JPS60145933A - Manufacture of embedded form plate microlens - Google Patents

Manufacture of embedded form plate microlens

Info

Publication number
JPS60145933A
JPS60145933A JP16391583A JP16391583A JPS60145933A JP S60145933 A JPS60145933 A JP S60145933A JP 16391583 A JP16391583 A JP 16391583A JP 16391583 A JP16391583 A JP 16391583A JP S60145933 A JPS60145933 A JP S60145933A
Authority
JP
Japan
Prior art keywords
refractive index
substrate
microlens
substance
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16391583A
Other languages
Japanese (ja)
Other versions
JPH0234898B2 (en
Inventor
Masao Makiuchi
正男 牧内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16391583A priority Critical patent/JPH0234898B2/en
Publication of JPS60145933A publication Critical patent/JPS60145933A/en
Publication of JPH0234898B2 publication Critical patent/JPH0234898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To manufacture the titled lens capable of bonding many optical fibers efficiently to other optical fibers, by diffusing a substance capable of increasing the refractive index thermally into a heated part of a substrate heated locally by irradiation with laser beams. CONSTITUTION:A surface for forming a microlens on a quarts or silicon substrate 3 is wrapped with a gas 2 of a substance, e.g. GeCl4, of about several tens of nm thickness capable of increasing the refractive index. The substrate 3 is then irradiated perpendicularly with laser beams 1 having controlled spot size and power and locally heated to about the melting point thereof to diffuse the substance, e.g. Ge, pyrolyzed from the gas 2 thermally into the surface of the substrate 3 and form a plate microlens having a refractive index distribution 5 proportional to the temperature distribution 4.

Description

【発明の詳細な説明】 fat 発明の技術分野 本発明は、埋め込み形平板マイクロレンズの製造方法に
係り、とくに石英基板やシリコン板等からなる基板を制
御されたレーザ光で局部的に加熱して屈折率を増加させ
るようにした埋め込み形平板マイクロレンズの製造方法
に関するものである。
[Detailed Description of the Invention] fat Technical Field of the Invention The present invention relates to a method for manufacturing an embedded flat plate microlens, and in particular to a method for manufacturing an embedded flat plate microlens, in particular, by locally heating a substrate made of a quartz substrate, a silicon plate, etc. with controlled laser light. The present invention relates to a method of manufacturing an embedded flat microlens with an increased refractive index.

(b) 技術の背景 近年、光ファイバの急速な発達にともなって、光通信、
光情報処理等に広く応用されつつあることは周知である
。このため多数本の光フォイハと、他の光デバイスとの
結合が効率よく行なえる埋め込み形平板マイクロレンズ
および埋め込み形平板マイクロレンズアレイの開発が強
く要望されている。
(b) Technical background In recent years, with the rapid development of optical fibers, optical communications,
It is well known that it is being widely applied to optical information processing and the like. Therefore, there is a strong demand for the development of embedded flat microlenses and embedded flat microlens arrays that can efficiently couple a large number of optical lenses with other optical devices.

(c+ 従来技術の問題点 従来、マイクロレンズまたはマイクロレンズアレイは特
殊なガラス基板を使ってイオン交換法等により行われて
いた。ところがこの方法では作製に相当の時間を必要す
るとともに、レンズの開口数(N、A、’) もあまり
大きく出来ないという欠点があった。また、プラスチッ
ク成形加工法、セルホソクザンズ埋め込み法などによっ
てもマイクロレンズ、マイクロレンズアレイが作製可能
であるが、前者は光の損失、高NΔ、信頼性などの点で
、後者は組立方法、同一基板上でのモノリシック集積な
どの問題点があった。
(c+ Problems with the conventional technology) Conventionally, microlenses or microlens arrays have been produced using a special glass substrate using an ion exchange method. However, this method requires a considerable amount of time to manufacture, and the aperture of the lens The disadvantage is that the number (N, A, ') cannot be made very large.Also, microlenses and microlens arrays can be fabricated by plastic molding methods, cellulose embedding methods, etc., but the former suffers from light loss. , high NΔ, reliability, etc. The latter has problems such as assembly method and monolithic integration on the same substrate.

(d+ 発明の目的 本発明は、上記従来の欠点に鑑み、多数本の光フォイハ
と、他の光デバイスとの結合が効率よく行なえる埋め込
み形平板マイクロレンズの製造方法を提供することを目
的とするものである。
(d+ Purpose of the Invention In view of the above-mentioned drawbacks of the conventional art, an object of the present invention is to provide a method for manufacturing an embedded flat microlens that can efficiently couple a large number of optical lenses with other optical devices. It is something to do.

te)発明の構成 前述の目的を達成するために本発明は、基板をレーザ光
により局部的に加熱し、該加熱部分に屈折率が増加する
物質例えばゲルマニューム等を熱拡散することによって
達成される。
te) Structure of the Invention In order to achieve the above-mentioned object, the present invention is achieved by locally heating a substrate with a laser beam and thermally diffusing a substance that increases the refractive index, such as germanium, into the heated portion. .

(fl 発明の実施例 以下図面を参照しながら本発明に係る埋め込み形平板マ
イクロレンズの製造方法の実施例について詳細に説明す
る。
Embodiments of the Invention Hereinafter, embodiments of the method for manufacturing an embedded flat microlens according to the present invention will be described in detail with reference to the drawings.

第1図は、本発明に係る埋め込み形平板マイクロレンズ
の製造方法の一実施例を説明するための(alは石英板
をレーザー光で加熱している断面図。
FIG. 1 is a cross-sectional view (al is a quartz plate heated with a laser beam) for explaining an embodiment of the method for manufacturing an embedded flat plate microlens according to the present invention.

tblは石英にマイクロレンズアレイを形成した断面図
で、1はレーザビーム、2は屈折率増加物質ガス、3は
石英基板、4ば温度分布、5は屈折率分布、6はマイク
ロレンズ屈折率分布、7は屈折率増加物質分布である。
tbl is a cross-sectional view of a microlens array formed on quartz, where 1 is a laser beam, 2 is a refractive index increasing material gas, 3 is a quartz substrate, 4 is a temperature distribution, 5 is a refractive index distribution, and 6 is a microlens refractive index distribution , 7 is the refractive index increasing material distribution.

第1図(a)は、石英基板3のマイクロレンズを形成す
る表面を厚さ数十mmの四塩化ゲルマニウム(GeC1
4)等からなる屈折率増加物質ガス2で包み、該石英基
板3に垂直にTEMoo モードのスポラ1〜サイズお
よびパワーを制御したレーザビーム1によって所定時間
(数秒−数分)、前記石英基板3の融点近くまで局所加
熱すれば、該石英基板3の表面の温度分布4に比例して
、石英基板3の表面中に屈折率増加物質ガス2(GeC
14)から熱分解したゲルマニウム(Ge)が熱拡散し
、前記温度分布4に比例した屈折率分布5が前記石英基
板3中に形成される。第1図(blは、前述した埋め込
み形平板マイクロレンズを精度良く整列せしめた埋め込
み形平板マイクロレンズアレイである。
In FIG. 1(a), the surface of the quartz substrate 3 on which the microlens will be formed is made of germanium tetrachloride (GeC1) with a thickness of several tens of mm.
4) The quartz substrate 3 is wrapped in a refractive index increasing substance gas 2 consisting of the like, and the quartz substrate 3 is exposed perpendicularly to the quartz substrate 3 by a TEMoo mode spora 1 to a laser beam 1 whose size and power are controlled. When locally heated to near the melting point of quartz substrate 3, refractive index increasing material gas 2 (GeC
Germanium (Ge) thermally decomposed from 14) is thermally diffused, and a refractive index distribution 5 proportional to the temperature distribution 4 is formed in the quartz substrate 3. FIG. 1 (bl) is an embedded flat microlens array in which the aforementioned embedded flat microlenses are aligned with high accuracy.

第2図は、本発明に係る埋め込み形平板マイクロレンズ
の製造方法の他の実施例を説明するための(a)はシリ
コン板をレーザ光で加熱している断面図、(b)はシリ
コンにマイクロレンズアレイを形成した断面図で、前回
と同等の部分については同一符号を付しており、8はシ
リコン基板、9は酸化シリコン(SiO2)膜である。
2A and 2B are cross-sectional views of a silicon plate heated with a laser beam, and FIG. This is a cross-sectional view showing the formation of a microlens array, in which the same parts as in the previous time are given the same reference numerals, 8 is a silicon substrate, and 9 is a silicon oxide (SiO2) film.

第2図+a)は、シリコン基板8の両面に酸化シリコン
膜9を形成し、該シリコン基板8上にマイクロレンズを
形成する表面を厚さ数+mmの四塩化ゲルマニウム(G
eC14)等からなる屈折率増加物質ガス2で包み、該
シリコン基板8に垂直にT E M o oモードのス
ポットサイズおよびパワーを制御したレーザビーム1に
よって所定時間(数秒−数分)、前記シリコン基板8の
融点近くまで局所加熱すれば、該シリコン基板8の表面
の温度分布4に比例して、シリコン基板8の表面中に屈
折率増加物質ガス2(GeC14)から熱分解したゲル
マニウム(Ge)が熱拡散し、前記温度分布4に比例し
た屈折率分布5が前記シリコン基板8中に形成される。
In FIG. 2+a), a silicon oxide film 9 is formed on both sides of a silicon substrate 8, and the surface on which a microlens is to be formed is made of germanium tetrachloride (G) with a thickness of several mm.
The silicon substrate 8 is covered with a refractive index increasing substance gas 2 consisting of eC14), etc., and is perpendicular to the silicon substrate 8 by a laser beam 1 with controlled spot size and power in the T E Mo o mode for a predetermined period of time (several seconds to several minutes). If the substrate 8 is locally heated to near its melting point, germanium (Ge) thermally decomposed from the refractive index increasing material gas 2 (GeC14) will be formed on the surface of the silicon substrate 8 in proportion to the temperature distribution 4 on the surface of the silicon substrate 8. is thermally diffused, and a refractive index distribution 5 proportional to the temperature distribution 4 is formed in the silicon substrate 8.

第2図(至))は、前述した埋め込み形平板マイクロレ
ンズを精度良く整狗せしめた埋め込み形平板マイクロレ
ンズアレイである。このようにシリコン基板8のマイク
ロレンズを形成しないシリコン面(110面)にレジス
ト1IiJIQを形成して、第3図で示すようにエツチ
ングすれば、光ファイバー11を容易に接続できるメリ
ットがある。
FIG. 2 (to) shows an embedded flat microlens array in which the above-mentioned embedded flat microlenses are arranged with high precision. If the resist 1IiJIQ is thus formed on the silicon surface (110 surface) on which the microlenses are not formed of the silicon substrate 8 and etched as shown in FIG. 3, there is an advantage that the optical fiber 11 can be easily connected.

[g) 発明の効果 以上の説明から明らかなように、本発明に係る埋め込み
形平板マイクロレンズの製造方法によれば、レーザ光を
精密に制御することによって基板上へのマイクロレンズ
やマイクロレンズアレイの製造が、容易かつ正確に行え
るので量産性及び品質の向上に寄与するところが大であ
る。
[g) Effects of the invention As is clear from the above explanation, according to the method for manufacturing an embedded flat microlens according to the present invention, microlenses and microlens arrays can be formed on a substrate by precisely controlling laser light. Since it can be manufactured easily and accurately, it greatly contributes to improving mass productivity and quality.

【図面の簡単な説明】 第1図は、本発明に係る埋め込み形平板マイクロレンズ
の製造方法の一実施例を説明するための(alは石英板
をレーザ光で加熱しマイクロレンズを形成している断面
図、(b)は石英にマイクロレンズアレイを形成した断
面図、第2図は、本発明に係る埋め込み形平板マイクロ
レンズの製造方法の他の実施例を説明するための(al
ばシリコン板をレーザ光で加熱しマイクロレンズを形成
している断面図、第3図は、本発明に係る埋め込み形平
板マイクロレンズの製造方法の応用例を説明するための
断面図である。 図において、1はレーザビ−ム、2は屈折率増加物質ガ
ス、3は石英基板、4は温度分布、5は屈折率分布、6
はマイクロレンズ屈折率分布、7は屈折率増加物質分布
、8はシリコン基板、9は酸化シリコン(SiO2)膜
、10はレジスト膜。 11は光ファイバーを夫夫示す。 手 続ネ市 正 王ワ:(方式) B訃ロ60年 2月14 1、事件の表示 昭和58年特許願第163915号 2、発明の名称 埋め込み形平板マイクロレンズの製造方法3、補正をす
る者 事件との関係 特許出願人 住所 神奈川県用崎市中原区上小田中1015番地(5
22)名称富 士 通 株 式 会−社冨士通株式会社
内 5、補正命令の日付 昭和60年 1月29日(発送日
)(1)明細店第7頁第1行の「図、第3図は、]とあ
るを「図、(b)はシリコンにマイクロレンズアレイを
形成した断面図、第3図は、」と訂正する。 以l−
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a diagram illustrating an embodiment of the method for manufacturing an embedded flat plate microlens according to the present invention (al is a method in which a quartz plate is heated with a laser beam to form a microlens). (b) is a cross-sectional view of a microlens array formed on quartz, and FIG. 2 is a cross-sectional view of (al
For example, FIG. 3 is a cross-sectional view showing a microlens formed by heating a silicon plate with a laser beam. FIG. In the figure, 1 is a laser beam, 2 is a refractive index increasing material gas, 3 is a quartz substrate, 4 is a temperature distribution, 5 is a refractive index distribution, and 6
1 is a microlens refractive index distribution, 7 is a refractive index increasing material distribution, 8 is a silicon substrate, 9 is a silicon oxide (SiO2) film, and 10 is a resist film. 11 indicates an optical fiber. Procedure: (Method) B passed away February 14, 1960 1. Indication of the incident 1982 Patent Application No. 163915 2. Name of the invention Method for manufacturing an embedded flat microlens 3. Making corrections Relationship with the case Patent applicant address 1015 Kamiodanaka, Nakahara-ku, Yozaki City, Kanagawa Prefecture (5
22) Name: Fujitsu Co., Ltd. - Fujitsu Co., Ltd. 5 Date of amendment order: January 29, 1985 (shipment date) [The figure is] corrected to read, ``Figure, (b) is a cross-sectional view of a microlens array formed on silicon, and Figure 3 is''. Below l-

Claims (2)

【特許請求の範囲】[Claims] (1)基板をレーザ光により局部的に加熱し、該加熱部
分に屈折率が増加する物質を熱拡散する工程を有するこ
とを特徴とする埋め込み形平板マイクロレンズの製造方
法。
(1) A method for manufacturing an embedded flat microlens, comprising the steps of locally heating a substrate with a laser beam and thermally diffusing a substance that increases the refractive index into the heated portion.
(2)前記レーザ光による加熱が屈折率増加物質ガス中
で行なわれることを特徴とする特許請求の範囲第1項に
記載の埋め込み形平板マイクロレンズの製造方法。
(2) The method for manufacturing an embedded flat microlens according to claim 1, wherein the heating by the laser beam is performed in a refractive index increasing material gas.
JP16391583A 1983-09-05 1983-09-05 UMEKOMIGATAHEIBANMAIKURORENZUNOSEIZOHOHO Expired - Lifetime JPH0234898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16391583A JPH0234898B2 (en) 1983-09-05 1983-09-05 UMEKOMIGATAHEIBANMAIKURORENZUNOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16391583A JPH0234898B2 (en) 1983-09-05 1983-09-05 UMEKOMIGATAHEIBANMAIKURORENZUNOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS60145933A true JPS60145933A (en) 1985-08-01
JPH0234898B2 JPH0234898B2 (en) 1990-08-07

Family

ID=15783239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16391583A Expired - Lifetime JPH0234898B2 (en) 1983-09-05 1983-09-05 UMEKOMIGATAHEIBANMAIKURORENZUNOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0234898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316683A (en) * 1986-07-08 1988-01-23 Mitsubishi Electric Corp Surface light emitting semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316683A (en) * 1986-07-08 1988-01-23 Mitsubishi Electric Corp Surface light emitting semiconductor device

Also Published As

Publication number Publication date
JPH0234898B2 (en) 1990-08-07

Similar Documents

Publication Publication Date Title
US6156243A (en) Mold and method of producing the same
US5951731A (en) Laser processing method to a micro lens
JP2000147292A (en) Manufacture of grating in waveguide
JPH0750201B2 (en) Microlens manufacturing method
JPH0584481B2 (en)
JPH08179155A (en) Method for coupling lens with optical fiber and production of lens substrate
JPS60145933A (en) Manufacture of embedded form plate microlens
EP0838701B1 (en) A laser processing method to an optical waveguide
JPS5858642B2 (en) Manufacturing method of optical fiber end face lens
CN113740942A (en) Micro-lens array grating and preparation method and application thereof
JP2006330010A (en) Microlens and microlens array
JP2001290008A (en) Method for producing optical element
JPS6332731B2 (en)
JP3041916B2 (en) Method for manufacturing lens array
JPH0527104A (en) Production of microlens
US6917474B2 (en) Lens array and method for fabricating the lens array
JPH02196201A (en) Production of microlens array
JPS60235102A (en) Transmission type light scattering element
JPH07134202A (en) Microlens array and its production
JPH0843678A (en) Optical fiber lens and its production
JPS60170938A (en) Method for correction of defective part of pattern on optical mask
JPS58167453A (en) Preparation of material wherein cylindrical lenses are arranged
JPS60191202A (en) Production for fresnel lens
JP2942825B1 (en) Method of manufacturing optical integrated circuit having out-of-plane branch mirror
JPS6356603A (en) Optical device