JPS5915967B2 - Method for reducing zirconium tetrachloride - Google Patents

Method for reducing zirconium tetrachloride

Info

Publication number
JPS5915967B2
JPS5915967B2 JP51153050A JP15305076A JPS5915967B2 JP S5915967 B2 JPS5915967 B2 JP S5915967B2 JP 51153050 A JP51153050 A JP 51153050A JP 15305076 A JP15305076 A JP 15305076A JP S5915967 B2 JPS5915967 B2 JP S5915967B2
Authority
JP
Japan
Prior art keywords
crucible
zirconium
magnesium chloride
wall
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51153050A
Other languages
Japanese (ja)
Other versions
JPS5376915A (en
Inventor
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP51153050A priority Critical patent/JPS5915967B2/en
Priority to DE19772756849 priority patent/DE2756849A1/en
Publication of JPS5376915A publication Critical patent/JPS5376915A/en
Publication of JPS5915967B2 publication Critical patent/JPS5915967B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は四塩化ジルコニウム蒸気を溶融した金属マグネ
シウムによシ還元してスポンジ状金属ジルコニウムを得
る方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for obtaining spongy metallic zirconium by reducing zirconium tetrachloride vapor with molten metallic magnesium.

四塩化ジルコニウムのマグネシウムによる還元反応を行
なう場合、従来第1図及び第2図に示すような装置を用
い、炉1によって周囲から加熱されるルツボ2内に溶融
された金属マグネシウム上に蒸気導入管3、あるいはさ
らに案内管4等を経て四塩化ジルコニウム蒸気を導入す
る方法が採られている。
When performing a reduction reaction of zirconium tetrachloride with magnesium, conventionally, an apparatus as shown in FIGS. 3, or a method in which zirconium tetrachloride vapor is further introduced through a guide pipe 4 or the like has been adopted.

この場合両者の反応は主として溶融マグネシウムの表面
で進行するが、ルツボ2上部の内壁面上にてもマグネシ
ウムの飛沫や蒸気と四塩化ジルコニウム蒸気との反応に
よる金属ジルコニウム5の生成が見られる。
In this case, both reactions mainly proceed on the surface of the molten magnesium, but the formation of metallic zirconium 5 is also observed on the inner wall surface of the upper part of the crucible 2 due to the reaction between magnesium droplets and vapor and zirconium tetrachloride vapor.

この様な内壁面上での反応は両図の装置のように溶融マ
グネシウム上に四塩化ジルコニウム蒸気を導入する態様
のものでは避けられないので、このような反応は歩留ま
りが悪く、また後述するように内壁面上に生成したジル
コニウムは品質が低級であり、たとえ回収しても原子炉
用材としては到底使用に耐えるものではなかった。
Such a reaction on the inner wall surface is unavoidable in an apparatus in which zirconium tetrachloride vapor is introduced onto molten magnesium, as in the apparatus shown in both figures, so such a reaction has a poor yield, and as will be explained later. The zirconium that formed on the inner walls was of low quality, and even if it was recovered, it would not be usable as a reactor material.

また、本発明者が先に特公昭56−8901号において
提案した金属ジルコニウムの製造法は上記と同様にして
四塩化ジルコニウムの蒸気を溶融金属マグネシウムで還
元するものである。
Furthermore, the method for producing metallic zirconium previously proposed by the present inventor in Japanese Patent Publication No. 56-8901 involves reducing the vapor of zirconium tetrachloride with molten metallic magnesium in the same manner as above.

この際、還元反応後にルツボを取出して生成ジルコニウ
ムを多量保持せるルツボ下部を切シ離し、複数個のルツ
ボ下部を集めて一つの真空蒸溜装置に仕込んで副生成物
たる塩化マグネシウム及び未反応の金属マグネシウムを
ジルコニウムから分離する。
At this time, after the reduction reaction, the crucible is taken out and the lower part of the crucible that holds a large amount of produced zirconium is separated, and the lower parts of the multiple crucibles are collected and charged into one vacuum distillation apparatus to remove the by-product magnesium chloride and unreacted metal. Separate magnesium from zirconium.

一方、切如離されたルツボ上部は、多量に保持されてい
る塩化マグネシウムをプレスで押出すなどして大部分取
除き、゛さらに内壁面上に付着したジルコニウムと塩化
マグネシウム等との混在物を除去した後、再びルツボ下
部と接合して再使用される。
On the other hand, most of the magnesium chloride retained in the upper part of the crucible, which had been separated, was extruded out using a press, and the mixture of zirconium, magnesium chloride, etc. that had adhered to the inner wall surface was removed. After being removed, it is reused by joining it to the lower part of the crucible.

このような付着物は壁面に強固に固着しているので機械
的な脱離が困難なため、従来は付着物を水に浸し、付着
物中の塩化マグネシウム分を溶出すると共に、この溶解
熱を利用して付着物と壁面との間に僅かな間隙を生じさ
せ、ここにタガネを挿し込んで脱離されていた。
Since such deposits are firmly attached to the wall surface, it is difficult to remove them mechanically. Conventionally, the deposits are immersed in water to elute the magnesium chloride content in the deposits and to absorb the heat of dissolution. A small gap was created between the deposit and the wall surface, and a chisel was inserted into the gap to remove it.

こうして回収されたジルコニウムは当然多量の水分を吸
着し、また一部は発熱により酸化物に転化し、最早原子
炉用として用いうるものではなく、せいぜい低品質金属
の原料として用いられるにすぎず、場合によっては廃棄
されたシして、この方法においてもや゛はシ歩留まシは
低かった。
The zirconium recovered in this way naturally adsorbs a large amount of moisture, and some of it is converted into oxides due to heat generation, so it can no longer be used for nuclear reactors, and can only be used as a raw material for low-quality metals. Even in this method, the yield was still low, as in some cases it was discarded.

本発明者は上記のような四塩化ジルコニウム蒸気の溶融
金属マグネシウムによる還元工程において、内壁面上に
スポンジ状ジルコニウム等を付着したままルツボ上部を
下部と接合し、一体化して再使用すれば還元反応時の高
温によシ付着物の壁面への固着力が弱まシ、付着量があ
る程度多くなるとルツボ底部へと脱落し、製品化される
ので、壁面上には常にほぼ一定量しか付着物が存在しな
いことを知見した。
In the process of reducing zirconium tetrachloride vapor with molten magnesium metal as described above, the present inventors believe that if the upper part of the crucible is joined to the lower part with sponge-like zirconium etc. attached to the inner wall surface and the reused unit is used, the reduction reaction can occur. Due to the high temperature at the time, the adhesion of the deposits to the wall weakens, and when the amount of deposits increases to a certain extent, it falls to the bottom of the crucible and is made into a product, so there is always only a constant amount of deposits on the wall. I discovered that it doesn't exist.

本発明は上記の知見に基き、副生成物たる還元剤金属の
塩化物の大部分をあらかじめ除去し、スポンジ状金属が
少量の副生成金属塩化物や未反応還元剤金属と共に壁面
上に残留せるルツボ上部を空のルツボ下部と接合一体化
し、この中で再び還元反応を行なうものである。
Based on the above findings, the present invention removes most of the by-product reducing agent metal chloride in advance, so that the spongy metal remains on the wall surface together with a small amount of by-product metal chloride and unreacted reducing agent metal. The upper part of the crucible is joined and integrated with the lower part of the empty crucible, and the reduction reaction is carried out again inside the crucible.

そして本発明の要旨とするところは、四塩化ジルコニウ
ムを金属マグネシウムで趙元してスポンジ状ジルコニウ
ムヲ生成する還元反応装置のスポンジ状ジルコニウムが
析出せるルツボを該還元装置の外部に取り出し、切断し
て比較的多量のジルコニウムを保持せるルツボ下部と、
比較的少量のジルコニウムを保持せるルツボ上部とに分
割する一方、ルツボ内に存在する副生成塩化マグネシウ
ムの大部分を除去し、スポンジ状ジルコニウムを分離回
収する方法において、ルツボ上部から塩化マグネシウム
の大部分を除去したあと、該ルツボ上部の内壁上に担持
された比較的少量のジルコニウムを乾燥状態に保ち、該
ルツボ上部の空のルツボ下部と接合、一体化して再使用
することを特徴とする四塩化ジルコニウムの還元方法に
存する。
The gist of the present invention is to take out the crucible from which spongy zirconium can be precipitated from a reduction reaction apparatus for producing spongy zirconium by heating zirconium tetrachloride with metallic magnesium, and to cut it. A lower part of the crucible that can hold a relatively large amount of zirconium,
In this method, most of the magnesium chloride from the upper part of the crucible is divided into the upper part of the crucible that can hold a relatively small amount of zirconium, while removing most of the by-product magnesium chloride present in the crucible and separating and recovering the spongy zirconium. After removing the zirconium, a relatively small amount of zirconium supported on the inner wall of the upper part of the crucible is kept in a dry state, and the upper part of the crucible is joined and integrated with the empty lower part of the crucible for reuse. It consists in a method for reducing zirconium.

本発明方歩の実施に用いる還元装置は第1図及び第2図
に示すように構成されたものでもよく、あるいは第2図
の装置においてルツボ2の内壁に密着して配置された薄
肉金属製の円筒を用いるものでもよく、さらにこのほか
にも各種の公知の還元装置を使用することができる。
The reducing device used to carry out the method of the present invention may be configured as shown in FIGS. 1 and 2, or in the device shown in FIG. In addition to this, various known reduction devices may be used.

この際特に第2図のようにルツボ2の上部に副生成物の
塩化マグネシウム6がジルコニウム5と共存している場
合には、ルツボ2を炉1から取り出し、A−Aのように
切断されたルツボ下部に生成ジルコニウムの大部分が収
容されるような位置で切断する。
At this time, especially when the by-product magnesium chloride 6 coexists with zirconium 5 in the upper part of the crucible 2 as shown in Fig. 2, the crucible 2 is taken out from the furnace 1 and cut as shown in A-A. Cut at a position where most of the produced zirconium is contained at the bottom of the crucible.

ルツボ上部の塩化マグネシウムはプレスやそのほか従来
の機械的手段を用いて除去する。
The magnesium chloride on the top of the crucible is removed using a press or other conventional mechanical means.

一方、第1図のように還元装置に塩化マグネシウム排出
装置7を設けて、ルツボ上部に存する塩化マグネシウム
の大部分を、ルツボ2が炉1から取シ出される前に溶融
状態で排出すれば、上記のようなルツボ切断後の、ルツ
ボ上部からの機械的方法による塩化マグネシウム排出を
省くことができる。
On the other hand, if a magnesium chloride discharge device 7 is provided in the reduction device as shown in FIG. 1, and most of the magnesium chloride present in the upper part of the crucible is discharged in a molten state before the crucible 2 is taken out from the furnace 1, After the crucible is cut as described above, it is possible to eliminate magnesium chloride discharge from the upper part of the crucible by a mechanical method.

本発明方法によればこれらの切断され、かつ塩化マグネ
シウムの大部分を排出したルツボ上部は、新たなルツボ
下部と接合し、あるいは内容物を回収して空になったル
ツボ下部と再び接合して還元反応に使用されるが、ルツ
ボ下部に接合される時まで、ジルコニウムを主成分とす
るルツボ上部内の付着物は大気中の水分の吸着を防ぐた
め下記に例示せる手段によって外気から遮断される。
According to the method of the present invention, the cut upper part of the crucible from which most of the magnesium chloride has been discharged is joined to a new lower part of the crucible, or the contents are recovered and joined again to the empty lower part of the crucible. It is used for the reduction reaction, but until it is bonded to the lower part of the crucible, the deposits in the upper part of the crucible, which mainly consist of zirconium, are shielded from the outside air by the following means to prevent the adsorption of moisture in the atmosphere. .

即ち、(1) 切断されかつ内壁上にジルコニウム等
が付着せるルツボ上部、または上記薄肉金属製円筒上部
を通常の乾燥室に収続する (2)上記ルツボ上部または金属製円筒に蓋をし、ある
いは密閉容器に入れ排気する (3)上記(2)の方法に金属製円筒内、あるいは容器
内に不活性ガスを充たす (4)付着物にビニール製等の防水性の覆をかける等で
ある。
That is, (1) placing the cut upper part of the crucible or the thin metal cylinder on which zirconium or the like is to be deposited on the inner wall in a normal drying chamber; (2) placing a lid on the crucible upper part or the metal cylinder; Alternatively, put it in an airtight container and evacuate. (3) Fill the metal cylinder or container with inert gas according to method (2) above. (4) Cover the deposit with a waterproof covering such as vinyl. .

次に本発明方法による操作を下記の実施例によって説明
する。
The operation of the method of the invention will now be illustrated by the following examples.

実施例 第2図の如く配置された内径109CIn高さ225鑞
のルツボ2内に金属マグネシウム900に9を装入し、
とのルツボ2を炉1ヘセットした。
EXAMPLE 9 Metallic magnesium 900 was charged into a crucible 2 with an inner diameter of 109 CIn and a height of 225 cm arranged as shown in Fig. 2.
The crucible 2 was placed in the furnace 1.

炉1の温度を800℃に上げてルツボ2内のマグネシウ
ムを溶融した後、ルツボ2の上方から四塩化ジルコニウ
ム蒸気を吹き込んで還元反応を行なった。
After the temperature of the furnace 1 was raised to 800° C. to melt the magnesium in the crucible 2, zirconium tetrachloride vapor was blown into the crucible 2 from above to perform a reduction reaction.

反応終了後炉1から取り出したルツボ2を底から70C
I11の位置で切断し、ルツボ下部は中に堆積している
塩化マグネシウムを取り除いた後、真空蒸溜操作を経て
約1000kgのジルコニウムのスポンジを得た。
After the reaction is complete, the crucible 2 taken out from the furnace 1 is heated to 70C from the bottom.
After cutting at the position I11 and removing the magnesium chloride deposited in the lower part of the crucible, a zirconium sponge weighing about 1000 kg was obtained through a vacuum distillation operation.

一方切断したルツボ上部は中に詰った塩化マグネシウム
の大部分を油圧プレスで押出した後、約100〜200
Icgのジルコニウムを付着させたまま、乾燥室内に収
納した。
On the other hand, after extruding most of the magnesium chloride packed inside the cut crucible using a hydraulic press, the upper part of the crucible was approximately 100 to 200
It was stored in a drying room with the ICG zirconium still attached.

この間ルツボ下部を真空蒸溜に供した後、生成したジル
コニウムスポンジを取シ出し空にした。
During this time, the lower part of the crucible was subjected to vacuum distillation, and then the produced zirconium sponge was taken out and emptied.

ルツボ上部を乾燥室から出し、とのルツボ下部と溶接に
よ多接合し、再びマグネシウム900Icgを装入し、
還元反応に使用した。
The upper part of the crucible was taken out of the drying room, welded together with the lower part of the crucible, and 900 Icg of magnesium was charged again.
It was used in the reduction reaction.

還元反応後上記と同様の操作を行なったが、ルツボの内
壁上に付着しているジルコニウムは、約100〜200
kgで前回とほぼ同量であった。
After the reduction reaction, the same operation as above was performed, but the amount of zirconium attached to the inner wall of the crucible was approximately 100 to 200.
It was about the same amount as last time in kg.

以上の記載によシ明らかであるが、本発明方法によれば
、 (1)従来廃棄されたジ低級製品の原料にしかなシ得な
かったような、ルツボ内壁面上に付着した生成金属を高
級な製品にすることができるので、製品の歩留=!シが
5係以上も向上した。
As is clear from the above description, according to the method of the present invention, (1) produced metals attached to the inner wall of the crucible, which could only be used as raw materials for discarded low-grade products, can be Product yield = ! Shi improved by more than 5 units.

(2)反応ごとにルツボ壁面上に付着物を除去する作業
工程が不要となり、この点で省力化が達成できた。
(2) The work step of removing deposits from the crucible wall after each reaction is no longer necessary, and labor savings can be achieved in this respect.

(3)ルツボ上部の内壁面上の付着物が、還元反応時に
一種の断熱材の作用を果すので、原料金属塩化物の還元
反応による発熱でルツボ内の温度が異常に上昇しても、
ルツボ壁面と合金化しない。
(3) The deposits on the inner wall surface of the upper part of the crucible act as a kind of heat insulator during the reduction reaction, so even if the temperature inside the crucible rises abnormally due to the heat generated by the reduction reaction of the raw metal chloride,
Does not alloy with the crucible wall.

順って、従来方法よりも、原料塩化物の導入速度を約2
0係増すことができた。
Therefore, compared to the conventional method, the introduction rate of raw material chloride was reduced by about 2
I was able to increase the number by 0.

(4)付着物は主に水分による酸素の吸着がないので、
酸素含有量の小さな硬度の低い製品が得られた。
(4) Since the deposits do not adsorb oxygen mainly due to moisture,
A product with low oxygen content and low hardness was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来公知でかつ本発明方法の実施に
用いうる、還元装置の例を示す縦断面図である。 図において各参照番号は次の部材を表わす。 1・・・・・・炉、2・・・・・・ルツボ、3・・曲蒸
気導入管、4・・・・・・案内管、5・・・・・・ジル
コニウム、6・・・・・・塩化マグネシウム、7・・・
・・・塩化マグネシウム排出装置。
FIGS. 1 and 2 are longitudinal cross-sectional views showing an example of a reduction apparatus that is conventionally known and can be used to carry out the method of the present invention. In the figures, each reference number represents the following member. 1... Furnace, 2... Crucible, 3... Curved steam introduction pipe, 4... Guide pipe, 5... Zirconium, 6... ...Magnesium chloride, 7...
... Magnesium chloride discharge device.

Claims (1)

【特許請求の範囲】 1 四塩化ジルコニウムを金属マグネシウムで還元して
スポンジ状ジルコニウムを生成する還元反応装置のスポ
ンジ状ジルコニウムが析出せるルツボを該還元装置の外
部に取り出し、切断して比較的多量のジルコニウムを保
持せるルツボ下部と、比較的少量のジルコニウムを保持
せるルツボ上部とに分割する一方、ルツボ内に存在する
副生成塩化マグネシウムの大部分を除去し、スポンジ状
ジルコニウムを分離回収する方法において、ルツボ上部
から塩化マグネシウムの大部分を除去したあと、該ルツ
ボ上部の内壁上に担持された比較的少量のジルコニウム
を乾燥状態に保ち、該ルツボ上部を空のルツボ下部と接
合、一体化して再使用することを特徴とする四塩化ジル
コニウムの還元方法。 2 ルツボの内壁上に密着して配置された薄肉金属製の
円筒の内壁上に上記のジルコニウムが付着されている特
許請求の範囲第1項記載の四塩化ジルコニウムの還元方
法。
[Scope of Claims] 1. A crucible from which spongy zirconium can be deposited is removed from a reduction reaction device for reducing zirconium tetrachloride with metallic magnesium to produce spongy zirconium, and is cut into a relatively large amount. In a method of separating and recovering spongy zirconium by dividing the crucible into a lower crucible that can hold zirconium and an upper crucible that can hold a relatively small amount of zirconium, while removing most of the by-product magnesium chloride present in the crucible, After removing most of the magnesium chloride from the upper part of the crucible, the relatively small amount of zirconium supported on the inner wall of the upper part of the crucible is kept dry, and the upper part of the crucible is joined and integrated with the empty lower part of the crucible for reuse. A method for reducing zirconium tetrachloride, characterized by: 2. The method for reducing zirconium tetrachloride according to claim 1, wherein the zirconium is adhered to the inner wall of a thin metal cylinder that is placed in close contact with the inner wall of the crucible.
JP51153050A 1976-12-20 1976-12-20 Method for reducing zirconium tetrachloride Expired JPS5915967B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP51153050A JPS5915967B2 (en) 1976-12-20 1976-12-20 Method for reducing zirconium tetrachloride
DE19772756849 DE2756849A1 (en) 1976-12-20 1977-12-20 Zirconium sponge prodn. - by reducing zirconium tetra:chloride with magnesium twice in crucible which after being cut apart is welded together

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51153050A JPS5915967B2 (en) 1976-12-20 1976-12-20 Method for reducing zirconium tetrachloride

Publications (2)

Publication Number Publication Date
JPS5376915A JPS5376915A (en) 1978-07-07
JPS5915967B2 true JPS5915967B2 (en) 1984-04-12

Family

ID=15553875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51153050A Expired JPS5915967B2 (en) 1976-12-20 1976-12-20 Method for reducing zirconium tetrachloride

Country Status (2)

Country Link
JP (1) JPS5915967B2 (en)
DE (1) DE2756849A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2434209A1 (en) * 1978-08-25 1980-03-21 Inst Titana Magnesium-thermic redn. of chloride(s) - using single appts. for redn. and vacuum refining
EP0047665A1 (en) * 1980-09-08 1982-03-17 Westinghouse Electric Corporation Improvements in or relating to metal distillation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109108A (en) * 1974-02-05 1975-08-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109108A (en) * 1974-02-05 1975-08-28

Also Published As

Publication number Publication date
DE2756849A1 (en) 1978-06-22
JPS5376915A (en) 1978-07-07

Similar Documents

Publication Publication Date Title
JPS6121290B2 (en)
US2663634A (en) Production of titanium metal
EP0540562B1 (en) Decontamination and/or surface treatments of aluminium and alloys thereof
US4637831A (en) Process for reduction of zirconium, hafnium or titanium using a zinc or tin seal
JP3607532B2 (en) Deoxygenation method for titanium material
JPS5915967B2 (en) Method for reducing zirconium tetrachloride
JP2008190024A (en) Method for producing titanium sponge
US2773760A (en) Production of titanium metal
US4242136A (en) Process for producing metallic zirconium
US2763542A (en) Method of producing refractory metals
US2878008A (en) Apparatus for continuous vacuum refining of sponge metallic titanium
US4613366A (en) Continuous reactive metal reduction using a salt seal
US2758831A (en) Lined metal reduction apparatus
US3663001A (en) Vacuum separator
CA1044899A (en) Process for producing metallic zirconium
EP0091414B1 (en) Apparatus and method for production of refractory metal from a chloride thereof
JP2689520B2 (en) Method for producing metallic titanium
US3269830A (en) Production of niobium from niobium pentachloride
JPS6112837A (en) Manufacture of metallic titanium
JPH0681051A (en) Production of metal by reduction reaction of metal halide
US3096174A (en) Methods of reducing a metal oxide by a carbonaceous material at sub-atmospheric pressures
JP4884348B2 (en) Manufacturing method of quartz glass block
US4591382A (en) Process and apparatus for recovering and purifying uranium scrap
JP3774339B2 (en) Method for recovering metallic magnesium
JPS6089529A (en) Production of metallic titanium