 JP708683A JP708683A JPH0256408B2 JP H0256408 B2 JPH0256408 B2 JP H0256408B2 JP 708683 A JP708683 A JP 708683A JP 708683 A JP708683 A JP 708683A JP H0256408 B2 JPH0256408 B2 JP H0256408B2
Authority
JP
Japan
Prior art keywords
chamber
reduction
mgcl
lid
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP708683A
Other languages
Japanese (ja)
Other versions
JPS59133335A (en
Inventor
Hiroshi Ishizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP708683A priority Critical patent/JPS59133335A/en
Publication of JPS59133335A publication Critical patent/JPS59133335A/en
Publication of JPH0256408B2 publication Critical patent/JPH0256408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はTi,Zr,Hfの四塩化物またはNb,
Taの五塩化物のような金属塩化物の溶融金属Mg
による還元、即ちいわゆるクロル法で得られるス
ポンジ状金属を減圧下で加熱することにより、こ
れらの金属に介在している副生成物MgCl2及び残
留金属Mgを蒸発・除去するための装置及び方法
に関する。
[Detailed description of the invention] The present invention provides tetrachloride of Ti, Zr, Hf or Nb,
Molten metal Mg of metal chloride like Ta pentachloride
This invention relates to an apparatus and method for evaporating and removing by-product MgCl 2 and residual metal Mg present in these metals by heating sponge-like metals obtained by reduction by the so-called Chlor method under reduced pressure. .

Ti,Zr等の金属の工業的生産は一般に上記の
クロル法によつて行なわれているが、こうして得
られるスポンジ状の金属には未反応の金属Mgや
副生成物のMgCl2が比較的多量介在しているの
で、これらを真空中で蒸溜してMg及びMgCl2
気化・分離する操作が続いて行なわれる。この工
程はこれらの生成金属及び介在物から成る堆積物
を(1)取出し可能な容器(内筒)に保持したまゝ取
出し、別に設けた真空蒸溜装置の外筒上部に(例
えば特公昭48−34646に記載のように)または(2)
下部に(本出願人による特願昭56−77461に記載)
設けた加熱部に移し換え、これを減圧下にて外方
から約1000℃近くに加熱しMg及びMgCl2の蒸気
圧を高くして分離を促進する一方、このような加
熱部と共軸的に設置されている冷却部を外壁の水
冷によつて冷却することにより気相のMg及び
MgCl2を凝縮・付着せしめて除去する構成のもの
が提案されている。これらの例において、冷却部
には還元工程に用いられるのと同様の構成の内筒
が空で収容され、この内面に凝縮物を付着して次
回の還元工程に用いられる。更にバツチ当りの処
理量を大きくする時にはこのような内筒を用いな
い構成が採られることもあるが、この場合、(3)還
元工程後に反応容器を冷却部と組合わせるもの
と、(4)予め冷却部を反応容器の上方に共軸的に配
置して仕切つておき、還元工程後にこの仕切を取
去るもの(例えば特公昭55−36254等に記載)が
知られ、前者の構成はさらに(5)生成金属を堆積せ
る容器を冷却後倒置して冷却部の上方に取付ける
例と、(6)容器の上方に冷却部を載置する例とがあ
る。
Industrial production of metals such as Ti and Zr is generally carried out by the above-mentioned Chlor method, but the sponge-like metals obtained in this way contain relatively large amounts of unreacted metal Mg and by-product MgCl 2 . Since these substances are present, an operation to vaporize and separate Mg and MgCl 2 by distilling them in vacuo is subsequently performed. This process involves (1) taking out the deposits consisting of these formed metals and inclusions while holding them in a removable container (inner cylinder), and placing them in the upper part of the outer cylinder of a separately provided vacuum distillation apparatus (for example, 34646) or (2)
At the bottom (described in the patent application No. 56-77461 by the applicant)
This is transferred to a heating section that has been prepared and heated from the outside to approximately 1000℃ under reduced pressure to increase the vapor pressure of Mg and MgCl 2 and promote separation. Mg and gas in the gas phase can be removed by cooling the cooling section installed in the
A structure has been proposed in which MgCl 2 is removed by condensation and adhesion. In these examples, an empty inner cylinder having the same structure as that used in the reduction process is housed in the cooling section, and the inner cylinder is used for the next reduction process with condensate attached to its inner surface. Furthermore, when increasing the throughput per batch, a configuration that does not use such an inner cylinder may be adopted, but in this case, (3) the reaction vessel is combined with a cooling section after the reduction process, and (4) It is known that a cooling section is arranged coaxially above the reaction vessel and partitioned in advance, and this partition is removed after the reduction process (for example, as described in Japanese Patent Publication No. 55-36254, etc.). 5) An example in which the container in which the generated metal is deposited is inverted after cooling and installed above the cooling section, and (6) an example in which the cooling section is placed above the container.

このような従来技術において(1)、(2)、(5)、(6)の
構成は工程ごとに専用の装置を用いることから、
各装置自体は単純かつ効率のよい設計にすること
ができる。特に加熱部を下部に置く(2)や(6)の場合
には大容量の装置を得ることが容易である。しか
しながら還元工程から分離工程へ移行する際に内
筒の移動を要するため、還元装置から取出す際の
冷却、移動、装置の分解及び組立て等に要する労
力や時間並びに堆積物再加熱のためのエネルギー
が必要である。堆積物を外方から加熱する場合
Mg及びMgCl2の蒸発は内筒壁面から次第に中心
部へ移行するが、この際に中心部への熱の伝達は
部分的乃至本質的に介在物が除去された多孔質の
スポンジ状金属を介して、しかも減圧下で行なわ
れるので熱伝達効率が至つて低く、これが分離工
程に長時間を要する原因の一つになつている。
In such conventional technology, configurations (1), (2), (5), and (6) use dedicated equipment for each process, so
Each device itself can be of simple and efficient design. Particularly in cases (2) and (6) in which the heating section is placed at the bottom, it is easy to obtain a large-capacity device. However, since the inner cylinder must be moved when transitioning from the reduction process to the separation process, the labor and time required for cooling, moving, disassembling and assembling the apparatus, etc. when taking it out from the reduction apparatus, and the energy for reheating the deposits are required. is necessary. When heating the deposit from the outside
Evaporation of Mg and MgCl 2 gradually moves from the inner cylinder wall surface to the center, but at this time, heat transfer to the center is partially or essentially through the porous sponge-like metal from which inclusions have been removed. Moreover, since it is carried out under reduced pressure, the heat transfer efficiency is extremely low, which is one of the reasons why the separation process takes a long time.

一方堆積物の移し換えを伴なわない(4)の方式に
おいては上記の欠点のうち堆積物の冷却、内筒の
移動、装置の分解及び組立、堆積物再加熱のため
のエネルギー等において大幅な節約は期待できる
が、反面、加熱部と冷却部との仕切及びこの開閉
に複雑な機構を要する欠点がある。さらにこの場
合加熱部は(2)や(6)と同様に冷却部より下方に置か
れ冷却部の下端と加熱部の上端とが接続される
が、この構成ではMg及びMgCl2の凝縮物は冷却
部の壁面に固体として付着し、引続いて凝縮する
Mg及びMgCl2はこの上に固着させなければなら
ず、従つてこの構成における真空分離工程はこの
付着物を介しての小さい冷却速度によつて律速さ
れる。また一旦凝縮物が着しても加熱部から放射
される一次或は二次熱線によつて加熱部へ落下す
る部分が生じ、結局この型式の分離装置において
も充分な処理速度は得られない欠点がある。
On the other hand, method (4), which does not involve transferring the deposits, has the disadvantages of cooling the deposits, moving the inner cylinder, disassembling and reassembling the device, and energy consumption for reheating the deposits. Although savings can be expected, on the other hand, there is a drawback that a complicated mechanism is required to partition the heating section and the cooling section and to open and close the partition. Furthermore, in this case, the heating section is placed below the cooling section as in (2) and (6), and the lower end of the cooling section and the upper end of the heating section are connected, but in this configuration, the condensates of Mg and MgCl 2 Adheres to the walls of the cooling section as a solid and subsequently condenses.
The Mg and MgCl 2 must be fixed onto this, so the vacuum separation step in this configuration is limited by the low cooling rate through this deposit. Furthermore, even once the condensate has landed, there are parts that fall into the heating section due to the primary or secondary heat rays emitted from the heating section, and as a result, even with this type of separation device, a sufficient processing speed cannot be obtained. There is.

さらに冷却部でMg及びMgCl2を付着せしめた
容器を還元工程で使用する場合、上記のどの構成
においても加熱部と冷却部とを切離し還元装置と
して組立てる必要があり、この操作にて装置に入
つた空気は高価なArガスを用いて再び置換する
必要があつた。
Furthermore, if a container with Mg and MgCl 2 deposited in the cooling section is used in the reduction process, in any of the above configurations, it is necessary to separate the heating section and cooling section and assemble it as a reduction device. The trapped air had to be replaced again using expensive Ar gas.

従つて本発明はこのような従来技術に伴なう欠
点を除去するためになされたものであつて、その
要旨とするところは第一に、Mgを溶融保持し、
該Mgと上方から供給される金属塩化物との反応
により金属を析出することができ、かつ副生成物
のMgCl2及び残留Mgを気化し得る、上部を着脱
可能な蓋によつて本質的に密閉された還元蒸発室
及びこの周囲に配置された加熱炉、該還元蒸発室
に隣接して設けられMg及びMgCl2の蒸気を凝縮
し得る、上部を着脱可能な蓋によつて密閉された
凝縮室及び該室の冷却手段を有し、還元蒸発室の
蓋が内方に設けられた温度制御可能な小室及び該
小室の周囲に該小室から隔てゝ設けられた蒸気排
出孔を有し、該排出孔と凝縮室の蓋とに両端を接
続され全体をMg及びMgCl2が凝固しない温度に
保持し得る接続管により還元蒸発室と凝縮室とが
連結され、該接続管中を通る蒸気流制御のための
外部から操作可能な弁を有し、さらに還元蒸発室
及び凝縮室並びに接続管内を排気するための手段
を備え、以て上記反応により生成金属と共に介在
せるMgCl2及びMgを気化して凝縮室の上部へ導
き、液相乃至固相として該室内にて捕集すべくし
たことを特徴とする金属塩化物の還元精製装置に
存し、次に第二の発明ではこのような装置におい
て特に上記還元蒸発室及び凝縮室内に第二の筒体
(内筒)を配置した構成を主旨とする。
Therefore, the present invention has been made to eliminate the drawbacks associated with the prior art, and its gist is, first, to melt and hold Mg;
Essentially, by means of a removable top lid, which allows the metal to be precipitated by the reaction of the Mg with the metal chloride fed from above, and which can vaporize the by-product MgCl 2 and residual Mg. A closed reduction and evaporation chamber and a heating furnace arranged around the same, a condensation chamber with a removable top and a removable lid installed adjacent to the reduction and evaporation chamber and capable of condensing vapors of Mg and MgCl2 . A small chamber having a temperature controllable chamber and a cooling means for the chamber, a lid of the reduction and evaporation chamber provided inside, and a steam exhaust hole provided around the small chamber separated from the small chamber; The reduction evaporation chamber and the condensation chamber are connected by a connecting tube that is connected at both ends to the discharge hole and the lid of the condensing chamber and can maintain the entire body at a temperature at which Mg and MgCl 2 do not solidify, and the vapor flow through the connecting tube is controlled. It is equipped with a valve that can be operated from the outside and is further provided with a means for exhausting the inside of the reduction evaporation chamber, condensation chamber, and connecting pipe, thereby vaporizing MgCl 2 and Mg that are present together with the metal produced by the above reaction. A second aspect of the present invention relates to a reduction and purification apparatus for metal chlorides, which is characterized in that metal chlorides are guided to the upper part of a condensation chamber and collected in the chamber as a liquid phase or solid phase. In particular, the main idea is a configuration in which a second cylinder (inner cylinder) is disposed within the reduction evaporation chamber and the condensation chamber.

本発明において還元蒸発室は各様に構成するこ
とができる。これは例えば底部が閉じた単一の筒
体で構成してもよいし、或は大気から内部を隔離
する第一の筒体(外筒)の内側に、多数の穿孔を
もつロストル状の底板を取付けた開放下端を有す
る第二の筒体(内筒)を配置してもよい。前者の
構成では筒体の容積に比しバツチ当りの金属析出
量を大きくすることができる。後者の場合堆積可
能な生成金属の量は多少減少するが、生成金属の
副生成物(MgCl2)からの分離及び該室外への取
出しが容易でであり、さらに蒸溜工程時に気化さ
れた介在物が放出される表面積が大きいので、こ
の工程に要する時間が短くて済む。この筒底部に
はMgCl2副生成物を融液状で室外へ排出するため
の管を取付けることができる。この場合、単一筒
構成においては生成金属は筒体に直接析出するこ
とになるので、この管に金属が入り込むのを抑制
しまたMgCl2の排出を容易にするために、台を設
け、筒体底面から隔てゝ堆積物を保持するのが好
ましい。これらの単一筒または外筒の上部外周に
はMg浴面を一定に保つて還元反応操作を行なう
ために特開昭57−188632号公報記載のように冷却
ジヤケツトを設けることができる。
In the present invention, the reduction and evaporation chamber can be configured in various ways. This may consist, for example, of a single cylinder with a closed bottom, or a rostre-like bottom plate with a number of perforations inside the first cylinder (outer cylinder) which isolates the interior from the atmosphere. A second cylindrical body (inner cylinder) having an open lower end with an attached cylindrical member may be provided. In the former configuration, the amount of metal deposited per batch can be increased compared to the volume of the cylinder. In the latter case, the amount of metal produced that can be deposited is somewhat reduced, but it is easy to separate the produced metal from the by-product (MgCl 2 ) and take it out of the room, and it is also easy to remove the inclusions vaporized during the distillation process. Since the surface area over which is released is large, the time required for this process is short. A pipe for discharging the MgCl 2 byproduct in the form of a melt to the outside can be attached to the bottom of the cylinder. In this case, in the case of a single tube configuration, the generated metal will be deposited directly on the tube, so in order to suppress the metal from entering the tube and to facilitate the discharge of MgCl 2 , a stand is provided to prevent the metal from entering the tube. Preferably, the deposits are kept away from the bottom surface of the body. A cooling jacket can be provided on the upper outer periphery of these single cylinders or outer cylinders, as described in Japanese Patent Application Laid-Open No. 188632/1983, in order to maintain the Mg bath surface constant and carry out the reduction reaction operation.

筒構成の開いた上端には着脱可能な蓋を気密に
取付ける。蓋は還元蒸発室及び凝縮室のそれぞれ
に専用の構成を持つ。還元蒸発室の蓋は水平断面
に関して内方に軸方向に延び上方を閉じ下方を開
いた小室を、また該小室の外方にこれから仕切つ
て設けられた蒸気排出孔を有する。小室のほぼ中
央には還元されるTiCl4やZrCl4を供給するための
管が下方に向かつて延びている。この供給管或は
この外側に共軸的に設けた鞘管は下部に円板や円
錐型のフランジを有し、昇降可能に取付けられ
る。そしてこれらの管が下降した時にこれらのフ
ランジが小室の下端を閉鎖するように構成され
る。この小室は周囲から加熱することによつて内
部を約750℃に保つことができ、こうして供給管
が塩化物等の凝固により詰るのを防ぐ。また精製
工程の終期にはこの小室を冷却して少量残存して
いるMgやMgCl2を凝固付着せしめるために、水
冷または空冷等による適当な冷却手段がこの小室
に設けられる。蒸気排出孔は外方から操作可能な
バルブ等の開閉手段を介して或は介さずに凝縮室
の蓋に接続される。接続管と蒸気排出孔との接続
は本質的に本出願人の先願に係る特願昭57−
189846号に記載のものが利用できる。接続管及び
開閉手段はMgやMgCl2が内部で固化しないよう
に加熱手段が設けられる。還元蒸発室にはこの
外、必要に応じてMgを融液状で導入するための
管が蓋小室の外方に、或は蓋のその他の部分に配
置される。このような還元蒸発室に熱を供給する
加熱炉が筒構成の周囲に配置される。炉はエネル
ギーコストの面ではガス焚きのものが有利である
が、電熱炉の場合は(例えば特願昭56−50896に
詳記されているように)(外)筒と炉壁との間の
空間を密閉構造としてアルゴン等の不活性ガスを
充たすことにより筒外表面の酸化を効果的に防止
できるほか、さらにこの圧力を還元工程では正圧
に、蒸溜工程では負圧にし室内圧に近く保つよう
にすると、筒壁内外の圧力差による壁材の変形を
防ぐことができる。
A removable lid is airtightly attached to the open upper end of the tube configuration. The lid has a dedicated configuration for each of the reduction evaporation chamber and the condensation chamber. The lid of the reduction and evaporation chamber has a small chamber extending axially inward in a horizontal section and closed at the top and open at the bottom, and has a steam exhaust hole partitioned from this on the outside of the small chamber. Almost in the center of the chamber is a tube extending downward for supplying TiCl 4 and ZrCl 4 to be reduced. This supply pipe or the sheath pipe provided coaxially on the outside thereof has a disc or cone-shaped flange at the lower part and is attached so as to be movable up and down. The flanges are then configured to close the lower end of the chamber when the tubes are lowered. The interior of this chamber can be maintained at approximately 750°C by heating from the surroundings, thus preventing clogging of the supply pipes due to solidification of chlorides and the like. Further, at the end of the purification process, a suitable cooling means such as water cooling or air cooling is provided in this small chamber in order to cool this small chamber and solidify and adhere a small amount of remaining Mg and MgCl 2 . The steam exhaust hole is connected to the lid of the condensing chamber with or without an opening/closing means such as a valve that can be operated from the outside. The connection between the connecting pipe and the steam exhaust hole is essentially the same as in the patent application filed in 1982, which is the applicant's earlier application.
The one described in No. 189846 can be used. The connecting pipe and the opening/closing means are provided with heating means to prevent Mg and MgCl 2 from solidifying inside. In addition to this, a tube for introducing Mg in the form of a melt into the reduction and evaporation chamber is arranged outside the lid chamber or in other parts of the lid, if necessary. A heating furnace that supplies heat to such a reduction and evaporation chamber is arranged around the cylindrical structure. Gas-fired furnaces are advantageous in terms of energy costs, but in the case of electric furnaces (for example, as detailed in Japanese Patent Application No. 56-50896), the space between the (outer) cylinder and the furnace wall is By making the space a sealed structure and filling it with inert gas such as argon, oxidation of the outside surface of the cylinder can be effectively prevented, and the pressure is maintained close to room pressure by making it positive pressure during the reduction process and negative pressure during the distillation process. By doing so, deformation of the wall material due to the pressure difference between the inside and outside of the cylinder wall can be prevented.

一方凝縮室も冷却手段が講じられるほかは上記
還元蒸発室とほぼ同様の構成が採られる。つまり
還元蒸発室が単一筒構成の時は単一筒で、内外筒
方式の時は該方式で凝縮室が構成され、この外方
に適当な冷却手段が講じられる。冷却手段として
はこのような筒構成全体を水中に浸したり、或は
その外表面を水で濡らすことによつて達成でき
る。このほか、内外筒構成の場合には外筒を、周
囲に水ジヤケツトを備えた凝縮専用の構成とする
ことができる。
On the other hand, the condensation chamber has almost the same structure as the reduction and evaporation chamber, except that a cooling means is provided. That is, when the reduction and evaporation chamber has a single cylinder configuration, the condensation chamber is configured with a single cylinder, and when it has an internal/external cylinder configuration, the condensation chamber is configured with an appropriate cooling means on the outside thereof. The cooling means can be achieved by immersing the entire cylinder structure in water or by wetting its outer surface with water. In addition, in the case of an inner/outer cylinder configuration, the outer cylinder may be provided with a water jacket around the outer cylinder for exclusive use for condensation.

還元蒸発室と凝縮室とは接続管により連結され
るが、この接続管自体或はこれらの室の連結部付
近には還元工程時に両室を隔離するためバルブや
毎回取換えられる仕切板等が配置される。この接
続管にはMgやMgCl2が固化しないよう適当な加
熱手段が設けられる。管内で一部液化したMgや
MgCl2を冷却室へ流入させるために、冷却室へ向
かつて下り勾配を設けるのが好ましい。
The reduction evaporation chamber and the condensation chamber are connected by a connecting pipe, but there are valves and partition plates that are replaced each time on the connecting pipe itself or near the joint between these chambers to isolate the two chambers during the reduction process. Placed. This connecting pipe is provided with suitable heating means to prevent Mg and MgCl 2 from solidifying. Mg that has partially liquefied inside the pipe
In order to allow MgCl 2 to flow into the cooling chamber, it is preferable to provide a downward slope towards the cooling chamber.

次に本発明を、その実施に適した装置を示す添
付の図面によつて説明する。第1図は単一筒構成
の、第2図は内外筒構成のそれぞれ還元精製装置
の概略を示す縦断面図である。第1図において全
体を1で表わした還元蒸発室は本質的に円筒状の
単一筒体2で構成され、電熱式の炉3内に置かれ
る。炉壁の外周は鉄皮4で密に覆う。筒体2の開
いた上端を密閉する蓋5は中央の円筒状小室6、
該小室の下部を取囲むガスジヤケツト7及び上部
を取囲む水冷ジヤケツト8を有する。小室6の外
面上にはジヤケツト7と隣接して蒸気排出孔9が
設けられ、該ジヤケツト内に導入されるバーナー
燃焼ガス等の高温ガスによつて小室6の下部と共
に高温に維持される。小室外面にはまた室内減圧
のための排気管10を設けることもできる。小室
6のほぼ軸上には塩化物供給管11が鞘管12内
を下方に延びている。管11及び12は昇降可能
であり、鞘管12の下部にはフランジ13が固着
され、下降時には小室下端の開口14を閉鎖する
構成になつている。小室内面とフランジとの好ま
しい構成例の一つは第1図のように小室底部が漏
斗状に、これと組合わされるフランジが円錐状に
構成されたものである。小室上部に設けた冷却用
のジヤケツト8は、後で詳述するように精製工程
の終期にフランジ13を上昇させて小室を開き、
残留するMgやMgCl2を該小室の冷却によつて内
壁に析出させるためのものである。蒸気排出孔9
の上部はバルブ機構15を有する接続端を構成
し、この側面において凝縮室側の接続管16と結
合される。これらのバルブ機構15及び導管16
の周囲は高温ガスの流れによつてMgやMgCl2
内部に凝固しない温度に保たれる。加熱はこのほ
か電熱によつても行ない得る。必要に応じてMg
を溶融状態で導入するための管17をこの図のよ
うに筒壁に沿つて、或は他の部分、例えば蓋に設
けることができる。筒体2内に溶融保持された
Mgと上方から供給される金属塩化物、例えば
TiCl4との反応により生成した金属Tiはは台18
上に筒体底面から多少隔てゝ堆積し、一方副生成
物のMgCl2は融液状にて筒体底部に溜まり、この
図示した例において側壁上部から筒体内部に入り
下方へ延びて設けられた管19からバルブ20を
経て室外へ排除される。筒体2と炉3との間の空
間(炉内空間)21は密閉され圧力制御手段が講
じられている。
The invention will now be described with reference to the accompanying drawings, which show apparatus suitable for its implementation. FIG. 1 is a vertical cross-sectional view schematically showing a reduction purification apparatus having a single cylinder configuration and FIG. 2 having an inner and outer cylinder configuration. The reduction and evaporation chamber, designated as a whole by 1 in FIG. The outer periphery of the furnace wall is tightly covered with an iron skin 4. A lid 5 that seals the open upper end of the cylinder body 2 has a central cylindrical chamber 6;
It has a gas jacket 7 surrounding the lower part of the chamber and a water cooling jacket 8 surrounding the upper part. A steam exhaust hole 9 is provided on the outer surface of the chamber 6 adjacent to the jacket 7, and the lower portion of the chamber 6 is maintained at a high temperature by high temperature gas such as burner combustion gas introduced into the jacket. An exhaust pipe 10 can also be provided on the outside of the small chamber to reduce the pressure inside the chamber. A chloride supply pipe 11 extends downward within a sheath pipe 12 substantially on the axis of the small chamber 6 . The tubes 11 and 12 can be moved up and down, and a flange 13 is fixed to the lower part of the sheath tube 12, so that the opening 14 at the lower end of the chamber is closed when the tubes 11 and 12 are lowered. One preferred example of the configuration of the inner surface of the chamber and the flange is one in which the bottom of the chamber is shaped like a funnel and the flange combined therewith is configured like a cone, as shown in FIG. The cooling jacket 8 provided at the top of the small chamber is used to open the small chamber by raising the flange 13 at the end of the refining process, as will be detailed later.
This is to cause residual Mg and MgCl 2 to precipitate on the inner wall by cooling the small chamber. Steam exhaust hole 9
The upper part constitutes a connecting end having a valve mechanism 15, and is connected to a connecting pipe 16 on the condensing chamber side at this side. These valve mechanisms 15 and conduits 16
The surrounding area is kept at a temperature that prevents Mg and MgCl 2 from solidifying inside by the flow of high-temperature gas. Heating can also be done by electric heating. Mg as required
A tube 17 for introducing the molten material can be provided along the wall of the cylinder as shown in this figure, or in another part, for example in the lid. Melted and held within the cylinder body 2
Mg and metal chlorides fed from above, e.g.
Metal Ti produced by reaction with TiCl 4 is 18
On the other hand, the by-product MgCl 2 accumulates in the form of a melt at the bottom of the cylinder, and in the example shown, it enters the inside of the cylinder from the top of the side wall and extends downward. The water is discharged from the pipe 19 to the outside of the room via the valve 20. A space (furnace space) 21 between the cylinder body 2 and the furnace 3 is sealed and pressure control means are provided.

一方凝縮室22は上記還元蒸発室の場合と同様
に単一筒方式の筒体23とこの頂部を閉鎖する蓋
24とから構成され、筒体部分は水槽25の水中
に浸されている。蓋24は鋼製円板26及びその
下方に取付けられ断熱材を充填した缶27を有
し、該缶内には排気管28及び吸引孔29が設け
られる。吸引孔29は鋼板の上面でこれと連結さ
れた接続管16並びにバルブ15を経て還元蒸発
室の蒸気取出孔9と連結される。これらの各部分
は前述のようにMg及びMgCl2が凝固しない温度
に保たれて、還元蒸発室からこれらの介在物を凝
縮室へと導く。接続管16は内部で一部分液化し
たMg又はMgCl2を凝縮室へ流入させるため凝縮
室へ向かう下り勾配がつけられている。
On the other hand, the condensing chamber 22 is composed of a single cylinder type cylinder 23 and a lid 24 that closes the top of the cylinder, as in the case of the reduction and evaporation chamber, and the cylinder part is immersed in water in a water tank 25. The lid 24 has a steel disc 26 and a can 27 attached below it and filled with a heat insulating material, in which an exhaust pipe 28 and a suction hole 29 are provided. The suction hole 29 is connected to the vapor extraction hole 9 of the reduction and evaporation chamber via the connecting pipe 16 and valve 15 connected thereto on the upper surface of the steel plate. Each of these parts is maintained at a temperature at which Mg and MgCl 2 do not solidify, as described above, to direct these inclusions from the reduction evaporation chamber to the condensation chamber. The connecting pipe 16 is sloped downward toward the condensing chamber in order to allow the partially liquefied Mg or MgCl 2 inside to flow into the condensing chamber.

一方第2図は還元蒸発室30及び凝縮室31を
それぞれ内外筒方式にて構成した場合の例を示す
断面図である。こゝでは第1図における生成金属
堆積台18の代りに、取りはずし可能なロストル
状底板32,33を底部に有する第二の筒体(内
筒)34,35が共通のボルト締めによりそれぞ
れの蓋36,37に支えられて各室を構成する第
一の筒体(外筒)38,39に設置されているほ
かは、第1図と本質的に同様の構成が用いられ
る。こゝでも凝縮室は冷却手段としての水槽40
にその筒体部分が配置されている。これらの各室
30,31は第1図と同様な接続管41によつて
連結される。
On the other hand, FIG. 2 is a sectional view showing an example in which the reduction evaporation chamber 30 and the condensation chamber 31 are constructed in an inner/outer cylinder type. In this case, instead of the produced metal deposition table 18 in FIG. 1, second cylinders (inner cylinders) 34 and 35 having removable rostre-shaped bottom plates 32 and 33 at the bottom are attached to the respective lids by a common bolt. The configuration is essentially the same as that in FIG. 1, except that the first cylinder (outer cylinder) 38, 39 is supported by cylinders 36, 37 and constitutes each chamber. Here too, the condensation chamber is a water tank 40 as a cooling means.
The cylindrical part is placed in. These chambers 30, 31 are connected by a connecting pipe 41 similar to that shown in FIG.

このように構成された還元精製装置において還
元工程を行なうには、塩化物供給管11または4
2及び鞘管12,43を所定の位置まで下降せし
めて還元蒸発室の蓋5,36の下端を塞ぐと共に
バルブ15,44を閉じる。管17,45から所
定量の溶融Mgを導入したあと、管11,42か
ら金属塩化物、例えばTiCl4を液相または気相に
てMg浴面に供給する。両者の反応によりTi等の
生成金属が台18または内筒底板32上に堆積す
る。副生成物のMgCl2の大半は管19,46を経
て連続的にまたは間欠的に室外へ除かれる。還元
工程が終了すると還元蒸発室と凝縮室との間のバ
ルブを開いて両室を接続し、凝縮室の蓋の排気管
28,47或はこれと共に他の配管を経て両室を
吸引・減圧する。また炉により還元蒸発室内の堆
積物を加熱してMg及びMgCl2を気化する。こう
して発生した蒸気は接続管16,41を伝つて凝
縮室に入りこゝで或はこれまでに液化し、さらに
器壁または器底に触れて固化し付着する。この
間、接続管16,41及びこれに連結される還元
蒸発室の蒸気排出孔9,48の周囲は高温ガスの
流れによつて全体を750℃以上に保たれ、この内
面に凝固物の付着が生じないようにする。この操
作は生成金属に介在するMg及びMgCl2が本質的
に除去されるまで続けることもできるが次のよう
にすればこの分離操作を効率的に済ますことがで
きる。即ちこれらのMgやMgCl2の大部分が除去
された時点で鞘管12,43と共にフランジ1
3,49を上昇させて還元蒸発室の蓋小室の下端
を開き、また小室周囲の水冷ジヤケツト8,50
を用いて冷却することにより、これらの蒸気を凝
縮し、少くともその一部分を蓋内面に付着せしめ
るのである。この場合の付着物はこの蓋を次の還
元工程にて加熱することによつて回収される。単
一の筒体内または内筒内には精製されたTi等の
生成金属が得られ、これは還元蒸発室を分解して
回収される。一方凝縮室として使用され内面に
Mg及びMgCl2を付着せしめた単一筒体又は内外
筒は炉内へ配置して還元蒸発室として用い、これ
らの付着物を消費或は回収する。
In order to perform the reduction process in the reduction purification apparatus configured in this way, the chloride supply pipe 11 or 4 is
2 and sheath tubes 12, 43 are lowered to predetermined positions to close the lower ends of the lids 5, 36 of the reduction and evaporation chamber, and close the valves 15, 44. After introducing a predetermined amount of molten Mg through the tubes 17 and 45, a metal chloride such as TiCl 4 is supplied to the Mg bath surface from the tubes 11 and 42 in a liquid phase or a gas phase. Due to the reaction between the two, generated metals such as Ti are deposited on the table 18 or the inner cylinder bottom plate 32. Most of the by-product MgCl2 is continuously or intermittently removed to the outside via pipes 19,46. When the reduction process is completed, the valve between the reduction evaporation chamber and the condensation chamber is opened to connect the two chambers, and both chambers are suctioned and depressurized through the exhaust pipes 28 and 47 on the lid of the condensation chamber or other piping along with this. do. In addition, the deposit in the reduction and evaporation chamber is heated by a furnace to vaporize Mg and MgCl 2 . The steam thus generated passes through the connecting pipes 16 and 41 into the condensation chamber and is liquefied, and further solidifies and adheres to the vessel wall or bottom. During this time, the entire area around the connecting pipes 16, 41 and the steam exhaust holes 9, 48 of the reduction evaporation chamber connected thereto is maintained at a temperature of 750°C or higher by the flow of high-temperature gas, and no solidified matter adheres to the inner surface. Prevent this from happening. This operation can be continued until Mg and MgCl 2 present in the produced metal are essentially removed, but this separation operation can be efficiently completed in the following manner. That is, when most of these Mg and MgCl 2 are removed, the flange 1 along with the sheath tubes 12 and 43
3, 49 to open the lower end of the lid chamber of the reduction evaporation chamber, and also open the water cooling jacket 8, 50 around the chamber.
By cooling the lid, these vapors are condensed and at least a portion of them is deposited on the inner surface of the lid. In this case, the deposits are recovered by heating the lid in the next reduction step. Refined produced metals such as Ti are obtained within a single cylinder or inner cylinder, and are recovered by decomposing the reduction and evaporation chamber. On the other hand, the inner surface is used as a condensation chamber.
A single cylinder or inner and outer cylinders to which Mg and MgCl 2 are deposited are placed in a furnace and used as a reduction and evaporation chamber to consume or collect these deposits.

実施例 1 本質的に第1図に示される装置構成を用いて
TiCl4のMg還元による金属Tiの製造を行なつた。
内径1.8m、長さ5.6mの筒体は肉厚32mmの
SUS410ステンレス鋼製で、これは周囲を鉄皮で
覆つた外径2.8m、高さ約6.2mの電熱炉内に配置
された。炉内空間即ち筒体と炉との間の空間は気
密に構成された。蓋は最大内径1.3m、長さ2.6m
の小室を有し、その周囲上部には冷却水ジヤケツ
トを有し、下部は炉及びバーナーの燃焼ガスの流
れによつて加熱される構成を持つ。凝縮室にも上
記と同一構成の筒体を用い、蓋の下面の断熱材層
を貫通して排気管が配置され、上面に取付けられ
た内径40cmの接続管は還元蒸発室の蒸気排出孔の
接続端と連結され、その外周に設けたジヤケツト
には燃焼ガスを流すべくバーナーが設置された。
Example 1 Using the apparatus configuration essentially shown in FIG.
Metallic Ti was produced by Mg reduction of TiCl 4 .
The cylinder has an inner diameter of 1.8m and a length of 5.6m, with a wall thickness of 32mm.
Made of SUS410 stainless steel, it was placed in an electric furnace with an outer diameter of 2.8 m and a height of approximately 6.2 m, surrounded by an iron shell. The space inside the furnace, that is, the space between the cylinder and the furnace, was configured to be airtight. The lid has a maximum inner diameter of 1.3m and a length of 2.6m.
It has a small chamber with a cooling water jacket in the upper part around it, and the lower part is heated by the flow of combustion gas from the furnace and burner. A cylindrical body with the same structure as above is used for the condensation chamber, and an exhaust pipe is placed through the insulation layer on the bottom of the lid, and a connecting pipe with an inner diameter of 40 cm attached to the top is connected to the steam exhaust hole of the reduction evaporation chamber. A burner was installed in a jacket connected to the connecting end and provided around its outer periphery to allow combustion gas to flow.

この装置において還元蒸発室をアルゴン雰囲気
とし約9トンの溶融Mgを導入し、内部を約800
℃に昇温したあと液状TiCl4を400Kg/時の割合
で供給して反応を行なつた。副生成するMgCl2
筒体底部から間欠的に排出しながら60時間余にわ
たり通算25トン装入してTiCl4の吹込み停止し、
筒体底部からMg及びMgCl2を排出した。凝縮室
内を排気してから接続管端部のバルブを開いて還
元蒸発室と連結した。還元蒸発室の蓋のガスジヤ
ケツトにバーナー燃焼ガス流を送ることにより蒸
気排出孔及び接続管を約800℃に維持した。さら
に還元蒸発室を周囲の炉によつて約1000℃まで昇
温し、一方凝縮室を収容した容器に水を張り循環
せしめた。また還元蒸発室の周囲の炉内空間は排
気し減圧した。このような条件下で約70時間加熱
操作を行ない蒸発したMg及びMgCl2を凝縮室の
筒体内面に付着せしめた。この際Mg等の通過量
が減少して接続管内の温度上昇が鈍つた時点で蒸
気排出孔のバルブを閉じる一方塩化物供給管等を
上昇させて小室を開き、またこの周囲のジヤケツ
トに水を流すと共にガスジヤケツトに冷却空気を
送つて小室を冷却し、室内に残つているMg及び
MgCl2の蒸気を小室の付近にて固化・付着せしめ
た。
In this equipment, approximately 9 tons of molten Mg was introduced into the reduction evaporation chamber under an argon atmosphere, and the inside was heated to approximately 800 kg.
After raising the temperature to ℃, liquid TiCl 4 was supplied at a rate of 400 kg/hour to carry out a reaction. While intermittently discharging by-produced MgCl 2 from the bottom of the cylinder, a total of 25 tons of TiCl 4 was charged over 60 hours, and the injection of TiCl 4 was stopped.
Mg and MgCl 2 were discharged from the bottom of the cylinder. After evacuating the condensing chamber, the valve at the end of the connecting pipe was opened to connect it to the reduction evaporation chamber. The steam outlet and connecting tubes were maintained at approximately 800° C. by sending a stream of burner combustion gases to a gas jacket in the lid of the reduction evaporation chamber. Furthermore, the temperature of the reduction and evaporation chamber was raised to approximately 1000°C by a surrounding furnace, while water was filled in the container containing the condensation chamber and circulated. In addition, the furnace space around the reduction and evaporation chamber was evacuated and the pressure was reduced. A heating operation was performed for about 70 hours under these conditions, and the evaporated Mg and MgCl 2 were deposited on the inner surface of the cylinder of the condensation chamber. At this time, when the amount of Mg etc. passing through decreases and the temperature rise in the connecting pipe slows down, the valve of the steam exhaust hole is closed, while the chloride supply pipe etc. is raised to open the small chamber, and water is poured into the jacket around this. At the same time, cooling air is sent to the gas jacket to cool the small chamber and remove any remaining Mg and
MgCl 2 vapor was solidified and attached near the small chamber.

上記要領にて操作を行ない、結局約6.2トンの
Tiが筒体から回収された。Tiを取出した筒体に
は凝縮室用の蓋を設置して次工程で凝縮室として
使用した。またMgやMgCl2を付着せしめた筒体
は冷却後蓋を手早く還元蒸発室用のものに取替え
て還元蒸発室として用いた。
The operation was carried out according to the above procedure, and in the end, about 6.2 tons of
Ti was recovered from the cylinder. A condensation chamber lid was installed on the cylinder from which the Ti was removed, and it was used as a condensation chamber in the next step. In addition, after cooling the cylindrical body to which Mg or MgCl 2 was attached, the lid was quickly replaced with one for the reduction evaporation chamber, and the lid was used as the reduction evaporation chamber.

上記の筒体は都合50回以上の還元精製工程の繰
返しに供することができた。
The above-mentioned cylindrical body could be subjected to the reduction purification process more than 50 times in total.

実施例 2 本質的に第2図に示される装置構成を用いて
TiCl4のMg還元により金属Tiの製造を行なつた。
SUS316ステンレス鋼製の還元蒸発室外筒は内径
1.7m、長さ4.5m、肉厚32mmの円筒状で、中に内
径1.6m、長さ3.7m、肉厚19mmのSUS430ステン
レス鋼製の内筒を蓋から吊げ、全体を外径2.5m、
高さ5mの周囲を鉄皮で覆つた電熱炉内に配置し
た。外筒と炉との間の炉内空間は気密に構成し
た。一方凝縮室外筒は還元蒸発室の外筒と同一構
成のもので、この中に本質的に実施例1の場合と
同様の構成の蓋に支えられて、還元蒸発室のもの
と同一構成の内筒が本質的に空の状態でボルトを
用いて吊下げられた。凝縮室の蓋に取付けた内径
40cmの接続管は周囲にバーナー燃焼ガスを通すた
めのジヤケツトを備え、端部において蒸気排出孔
に接続された。
Example 2 Using the apparatus configuration essentially shown in FIG.
Metallic Ti was produced by Mg reduction of TiCl 4 .
The inner diameter of the reduction evaporation chamber outer cylinder made of SUS316 stainless steel is
It has a cylindrical shape with a length of 1.7 m, a length of 4.5 m, and a wall thickness of 32 mm. Inside, an inner cylinder made of SUS430 stainless steel with an inner diameter of 1.6 m, a length of 3.7 m, and a wall thickness of 19 mm is suspended from the lid, making the entire outer diameter 2.5 m. ,
It was placed in an electric furnace with a height of 5 m and covered with an iron shell. The space inside the furnace between the outer cylinder and the furnace was configured to be airtight. On the other hand, the condensing chamber outer cylinder is of the same construction as that of the reduction and evaporation chamber, and is supported within it by a lid of essentially the same construction as in Example 1, and is supported within it by a lid of essentially the same construction as that of the reduction and evaporation chamber. The tube was hung essentially empty using bolts. Inner diameter installed on the condensing chamber lid
The 40 cm connecting tube was equipped with a jacket around the circumference for passing the burner combustion gases and was connected to the steam outlet at the end.

この装置において還元蒸発室をアルゴン雰囲気
とし約7トンの溶融Mgを導入し、内筒を約800
℃に昇温したあと液状TiCl4を400Kg/時の割合
で供給して反応操作を行なつた。副生成する
MgCl2を外筒底部から間欠的に排出しながら約50
時間にわたり通算20トン装入してTiCl4の吹込み
を停止した。底板下に残つたMg及びMgCl2を全
部排出し、内筒を吊下げているボルトを回して内
筒を少し下降せしめ蓋下面との間に間隙を形成し
た。凝縮室内を排気すると共に還元蒸発室の蓋及
び接続管を加熱して約800℃とした後バルブを開
いて水槽中に浸した凝縮室と連結した。還元蒸発
室を約950〜1000℃に加熱し、Mg及びMgCl2を蒸
発せしめて凝縮室へ導き、内筒壁面に凝縮付着せ
しめた。この際還元蒸発室において周囲の炉によ
る加熱及びガスジヤケツトへの高温ガス(燃焼ガ
ス)の送入により室全体を約800℃まで昇温する
と同時に周囲の炉内空間を減圧した。このように
して精製操作を行ない、昇温開始から約80時間後
にMg等の通過量の減少により導管内の温度上昇
が鈍つた時点で蒸気排出孔のバルブを閉じる一方
塩化物供給管を上昇して小室を開き、またこの周
囲のジヤケツトに水を流して小室を冷却し、室内
に残つているMg及びMgCl2の蒸気を小室の付近
に固化・付着せしめた。
In this device, the reduction evaporation chamber is set to an argon atmosphere, approximately 7 tons of molten Mg is introduced, and the inner cylinder is heated to approximately 800 tons.
After raising the temperature to 0.degree. C., liquid TiCl 4 was supplied at a rate of 400 kg/hour to perform a reaction operation. produce by-products
approximately 50 min while intermittently discharging MgCl2 from the bottom of the outer cylinder.
After charging a total of 20 tons over a period of time, the injection of TiCl 4 was stopped. All the Mg and MgCl 2 remaining under the bottom plate were discharged, and the bolts suspending the inner cylinder were turned to lower the inner cylinder a little to form a gap between it and the bottom surface of the lid. After evacuating the condensing chamber and heating the lid and connecting pipe of the reduction evaporation chamber to approximately 800°C, the valve was opened and the chamber was connected to the condensing chamber immersed in a water tank. The reduction and evaporation chamber was heated to about 950 to 1000° C. to evaporate Mg and MgCl 2 and lead them to the condensation chamber, where they were condensed and deposited on the inner cylinder wall surface. At this time, in the reduction evaporation chamber, the temperature of the entire chamber was raised to approximately 800°C by heating by the surrounding furnace and high-temperature gas (combustion gas) was fed into the gas jacket, and at the same time the pressure in the surrounding furnace space was reduced. The refining operation was carried out in this manner, and when the temperature rise in the conduit slowed down due to a decrease in the amount of Mg etc. passing through about 80 hours after the start of temperature rise, the valve of the steam exhaust hole was closed while the chloride supply pipe was raised. The chamber was opened, and the chamber was cooled by running water through the jacket around it, causing the Mg and MgCl 2 vapors remaining in the chamber to solidify and adhere to the vicinity of the chamber.

次に還元蒸発室を冷却し、連結ボルトをはずし
て蓋を取りはずし、最後に内筒を取出した。この
内筒からは結局約5トンのTiスポンジを回収し
た。凝縮室の内筒はMg及びMgCl2を付着した
まゝ蓋を還元蒸発室用のものと交換し次の還元工
程のために外筒内に配置した。一方生成Tiを取
出した内筒は凝縮室用の蓋を取付けて次の精製工
程に用いた。
Next, the reduction and evaporation chamber was cooled, the connecting bolts were removed, the lid was removed, and finally the inner cylinder was taken out. In the end, approximately 5 tons of Ti sponge were recovered from this inner cylinder. The inner cylinder of the condensation chamber still had Mg and MgCl 2 attached to it, and the lid was replaced with one for the reduction and evaporation chamber, and the lid was placed in the outer cylinder for the next reduction process. On the other hand, the inner cylinder from which the produced Ti was taken was fitted with a condensation chamber lid and used for the next refining process.

上記の外筒は都合50回以上の還元・精製工程の
繰返しに耐えた。
The above-mentioned outer cylinder withstood repeated reduction and purification processes more than 50 times.

上記の両実施例において還元及び精製工程並に
筒体の分解及び組立を含む―パツチサイクルに要
した全時間は例えば実施例2の場合約10日間で、
これは同じ程度のTiスポンジの製造を行なうた
めの従来の、還元及び精製工程を別々の筒体にて
行なう構成における約15日間に比べて大巾な向上
を示すものである。
In both of the above examples, the total time required for the patch cycle, including the reduction and purification steps as well as the disassembly and assembly of the cylinder, was approximately 10 days in Example 2, for example.
This represents a significant improvement over the approximately 15 days required to produce the same amount of Ti sponge in a conventional configuration in which the reduction and purification steps were performed in separate cylinders.

以上の説明から理解されるように、本発明にお
いては、 1 還元工程により生成された金属は移送するこ
となく直ちに精製工程、即ち真空蒸溜操作に供
することができるので、工程の切換に要する労
力や時間の節約並びに移送に関連して従来必要
だつた冷却及びこれに続く再加熱のための時間
やエネルギーの節約が達成された。
As can be understood from the above explanation, in the present invention, 1. Since the metal produced in the reduction process can be immediately subjected to the purification process, that is, the vacuum distillation operation, without being transferred, the labor required for switching the process is reduced. Savings in time and energy for cooling and subsequent reheating previously required in conjunction with transport are achieved.

2 精製工程を行なう際、従来のように被処理堆
積物を保持せる筒体と凝縮物を付着すべき筒体
とを軸方向に組合わせて一体化し炉内へ装入す
ること(或は炉の装着)及び取出し(取りはず
し)が不要になるので、これに関連して従来不
可欠の大荷重クレーンが不要となり、また、こ
れは収容する建物の天井高さを小さくすること
ができ、或は既存の建物ではより大容量の装置
を設置することができる。
2 When performing the refining process, as in the past, the cylindrical body that holds the deposits to be treated and the cylindrical body to which the condensate is attached are combined in the axial direction, integrated, and charged into the furnace (or This eliminates the need for heavy-duty cranes, which were previously indispensable. buildings can accommodate larger capacity equipment.

3 従来装置においては、還元工程から精製工程
へ移行する際の装置分解時に、筒体内に残留し
ている未反応塩化物(例えばTiCl4)が大気中
に洩出することがあつたが、この事故は皆無と
なり環境汚染がこの点で防がれた。
3 In conventional equipment, unreacted chloride (e.g. TiCl 4 ) remaining inside the cylinder sometimes leaked into the atmosphere when the equipment was disassembled during the transition from the reduction process to the purification process. There were no accidents and environmental pollution was prevented in this respect.

4 従来広く使用されている冷却部を上部にし蒸
発部を下部に置く真空蒸溜装置構成においてし
ばしば生じていた凝固物(Mg及びMgCl2)の
蒸発部への落下のトラブルが根本的に解決さ
れ、この面からも処理時間が短縮された。
4. The problem of solidified matter (Mg and MgCl 2 ) falling into the evaporation section, which often occurred in the vacuum distillation equipment configuration that has been widely used in the past, with the cooling section on the top and the evaporation section on the bottom, has been fundamentally solved. From this aspect as well, processing time has been shortened.

5 従来方法において還元工程終期にしばしば生
じ歩留りの低下及び生成金属の発火の原因とな
つていた低級塩化物が生成しなくなり、製品の
歩留り及び品質の向上が達成された。
5. Lower chlorides, which often occur at the end of the reduction process in conventional methods and cause a decrease in yield and ignition of the produced metal, are no longer produced, and the yield and quality of the product are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明による装置構成の例
を示す概略断面図である。図において主要部分は
次の参照符号によつて示される。 1……還元蒸発室、2……筒体、3……炉、5
……蓋、9……蒸気排出孔、11……塩化物供給
管、15……バルブ、16……接続管、17……
Mg導入管、19……MgCl2排出管、22……凝
縮室、23……筒体、24……蓋、25……水
槽、29……吸引孔、30……還元蒸発室、31
……凝縮室、34,35……内筒、36,37…
…蓋、38,39……外筒、40……水槽、41
……接続管、42……塩化物供給管、45……
Mg導入管、46……MgCl2排出管。
FIGS. 1 and 2 are schematic cross-sectional views showing an example of an apparatus configuration according to the present invention. In the figures, main parts are indicated by the following reference numerals. 1... Reduction evaporation chamber, 2... Cylindrical body, 3... Furnace, 5
... Lid, 9 ... Steam exhaust hole, 11 ... Chloride supply pipe, 15 ... Valve, 16 ... Connection pipe, 17 ...
Mg introduction pipe, 19...MgCl 2 discharge pipe, 22... Condensation chamber, 23... Cylindrical body, 24... Lid, 25... Water tank, 29... Suction hole, 30... Reduction evaporation chamber, 31
... Condensation chamber, 34, 35 ... Inner cylinder, 36, 37...
... Lid, 38, 39 ... Outer cylinder, 40 ... Water tank, 41
... Connection pipe, 42 ... Chloride supply pipe, 45 ...
Mg introduction pipe, 46...MgCl 2 discharge pipe.

Claims (1)

【特許請求の範囲】 1 Mgを溶融保持し該Mgと上方から供給され
る金属塩化物との反応により金属を析出すること
ができ、かつ副生成物のMgCl及び残留Mgを気
化し得る、上部を着脱可能な蓋によつて本質的に
密閉された還元蒸発室及びこの周囲に配置された
加熱炉、該還元蒸発室に隣接して設けられMg及
びMgCl2の蒸気をを凝縮し得る。上部を着脱可能
な蓋によつて密閉された凝縮室及び該室の冷却手
段を有し、還元蒸発室の蓋が内方に設けられた温
度制御可能な小室及び該小室の周囲に該小室から
隔てゝ設けられた蒸気排出孔を有し、該排出孔と
凝縮室の蓋とに両端を接続され全体をMg及び
MgCl2が凝固しない温度に保持し得る接続管によ
還元蒸発室と凝縮室とが連結され、該接続管中を
通る蒸気流制御のための外部から操作可能な弁を
有し、さらに還元蒸発室及び凝縮室並びに接続管
内を排気するための手段を備え、以て上記反応に
より生成金属と共に介在せるMgCl2及びMgを気
化して凝縮室の上部へ導き、液相乃至固相として
該室内にて捕集すべくしたことを特徴とする金属
塩化物の還元精製装置。 2 閉じた下端をもつ外筒及び多数の穿孔を有す
る底板を取付けた内筒から本質的に構成され、内
部にMgを溶融保持し該Mgと該内筒上部から供
給される金属塩化物との反応により該金属を析出
することができかつ副生成物のMgCl2及び残留
Mgを気化し得る、上部を着脱可能な蓋によつて
本質的に密閉された還元蒸発室及びこの周囲に配
置された加熱炉、該還元蒸発室に隣接して設けら
れ上記内筒と同一構成の第二内筒を収容しかつ上
部を着脱可能な蓋によつて本質的に密閉された凝
縮室、該第二内筒を冷却し内部にMgCl2及び金属
Mgを液化乃至固化する手段を有し、還元蒸発室
の蓋が内方に設けられた温度制御可能な小室及び
該小室の周囲に該小室から隔てゝ設けられた蒸気
排出孔を有し、該排出孔と凝縮室の蓋とに両端を
接続され全体をMg及びMgCl2が凝固しない温度
に保持し得る接続管により還元蒸発室と凝縮室と
が連結され、該接続管中を通る蒸気流制御のため
の外部から操作可能な弁を有し、さらに還元蒸発
室及び凝縮室並びに接続管内を排気するための手
段を備え、以て還元蒸発室にて金属塩化物のMg
による還元反応を行ない生成金属と共に析出した
MgCl2及び残留Mgを気化せしめて接続管を経て
凝縮室内の第二内筒の開放された上部へ導き、液
相乃至固相として該内筒内壁面上に付着せしめて
回収すべくした金属塩化物の還元精製装置。
[Scope of Claims] 1. An upper part capable of melting and retaining Mg and precipitating metal by reaction of the Mg with a metal chloride supplied from above, and capable of vaporizing by-product MgCl and residual Mg. A reduction and evaporation chamber essentially sealed by a removable lid and a heating furnace disposed around the reduction and evaporation chamber are provided adjacent to the reduction and evaporation chamber for condensing Mg and MgCl 2 vapors. It has a condensation chamber whose upper part is sealed with a removable lid, a temperature-controllable chamber having a cooling means for the chamber, and a lid of the reduction evaporation chamber provided inside, and a temperature-controllable chamber around the chamber from which the chamber is cooled. It has a steam exhaust hole provided at a distance, and both ends are connected to the exhaust hole and the lid of the condensation chamber, and the whole is made of Mg and
The reduction evaporation chamber and the condensation chamber are connected by a connecting tube that can be maintained at a temperature at which MgCl 2 does not solidify, and has an externally operable valve for controlling vapor flow through the connecting tube, The chamber, the condensation chamber, and the connecting pipe are equipped with a means for evacuating the inside of the chamber, and the MgCl 2 and Mg present together with the metal produced by the above reaction are vaporized and guided to the upper part of the condensation chamber, and are introduced into the chamber as a liquid phase or a solid phase. 1. A reduction and purification device for metal chlorides, characterized in that the metal chlorides are collected using a metal chloride. 2. It essentially consists of an outer cylinder with a closed lower end and an inner cylinder fitted with a bottom plate having a large number of perforations, and holds Mg molten inside and allows the Mg to be mixed with metal chloride supplied from the upper part of the inner cylinder. The reaction can precipitate the metal and produce by-product MgCl2 and residual
A reduction evaporation chamber capable of vaporizing Mg, the upper part of which is essentially sealed with a removable lid, and a heating furnace disposed around the reduction evaporation chamber, which is provided adjacent to the reduction evaporation chamber and has the same structure as the inner cylinder. a condensing chamber containing a second inner cylinder and essentially sealed by a removable top lid, cooling the second inner cylinder and containing MgCl 2 and metal
It has a means for liquefying or solidifying Mg, and has a temperature controllable small chamber with a lid of the reduction evaporation chamber installed inside, and a steam exhaust hole provided around the small chamber separated from the small chamber. The reduction evaporation chamber and the condensation chamber are connected by a connecting tube that is connected at both ends to the discharge hole and the lid of the condensing chamber and can maintain the entire body at a temperature at which Mg and MgCl 2 do not solidify, and the vapor flow through the connecting tube is controlled. It has a valve that can be operated from the outside for the purpose of removing metal chlorides from the Mg
was precipitated together with the metal produced by the reduction reaction.
MgCl 2 and residual Mg are vaporized and guided to the open upper part of the second inner cylinder in the condensing chamber through a connecting pipe, and the metal chloride is deposited on the inner wall surface of the inner cylinder as a liquid or solid phase to be recovered. Equipment for reducing and refining things.
JP708683A 1983-01-18 1983-01-18 Reduction refining device for metallic chloride Granted JPS59133335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP708683A JPS59133335A (en) 1983-01-18 1983-01-18 Reduction refining device for metallic chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP708683A JPS59133335A (en) 1983-01-18 1983-01-18 Reduction refining device for metallic chloride

Publications (2)

Publication Number Publication Date
JPS59133335A JPS59133335A (en) 1984-07-31
JPH0256408B2 true JPH0256408B2 (en) 1990-11-30

Family

ID=11656275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP708683A Granted JPS59133335A (en) 1983-01-18 1983-01-18 Reduction refining device for metallic chloride

Country Status (1)

Country Link
JP (1) JPS59133335A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761485B2 (en) * 1989-10-26 1998-06-04 株式会社住友シチックス尼崎 Apparatus and method for producing high melting point high toughness metal
CN101812601B (en) * 2010-04-13 2011-08-31 洛阳双瑞万基钛业有限公司 Anti-blocking tube heating device for sponge production
CN104711425A (en) * 2013-12-12 2015-06-17 贵阳铝镁设计研究院有限公司 Sponge titanium and sponge zirconium reduction distillation equipment

Also Published As

Publication number Publication date
JPS59133335A (en) 1984-07-31

Similar Documents

Publication Publication Date Title
US6824585B2 (en) Low cost high speed titanium and its alloy production
US4565354A (en) Apparatus for producing purified refractory metal from a chloride thereof
JPH059497B2 (en)
US2337042A (en) Apparatus and method for manufacture of magnesium metal
JPH0256408B2 (en)
JPH0255490B2 (en)
JPS6112838A (en) Manufacturing apparatus of spongy titanium
EP0091414B1 (en) Apparatus and method for production of refractory metal from a chloride thereof
JPS591646A (en) Production of metallic ti
RU2205241C1 (en) Calcium producing method and apparatus (versions)
JPS6112837A (en) Manufacture of metallic titanium
JPS59226127A (en) Device for producing high-melting high-toughness metal
JPS5934218B2 (en) Metal titanium production equipment
JPS6137338B2 (en)
JPH0445571B2 (en)
JPS6144124B2 (en)
US2310188A (en) Sublimation refining
JPS60110823A (en) Reaction vessel for producing high-melting high- toughness metal
JPS58189340A (en) Method for obtaining metal from metallic chloride
JPS6112836A (en) Manufacture of sponge titanium
RU2261286C2 (en) Magnesium-reduced method of production of sponge zirconium and device for realization of this method
JPS6137339B2 (en)
JPS5817245B2 (en) Distilled zinc purification equipment
JPS6131168B2 (en)
JPS6131167B2 (en)