JPH0234898B2 - UMEKOMIGATAHEIBANMAIKURORENZUNOSEIZOHOHO - Google Patents

UMEKOMIGATAHEIBANMAIKURORENZUNOSEIZOHOHO

Info

Publication number
JPH0234898B2
JPH0234898B2 JP16391583A JP16391583A JPH0234898B2 JP H0234898 B2 JPH0234898 B2 JP H0234898B2 JP 16391583 A JP16391583 A JP 16391583A JP 16391583 A JP16391583 A JP 16391583A JP H0234898 B2 JPH0234898 B2 JP H0234898B2
Authority
JP
Japan
Prior art keywords
microlens
substrate
quartz substrate
silicon
embedded flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16391583A
Other languages
Japanese (ja)
Other versions
JPS60145933A (en
Inventor
Masao Makiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16391583A priority Critical patent/JPH0234898B2/en
Publication of JPS60145933A publication Critical patent/JPS60145933A/en
Publication of JPH0234898B2 publication Critical patent/JPH0234898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は、埋め込み形平板マイクロレンズの製
造方法に係り、とくに石英基板やシリコン板等か
らなる基板を制御されたレーザ光で局部的に加熱
して屈折率を増加させるようにした埋め込み形平
板マイクロレンズの製造方法に関するものであ
る。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to a method for manufacturing an embedded flat plate microlens, and in particular to a method for locally heating a substrate made of a quartz substrate, a silicon plate, etc. with controlled laser light. The present invention relates to a method of manufacturing an embedded flat microlens in which the refractive index is increased by increasing the refractive index.

(b) 技術の背景 近年、光フアイバの急速な発達にともなつて、
光通信、光情報処理等に広く応用されつつあるこ
とは周知である。このため多数本の光フアイバ
と、他の光デバイスとの結合が効率よく行なえる
埋め込み形平板マイクロレンズおよび埋め込み形
平板マイクロレンズアレイの開発が強く要望され
ている。
(b) Technical background In recent years, with the rapid development of optical fibers,
It is well known that it is being widely applied to optical communications, optical information processing, etc. Therefore, there is a strong demand for the development of embedded flat microlenses and embedded flat microlens arrays that can efficiently couple a large number of optical fibers with other optical devices.

(c) 従来技術の問題点 従来、マイクロレンズまたはマイクロレンズア
レイは特殊なガラス基板を使つてイオン交換法等
により行われていた。ところがこの方法では作製
に相当の時間を必要するとともに、レンズの開口
数(NA)もあまり大きく出来ないという欠点が
あつた。また、プラスチツク成形加工法、セルホ
ツクサンズ埋め込み法などによつてもマイクロレ
ンズ、マイクロレンズアレイが作製可能である
が、前者は光の損失、高NA、信頼性などの点
で、後者は組立方法、同一基板上でのモノリシツ
ク集積などの問題点があつた。
(c) Problems with conventional technology Conventionally, microlenses or microlens arrays have been produced using a special glass substrate using an ion exchange method or the like. However, this method required a considerable amount of time to manufacture and had the disadvantage that the numerical aperture (NA) of the lens could not be made very large. Microlenses and microlens arrays can also be fabricated using plastic molding methods, cellulose sand embedding methods, etc., but the former has disadvantages in terms of light loss, high NA, reliability, etc., while the latter has disadvantages due to the assembly method and the same method. There were problems such as monolithic integration on the board.

(d) 発明の目的 本発明は、上記従来の欠点に鑑み、多数本の光
フオイバと、他の光デバイスとの結合が効率よく
行なえる埋め込み形平板マイクロレンズの製造方
法を提供することを目的とするものである。
(d) Purpose of the Invention In view of the above-mentioned conventional drawbacks, an object of the present invention is to provide a method for manufacturing an embedded flat microlens that can efficiently couple a large number of optical fibers with other optical devices. That is.

(e) 発明の構成 前述の目的は、四塩化ゲルマニウムガス中にお
いて、石英基板、或いはシリコン基板上に形成し
た酸化シリコン膜に対し、レーザ光を局所的に照
射加熱することにより、前記石英基板あるいは酸
化シリコンの表面にゲルマニウムを導入して屈折
率の高い領域を局所的に形成することを特徴とす
る埋め込み形平板マイクロレンズの製造方法によ
つて達成される。
(e) Structure of the Invention The above object is to heat the silicon oxide film formed on the quartz substrate or silicon substrate by locally irradiating and heating the silicon oxide film formed on the quartz substrate or silicon substrate in germanium tetrachloride gas. This is achieved by a method for manufacturing an embedded flat microlens, which is characterized by introducing germanium into the surface of silicon oxide to locally form a region with a high refractive index.

(f) 発明の実施例 以下図面を参照しながら本発明に係る埋め込み
形平板マイクロレンズの製造方法の実施例につい
て詳細に説明する。
(f) Embodiments of the Invention Examples of the method for manufacturing an embedded flat microlens according to the present invention will be described in detail below with reference to the drawings.

第1図は、本発明に係る埋め込み形平板マイク
ロレンズの製造方法の一実施例を説明するための
aは石英板をレーザー光で加熱している断面図、
bは石英にマイクロレンズアレイを形成した断面
図で、1はレーザビーム、2は四塩化ゲルマニウ
ムガス(GeCl4)ガス、3は石英基板、4は温度
分布、5は屈折率分布、6はマイクロレンズ屈折
率分布、7はゲルマニウム(Ge)濃度分布であ
る。
FIG. 1 is a cross-sectional view of a quartz plate heated with a laser beam for explaining an embodiment of the method for manufacturing an embedded flat microlens according to the present invention;
b is a cross-sectional view of a microlens array formed on quartz, where 1 is a laser beam, 2 is germanium tetrachloride gas (GeCl 4 ) gas, 3 is a quartz substrate, 4 is a temperature distribution, 5 is a refractive index distribution, and 6 is a microlens array. Lens refractive index distribution, 7 is germanium (Ge) concentration distribution.

第1図aにおいて、石英基板3を真空容器(図
示せず)内に固定し、石英基板3より屈折率の大
きな物質を含むガス、例えばGeCl4ガスを流しつ
つ上記真空容器の石英基板3と対向する位置に設
けた窓(図示せず)を通して例えばTEM00のモ
ードのレーザビーム1を石英基板3の表面に垂直
に照射することによつて局所的に加熱する。この
際、レーザビーム1がGeCl4ガス中で散乱されて
スポツトサイズが広がつたり加熱効率が低下する
ことを防ぐため、上記窓と石英基板3との間隔を
数十mmに設定することが望ましい。上記レーザビ
ーム1のスポツトサイズをマイクロレンズの直径
にほぼ等しくし、そのパワーおよび照射時間を真
空容器内の圧力に応じて制御することにより上記
スポツトサイズ内に最高温度が石英基板3の融点
に近い温度分布4を実現することができる。例え
ば、その条件としては、レーザパワーを5〜10W
とし、照射時間を10〜20分とし、四塩化ゲルマニ
ウムガスの圧力を0.5気圧とすれば良い。その結
果、熱分解したGeCl4ガスから上記温度分布4に
ほぼ比例した量のGeが石英基板3内に熱拡散に
より導入され、温度分布4にほぼ比例した屈折率
分布5が形成されることになる。第1図bは、前
述した埋め込み形平板マイクロレンズを精度良く
整列せしめた埋め込み形平板マイクロレンズアレ
イである。
In FIG. 1a, a quartz substrate 3 is fixed in a vacuum container (not shown), and while a gas containing a substance having a higher refractive index than the quartz substrate 3, such as GeCl 4 gas, is flowed, the quartz substrate 3 in the vacuum container is The surface of the quartz substrate 3 is locally heated by irradiating the surface of the quartz substrate 3 perpendicularly with a laser beam 1 having a mode of TEM 00 , for example, through windows (not shown) provided at opposing positions. At this time, in order to prevent the laser beam 1 from being scattered in the GeCl 4 gas, increasing the spot size and reducing heating efficiency, the distance between the window and the quartz substrate 3 may be set to several tens of mm. desirable. By making the spot size of the laser beam 1 approximately equal to the diameter of the microlens and controlling its power and irradiation time according to the pressure inside the vacuum container, the maximum temperature within the above spot size is close to the melting point of the quartz substrate 3. Temperature distribution 4 can be realized. For example, the conditions are to increase the laser power to 5 to 10W.
The irradiation time should be 10 to 20 minutes, and the pressure of germanium tetrachloride gas should be 0.5 atm. As a result, Ge in an amount approximately proportional to the temperature distribution 4 described above is introduced from the thermally decomposed GeCl 4 gas into the quartz substrate 3 by thermal diffusion, and a refractive index distribution 5 approximately proportional to the temperature distribution 4 is formed. Become. FIG. 1b shows an embedded flat microlens array in which the aforementioned embedded flat microlenses are aligned with high accuracy.

第2図は、本発明に係る埋め込み形平板マイク
ロレンズの製造方法の他の実施例を説明するため
のaはシリコン板をレーザ光で加熱している断面
図、bはシリコンにマイクロレンズアレイを形成
した断面図で、前図と同等の部分については同一
符号を付しており、8はシリコン基板、9は酸化
シリコン(SiO2)膜である。
FIG. 2 is a cross-sectional view of a silicon plate heated with laser light, and b is a cross-sectional view of a microlens array formed on silicon, for explaining another embodiment of the method for manufacturing an embedded flat microlens according to the present invention. In the formed cross-sectional view, the same parts as in the previous figure are given the same reference numerals, 8 is a silicon substrate, and 9 is a silicon oxide (SiO 2 ) film.

第2図aは、前述した石英基板3に代えて熱酸
化法あるいはCVD法により堆積されたシリコン
酸化膜9を有するシリコン基板8を用いた実施例
を説明するための断面図であり、前述の実施例と
同じ方法によつてレーザビーム1を照射し、シリ
コン酸化膜9内に局所的にGeを導入し屈折率分
布5を形成したものである。この際、シリコン酸
化膜9下のシリコン基板8にGeが導入されても
後の結果には影響しない。第2図bは、前述した
埋め込み形平板マイクロレンズを精度良く整列せ
しめた埋め込み形平板マイクロレンズアレイであ
る。さらに第3図に示すように、マイクロレンズ
の形成された面と反対側のシリコン基板8の面上
をレジスト膜10で覆いマイクロレンズと対向す
る領域を窓開けした後シリコン基板8を選択的に
エツチング除去し、この窓領域に光フアイバ11
を挿入することによつて特別な位置合わせを行う
ことなく容易にしかも正確に光フアイバ11とマ
イクロレンズを結合させることができる。
FIG. 2a is a cross-sectional view for explaining an embodiment in which a silicon substrate 8 having a silicon oxide film 9 deposited by a thermal oxidation method or a CVD method is used in place of the quartz substrate 3 described above. The laser beam 1 is irradiated by the same method as in the example, and Ge is locally introduced into the silicon oxide film 9 to form the refractive index distribution 5. At this time, even if Ge is introduced into the silicon substrate 8 under the silicon oxide film 9, it does not affect the subsequent results. FIG. 2b shows an embedded flat microlens array in which the aforementioned embedded flat microlenses are aligned with high accuracy. Furthermore, as shown in FIG. 3, after covering the surface of the silicon substrate 8 opposite to the surface on which the microlenses are formed with a resist film 10 and opening a window in the region facing the microlenses, the silicon substrate 8 is selectively removed. Remove the etching and insert the optical fiber 11 into this window area.
By inserting the microlens, the optical fiber 11 and the microlens can be combined easily and accurately without special alignment.

(g) 発明の効果 以上の説明から明らかなように、本発明に係る
埋め込み形平板マイクロレンズの製造方法によれ
ば、レーザ光を精密に制御することによつて基板
上へのマイクロレンズやマイクロレンズアレイの
製造および光フアイバとの結合が、容易かつ正確
に行えるので量産性及び品質の向上に寄与すると
ころが大である。
(g) Effect of the invention As is clear from the above explanation, according to the method for manufacturing an embedded flat plate microlens according to the present invention, microlenses and microlenses can be formed on a substrate by precisely controlling laser light. Since the manufacturing of the lens array and the coupling with the optical fiber can be performed easily and accurately, it greatly contributes to improving mass productivity and quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る埋め込み形平板マイク
ロレンズの製造方法の一実施例を説明するための
aは石英板をレーザ光で加熱しマイクロレンズを
形成している断面図、bは石英にマイクロレンズ
アレイを形成した断面図、第2図は、本発明に係
る埋め込み形平板マイクロレンズの製造方法の他
の実施例を説明するためのaはシリコン板をレー
ザ光で加熱しマイクロレンズを形成している断面
図、bはシリコンにマイクロレンズアレイを形成
した断面図、第3図は、本発明に係る埋め込み形
平板マイクロレンズの製造方法の応用例を説明す
るための断面図である。図において、1はレーザ
ビーム、2は四塩化ゲルマニウム(GeCl4)ガ
ス、3は石英基板、4は温度分布、5は屈折率分
布、6はマイクロレンズ屈折率分布、7はゲルマ
ニウム(Ge)濃度分布、8はシリコン基板、9
は酸化シリコン(SiO2)膜、10はレジスト膜、
11は光フアイバーを夫夫示す。
FIG. 1 is a cross-sectional view of a quartz plate heated with a laser beam to form a microlens, and b is a cross-sectional view of a quartz plate heated with a laser beam to explain an embodiment of the method for manufacturing an embedded flat plate microlens according to the present invention. FIG. 2 is a cross-sectional view of a microlens array formed, and FIG. FIG. 3 is a cross-sectional view showing a microlens array formed on silicon, and FIG. In the figure, 1 is a laser beam, 2 is germanium tetrachloride (GeCl 4 ) gas, 3 is a quartz substrate, 4 is a temperature distribution, 5 is a refractive index distribution, 6 is a microlens refractive index distribution, and 7 is a germanium (Ge) concentration. Distribution, 8 is silicon substrate, 9
10 is a silicon oxide (SiO 2 ) film, 10 is a resist film,
11 indicates an optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 四塩化ゲルマニウムガス中において、石英基
板、或いはシリコン基板上に形成した酸化シリコ
ン膜に対し、レーザ光を局所的に照射加熱するこ
とにより、前記石英基板あるいは酸化シリコンの
表面にゲルマニウムを導入して屈折率の高い領域
を局所的に形成することを特徴とする埋め込み形
平板マイクロレンズの製造方法。
1 Introducing germanium onto the surface of the quartz substrate or silicon oxide by locally irradiating and heating the silicon oxide film formed on the quartz substrate or silicon substrate with laser light in germanium tetrachloride gas. A method for manufacturing an embedded flat microlens, characterized by locally forming a region with a high refractive index.
JP16391583A 1983-09-05 1983-09-05 UMEKOMIGATAHEIBANMAIKURORENZUNOSEIZOHOHO Expired - Lifetime JPH0234898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16391583A JPH0234898B2 (en) 1983-09-05 1983-09-05 UMEKOMIGATAHEIBANMAIKURORENZUNOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16391583A JPH0234898B2 (en) 1983-09-05 1983-09-05 UMEKOMIGATAHEIBANMAIKURORENZUNOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS60145933A JPS60145933A (en) 1985-08-01
JPH0234898B2 true JPH0234898B2 (en) 1990-08-07

Family

ID=15783239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16391583A Expired - Lifetime JPH0234898B2 (en) 1983-09-05 1983-09-05 UMEKOMIGATAHEIBANMAIKURORENZUNOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0234898B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593649B2 (en) * 1986-07-08 1997-03-26 三菱電機株式会社 Surface emitting semiconductor device

Also Published As

Publication number Publication date
JPS60145933A (en) 1985-08-01

Similar Documents

Publication Publication Date Title
US4375312A (en) Graded index waveguide structure and process for forming same
US5160523A (en) Method of producing optical waveguides by an ion exchange technique on a glass substrate
US6769274B2 (en) Method of manufacturing a planar waveguide using ion exchange method
US4765702A (en) Glass integrated optical component
JP2721210B2 (en) Manufacturing method of integrated optical components
US6393180B1 (en) Providing a refractive index change in an ion diffused material
US4844724A (en) Method of adjusting refractive index distribution lenses
JPH0584481B2 (en)
JPH0234898B2 (en) UMEKOMIGATAHEIBANMAIKURORENZUNOSEIZOHOHO
JPH1039151A (en) Optical waveguide and its production
JPS5858642B2 (en) Manufacturing method of optical fiber end face lens
JPS6332731B2 (en)
JPH06167627A (en) Production of glass waveguide with lens function and ld array module using this waveguide
JPS58117510A (en) Optical waveguide and its manufacture
JP3228016B2 (en) Manufacturing method of glass waveguide device
JPS59137346A (en) Manufacture of glass waveguide
JPH0353263B2 (en)
JPH0720336A (en) Structure of optical waveguide and its production
JPH06324235A (en) Optical fiber array and its production
JP2934008B2 (en) Method of manufacturing gradient index lens
JPS62119505A (en) Formation of optical waveguide device
JPH06183783A (en) Production of glass waveguide
JPH0582337B2 (en)
JPH044261B2 (en)
JPH08292335A (en) Manufacture of optical waveguide