JPH0234773A - Vapor deposition device - Google Patents

Vapor deposition device

Info

Publication number
JPH0234773A
JPH0234773A JP63183074A JP18307488A JPH0234773A JP H0234773 A JPH0234773 A JP H0234773A JP 63183074 A JP63183074 A JP 63183074A JP 18307488 A JP18307488 A JP 18307488A JP H0234773 A JPH0234773 A JP H0234773A
Authority
JP
Japan
Prior art keywords
vapor deposition
light
storage container
heating element
deposition chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63183074A
Other languages
Japanese (ja)
Inventor
Yoshiro Akagi
与志郎 赤木
Mariko Ishino
石野 真理子
Atsuhisa Inoue
井上 敦央
Hiroshi Taniguchi
浩 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63183074A priority Critical patent/JPH0234773A/en
Publication of JPH0234773A publication Critical patent/JPH0234773A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Abstract

PURPOSE:To uniformly heat a material to be vapor-deposited and to maintain a stable rate of evaporation by fixing a light introducing body in the wall of a vapor deposition chamber so that the material can be heated with IR radiated from the outside. CONSTITUTION:A holding vessel 3 is put in a vapor deposition chamber 1 and a material 2 to be vapor-deposited is held in the vessel 3. A heating element 4 is set at the outside of the chamber 1 and used as a heat source for evaporating the material 2. A light introducing body 7 is fixed in the wall of the chamber 1 so as to introduce direct light and/or reflected light from the element 4 into the vessel 3.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、有機化合物等の薄膜を形成するために蒸発熱
源からの熱放射加熱を利用する蒸着装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a vapor deposition apparatus that utilizes thermal radiation heating from an evaporative heat source to form a thin film of an organic compound or the like.

〈従来技術〉 従来の有機化合物の薄膜化の方法、特に膜厚0゜1μm
から数μm程度の薄膜を均一に形成する方法としては、
特殊な用途にではあるが溶液塗布法が用いられてきた。
<Prior art> Conventional method for thinning an organic compound, especially a film thickness of 0°1 μm
As a method to uniformly form a thin film of about several μm,
Solution coating methods have been used for special applications.

また、特殊な方法としてプラズマ法がある。プラズマ法
は例えば、有機化合物モノマーを低真空アルゴンガスの
グロー放電領域を通過させることによってプラズマ化せ
しめ、プラズマ中に配置した基板表面に前記有機物モノ
マーを重合させるものである。
Additionally, there is a plasma method as a special method. In the plasma method, for example, an organic compound monomer is turned into plasma by passing through a glow discharge region of low-vacuum argon gas, and the organic monomer is polymerized on the surface of a substrate placed in the plasma.

しかし、これらの方法は原料の種類が極めて限定される
こと、またプラズマ法に関して言えば、プラズマ発生の
ためのガス導入に伴う不純物混入、プラズマ発生条件の
制御性、原料加熱温度とプラズマ温度との大きな相異に
よる原料分解などの問題がある。特に、近年研究の活発
な機能性有機材料、機能性高分子材料は適当な溶媒が無
かったり、分解によって機能が損なわれたりするので、
これらの従来法は適用が困難である。
However, these methods are extremely limited in the types of raw materials, and regarding the plasma method, there are problems with impurity contamination due to the introduction of gas for plasma generation, controllability of plasma generation conditions, and the relationship between the raw material heating temperature and plasma temperature. There are problems such as decomposition of raw materials due to large differences. In particular, functional organic materials and functional polymer materials, which have been actively researched in recent years, lack suitable solvents or lose their functionality due to decomposition.
These conventional methods are difficult to apply.

そこで、より汎用的、で膜厚の制御性を良くする方法と
しては、真空蒸着法がドライプロセスとして用いられて
いる。通常の蒸着法に加えてイオンクラスタービーム法
、あるいはイオン照射真空蒸着法などが蒸着法の発展と
して利用されている。
Therefore, as a method that is more general-purpose and provides better controllability of film thickness, a vacuum evaporation method is used as a dry process. In addition to normal vapor deposition methods, ion cluster beam methods, ion irradiation vacuum vapor deposition methods, and the like are being used as advances in vapor deposition methods.

これらは原料、あるいは基板にイオン照射する特徴を有
しており、薄膜形成を効果的に行なうことを意図したも
のである。
These have the feature of irradiating raw materials or substrates with ions, and are intended to effectively form thin films.

一般に真空蒸着法においては、原材料の蒸発が安定に制
御性良く行なえることが良質の薄膜を形成するためには
必要な条件である。宵機化合物材料は無機化合物材料よ
りも蒸発に要するエネルギーが比較的少ないという利点
を持つ反面、蒸発温度と分解温度が接近していたり、昇
華性であったりするものも多く、また熱伝導性が低いな
どの要因を持つため、蒸発速度を制御することは容易で
はない。
Generally, in the vacuum evaporation method, stable evaporation of raw materials with good controllability is a necessary condition for forming a high-quality thin film. Yoiki compound materials have the advantage of requiring relatively less energy for evaporation than inorganic compound materials, but on the other hand, many have evaporation and decomposition temperatures close to each other, or are sublimable, and also have poor thermal conductivity. It is not easy to control the evaporation rate due to factors such as low

従来、使用されてきた抵抗加熱による蒸発法はるつぼを
加熱することでるつぼ・試料間および試料同士の熱伝導
により原料全体を加熱蒸発させる方法である。このため
、一般に熱伝導性の低い有機化合物では原料全体が均一
に加熱されず、局所的な分解やるつぼ壁面に直接接触す
る部分からの過熱昇華が律速となる場合があり、長時間
にわたって安定な蒸発速度を推持することは困難となる
ことが多い。
The conventionally used evaporation method using resistance heating is a method in which the crucible is heated and the entire raw material is heated and evaporated by heat conduction between the crucible and the sample and between the samples. For this reason, in general, with organic compounds with low thermal conductivity, the entire raw material is not heated uniformly, and local decomposition or overheated sublimation from the part in direct contact with the crucible wall may be rate-limiting, resulting in stable stability over a long period of time. It is often difficult to maintain evaporation rates.

このような問題を解決するために蒸発方法として電子ビ
ーム加熱法、ドラム表面に原料を供給し蒸発させる方法
、フラッシュ蒸発させる方法が試みられるが、いずれも
適用できる材料が限定される。その他、比較的汎用性の
ある方法として、蒸発用の原料中に分散させた加熱用微
粒子に容器の外部から高周波電力を供給してエネルギー
を吸収u・シめ、発熱した微粒子により原料を均一に加
熱し蒸発させる方法がある。しかし、この方法では、消
費される外部エネルギー源のパワーと原料温度すなわち
加熱用微粒子の温度との関係は単純ではなく、さらに蒸
発用原料中の微粒子の種類や虫によってもその度に変わ
るなどの再現性の難点は原理上避けがたい。
In order to solve this problem, attempts have been made to evaporate the materials by electron beam heating, by supplying the raw material onto the surface of the drum and evaporating it, and by flash evaporation, but all of these methods are limited in the materials that can be used. Another relatively versatile method is to supply high-frequency power from outside the container to the heating particles dispersed in the raw material for evaporation, absorb the energy, and use the heated particles to uniformly spread the raw material. There is a method of heating and evaporating it. However, in this method, the relationship between the power of the external energy source consumed and the temperature of the raw material, that is, the temperature of the heating particles, is not simple and may change depending on the type of particles in the raw material for evaporation or insects. The problem of reproducibility is in principle unavoidable.

〈 発明が解決しようとする問題点 〉上記の如く、有
機化合物の薄膜化の方法として形成条件及び膜厚の制御
性の面での有利さから真空蒸着法が応用されつつあるが
、蒸発熱源として長時間にわたり安定に動作し、かつ簡
便なものは存在しないといった問題点がある。
<Problems to be Solved by the Invention> As mentioned above, vacuum evaporation is being applied as a method for forming thin films of organic compounds due to its advantages in terms of formation conditions and controllability of film thickness, but as a heat source for evaporation, The problem is that there is no simple and stable device that operates stably over a long period of time.

本発明は、上記問題点に鑑みて、蒸着用材料を均一に加
熱でき、長時間にわたって安定でかつ雰囲気に左右され
ることなく蒸発速度を維持できる蒸着装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a vapor deposition apparatus that can uniformly heat a material for vapor deposition, is stable over a long period of time, and can maintain an evaporation rate regardless of the atmosphere.

く 問題点を解決するための手段 〉 本発明による問題点解決手段は、第1図〜第S図の如く
、蒸着室lの内部に蒸着材料2を収納する収納容器3が
設けられ、蒸着室lの外部に前記蒸着材料2の蒸発熱源
としての発熱体4が設けられ、前記蒸着室1の室壁1a
に、発熱体4からの直射光5aおよび反射光5bのうち
少なくとも一方を収納容器3に導くための光導入体7が
設けられたものである。
Means for Solving the Problems> The means for solving the problems according to the present invention is as shown in FIGS. A heating element 4 as an evaporation heat source for the vapor deposition material 2 is provided outside the vapor deposition chamber 1, and a heating element 4 is provided outside the vapor deposition chamber 1.
A light introducing body 7 is provided for guiding at least one of the direct light 5a and the reflected light 5b from the heating element 4 to the storage container 3.

〈作用〉 上記問題点解決手段において、収納容器3に蒸着材料2
を適量投入し、蒸着室内を真空にする。
<Function> In the above problem solving means, the vapor deposition material 2 is placed in the storage container 3.
Pour in an appropriate amount and create a vacuum inside the deposition chamber.

そして、蒸着室lの外部の発熱体4から放出される赤外
線の直射光5aと、反射鏡6によって反射されて収納容
器3に向かって集光された反射光5bは、光導入体7を
通過して収納容器3に照射され、蒸着材料2を加熱する
。このとき、赤外線の熱放射による蒸着材料2の加熱は
、蒸着材料2による放射光5の吸収を利用するため、蒸
着材料2の全域にわたって均一に加熱される。そして、
蒸着材料2を蒸発させ、被蒸着物13の表面に蒸着して
、薄膜を形成する したがって、蒸着室lの外部に赤外線の発熱体4を配し
、赤外線の放射光による熱放射加熱によって、蒸着材料
2の加熱を効率的に行なうことができ、しかも、長時間
にわたって安定な蒸発速度を維持することができる。
Direct infrared light 5a emitted from the heating element 4 outside the vapor deposition chamber l and reflected light 5b reflected by the reflecting mirror 6 and condensed toward the storage container 3 pass through the light introduction body 7. The storage container 3 is irradiated with the evaporation material 2, and the vapor deposition material 2 is heated. At this time, since the vapor deposition material 2 is heated by infrared thermal radiation using absorption of the radiation light 5 by the vapor deposition material 2, the entire area of the vapor deposition material 2 is heated uniformly. and,
The vapor deposition material 2 is evaporated and deposited on the surface of the object 13 to form a thin film. Therefore, an infrared heating element 4 is placed outside the vapor deposition chamber l, and the vapor deposition is performed by thermal radiation heating using infrared radiation. The material 2 can be heated efficiently, and a stable evaporation rate can be maintained over a long period of time.

〈実施例〉 以下、本発明の第一実施例を第1.2図に基づいて説明
すると、第1図は本発明の第一実施例を示す蒸着装置の
概略正面図、第2図は同じく発熱体と蒸着材料との関係
を示す断面図である。
<Example> Hereinafter, the first example of the present invention will be explained based on Figures 1 and 2. Figure 1 is a schematic front view of a vapor deposition apparatus showing the first example of the present invention, and Figure 2 is the same. FIG. 3 is a cross-sectional view showing the relationship between a heating element and a vapor deposition material.

図示の如く、本発明の蒸着装置は、蒸着室1の内部に蒸
着材料2を収納する収納容器3が設けられ、蒸着室1の
外部に前記蒸着材料2の蒸発熱源としての発熱体4と、
該発熱体4からの放射光を反射して前記収納容器3に集
光する反射鏡6とが設けられ、前記蒸着室1の室壁1a
に、発熱体4からの直射光5aおよび反射鏡6からの反
射光5bを収納容器3に導くための光導入体7が設けら
れたものである。
As shown in the figure, the vapor deposition apparatus of the present invention includes a storage container 3 for storing a vapor deposition material 2 inside a vapor deposition chamber 1, a heating element 4 as an evaporation heat source of the vapor deposition material 2 outside the vapor deposition chamber 1,
A reflecting mirror 6 is provided to reflect the emitted light from the heating element 4 and focus it on the storage container 3.
A light introducing body 7 is provided for guiding direct light 5a from the heating element 4 and reflected light 5b from the reflecting mirror 6 to the storage container 3.

前記蒸着室lは、下面開放の筒状に形成されており、そ
の下面は台8に密着されている。そして、読合8に蒸着
室1の内部を真空にするための排気口9が設けられ、蒸
着室」の側面には酸素、硫黄、ハロゲン化合物等の酸化
雰囲気を形成するためのガス導入口IOが設けられてい
る。
The vapor deposition chamber 1 is formed in a cylindrical shape with an open bottom, and the bottom surface is in close contact with the table 8. An exhaust port 9 is provided in the reading 8 to create a vacuum inside the vapor deposition chamber 1, and a gas inlet IO is provided on the side of the vapor deposition chamber to form an oxidizing atmosphere containing oxygen, sulfur, halogen compounds, etc. is provided.

前記収納容器3は透明な石英ガラス製の容器で、前記蒸
着室l内に支持脚11で固定支持されており、該収納容
器3に蒸着材料2が投入される。また、蒸着材料2の温
度測定をするための熱雷対等の熱電変換素子12が収納
容器3の内面に装着され、蒸着室lの外部で検温部12
aに接続されている。
The storage container 3 is a container made of transparent quartz glass, and is fixedly supported in the vapor deposition chamber 1 by support legs 11, and the vapor deposition material 2 is put into the storage container 3. Further, a thermoelectric conversion element 12 such as a thermal lightning pair for measuring the temperature of the vapor deposition material 2 is attached to the inner surface of the storage container 3, and a temperature measuring section 12 is installed outside the vapor deposition chamber l.
connected to a.

前記発熱体4は、熱源に赤外線電球が用いられ、温度制
御を行なうための温度制御部4aに接続されており、前
記検温部12aからの信号により蒸着材料2の温度が一
定となるように、あるいは−定の温度操作プログラムに
従って蒸着材料2の温度が変化するように温度制御を行
なう。発熱体4は前記収納容器3に対して水平となる位
置で蒸着室lの外部に配役されている。そして、該発熱
体4の蒸着室1とは反対側の後方に、凹面状の反射鏡6
が配されている。発熱体4からの放射光5は可視光など
と同等な電磁波であり、鏡、レンズなどで方向を変更し
得るため、球面鏡、平面鏡等の反射fi6を用いても良
く、放射光5は収納容器3に集光され、極めて効率的に
利用し得るものとなる。
The heating element 4 uses an infrared light bulb as a heat source, and is connected to a temperature control section 4a for temperature control, so that the temperature of the vapor deposition material 2 is kept constant according to a signal from the temperature measurement section 12a. Alternatively, temperature control is performed so that the temperature of the vapor deposition material 2 changes according to a fixed temperature control program. The heating element 4 is arranged outside the vapor deposition chamber 1 at a position horizontal to the storage container 3. A concave reflecting mirror 6 is provided at the rear of the heating element 4 on the opposite side from the vapor deposition chamber 1.
are arranged. The emitted light 5 from the heating element 4 is an electromagnetic wave equivalent to visible light, and the direction can be changed using a mirror, lens, etc. Therefore, a reflection fi6 such as a spherical mirror or a plane mirror may be used, and the emitted light 5 is emitted from the storage container. 3 and can be used extremely efficiently.

前記光導入体7は、収納容器3と発熱体4との間の蒸着
室壁1aに挿着された透明な石英ガラス体であって、蒸
着室1の内部と外気とを遮断するよう光導入体7の外周
部は室壁1aにシールされている。
The light introducing body 7 is a transparent quartz glass body inserted into the vapor deposition chamber wall 1a between the storage container 3 and the heating element 4, and is a transparent quartz glass body inserted into the vapor deposition chamber wall 1a between the storage container 3 and the heating element 4. The outer periphery of the body 7 is sealed to the chamber wall 1a.

なお、被蒸着物13である基板は、収納容器3の上方に
支持体14によって固定保持されている。
Note that the substrate, which is the object to be deposited 13, is fixedly held above the storage container 3 by a support 14.

上記構成において、収納容器3に蒸着材料2として有機
化合物顔料のフタロンアニン粉末を適量投入し、蒸着室
lを台8と密着させて、排気口9から排気を行ない、蒸
着室内を真空にする。その後、蒸着室1の外部の発熱体
4から放出される赤外線の直射光5aと、反射鏡6によ
って反射されて収納容器3に向かって集光された反射光
5bは、赤外光に対して透明な光導入体7を通過する。
In the above configuration, an appropriate amount of phthalonanine powder, which is an organic compound pigment, is put into the storage container 3 as the vapor deposition material 2, the vapor deposition chamber 1 is brought into close contact with the table 8, and exhaust is performed from the exhaust port 9 to make the vapor deposition chamber vacuum. Thereafter, the direct infrared light 5a emitted from the heating element 4 outside the deposition chamber 1 and the reflected light 5b reflected by the reflector 6 and condensed toward the storage container 3 are converted into infrared light. It passes through a transparent light introducing body 7.

そして、収納容器3に照射され、蒸着材料2のフタロシ
アニン粉末を加熱する。このとき、赤外線の放射光5に
よる蒸着材料2の加熱は、従来のるつぼの抵抗加熱法で
みられる熱伝導による局所的な不均一な加熱ではなく、
蒸着材料2による放射光5の吸収を利用するため、有機
化合物材料の粒径、形状には関係なく、蒸着材料2の全
域にわたって均一に加熱される。
Then, the storage container 3 is irradiated, and the phthalocyanine powder of the vapor deposition material 2 is heated. At this time, the heating of the vapor deposition material 2 by the infrared radiation 5 is not local non-uniform heating due to heat conduction, which is seen in the conventional crucible resistance heating method.
Since the absorption of the emitted light 5 by the vapor deposition material 2 is utilized, the entire area of the vapor deposition material 2 is uniformly heated regardless of the particle size and shape of the organic compound material.

そして、蒸着材料2の種類および使用目的に応じた加熱
温度に制御して、金属フタロシアニンを昇華させ、被蒸
着物13の基板の表面に蒸着して、薄膜を形成する。
Then, the metal phthalocyanine is sublimed by controlling the heating temperature according to the type of vapor deposition material 2 and the purpose of use, and is vapor deposited on the surface of the substrate of the vapor deposition object 13 to form a thin film.

ここで、本発明の赤外線による熱放射法と従来の抵抗過
熱法による蒸発法とを比較すると、使用した真空蒸着装
置の構成は蒸着材料の加熱機構の相違以外は全く同一で
あり、また蒸着条件についても蒸着源温度(500℃)
、基板・発熱体間距離(50m+n)等、全く同じであ
る。まず、蒸着初期では本発明を用いた場合の蒸着速度
は、従来の抵抗加熱法による場合(約20人/m1n)
の約2倍であった。さらにこの後、数時間の連続蒸着後
の蒸着速度は従来法では初期の約l/4(約5人/m1
n)以下に低下したのに対し、本発明を用いた場合には
ほぼ一定のままであった。
Here, when comparing the heat radiation method using infrared rays of the present invention and the conventional evaporation method using resistance heating method, the configuration of the vacuum evaporation equipment used is completely the same except for the difference in the heating mechanism of the evaporation material, and the evaporation conditions are Deposition source temperature (500℃)
, the distance between the substrate and the heating element (50m+n), etc. are exactly the same. First, in the early stage of deposition, the deposition rate when using the present invention is about 20 people/m1n when using the conventional resistance heating method.
It was about twice as large. Furthermore, after this, the deposition rate after several hours of continuous deposition is approximately 1/4 of the initial rate (approximately 5 persons/m1) in the conventional method.
n), whereas it remained almost constant when the present invention was used.

したがって、蒸着室1の外部に赤外線の発熱体4を置き
、赤外線の放射光による放射加熱によって、特に熱伝導
率の悪い有機化合物の蒸着材料2の加熱を効率的に行な
うことができ、しかも、長時間にわたって安定な蒸発速
度を維持することができる。
Therefore, by placing the infrared heating element 4 outside the vapor deposition chamber 1, it is possible to efficiently heat the vapor deposition material 2, which is an organic compound having particularly poor thermal conductivity, by radiant heating using the infrared radiation. A stable evaporation rate can be maintained over a long period of time.

また、従来の抵抗加熱法、あるいは電子ビーム加熱法、
フラッシュ蒸着法などでは蒸着室1内に自己発熱体を設
置しており、該発熱体の消耗、破損、焼損のために設置
、保守が煩雑であること、また、発熱体自身に起因する
系の汚染が避けられないが、本発明は原理的にこれらを
除去することができ、特に酸化雰囲気中での蒸着材料2
の加熱では、従来の抵抗加熱法の適用が困難であるが、
放射加熱による方法では有機無機材料を問わず全く問題
にならないことは明らかである。
In addition, conventional resistance heating method or electron beam heating method,
In the flash evaporation method, etc., a self-heating element is installed in the deposition chamber 1, and installation and maintenance are complicated due to wear, damage, and burnout of the heating element. Although contamination is unavoidable, the present invention can in principle remove these, especially when depositing materials 2 in an oxidizing atmosphere.
It is difficult to apply the conventional resistance heating method when heating the
It is clear that the method using radiation heating poses no problem regardless of whether the material is organic or inorganic.

次に、本発明の第二実施例を第3図に示す。第3図は本
発明の第二実施例を示す発熱体と蒸着材料との関係を示
す断面図である。
Next, a second embodiment of the present invention is shown in FIG. FIG. 3 is a sectional view showing the relationship between the heating element and the vapor deposition material, showing a second embodiment of the present invention.

上記第一実施例では、放射光の赤外線導入路として赤外
光に対して透明なガラス体を一例として示したが、これ
は先に述べたように外部の発熱体4の置かれた大気中か
ら蒸着室!の内部の蒸着材料2を遮断するために使用さ
れるので、このような機能を有するものであれば、棒状
、あるいは弾力性に富むグラスファイバー状でも差支え
ない。
In the first embodiment described above, a glass body transparent to infrared light was used as an example of the infrared introduction path for the synchrotron radiation, but as mentioned earlier, this is not possible in the atmosphere where the external heating element 4 is placed. From the deposition chamber! Since it is used to block the vapor deposition material 2 inside, it may be rod-shaped or highly elastic glass fiber-shaped as long as it has such a function.

そこで、図示の如く、本実施例では光導入体7は、石英
ガラス製のコア7aと、該コア7aより低い屈折率を持
つクラッド7bで覆った二重構造をした棒状のもので、
該先導人体7の蒸着室l側の先端に収納容器3が形成さ
れており、放射光5の入射面15aとは反対側の面を反
射面+5bとし、高効率に熱放射を利用することを可能
としている。
Therefore, as shown in the figure, in this embodiment, the light introducing body 7 is a rod-shaped body with a double structure, which is made of a core 7a made of quartz glass and covered with a cladding 7b having a lower refractive index than the core 7a.
A storage container 3 is formed at the tip of the leading human body 7 on the vapor deposition chamber l side, and the surface opposite to the incident surface 15a of the synchrotron radiation 5 is a reflective surface +5b, making it possible to utilize heat radiation with high efficiency. It is possible.

そして、該先導人体7は収納容器3と発熱体4とか水平
となるよう蒸着室壁1aに挿着されている。
The leading human body 7 is inserted into the deposition chamber wall 1a so that the storage container 3 and the heating element 4 are horizontal.

したがって、発熱体4からの放射光5が光導入体7の内
部を反射しながら収納容器3まで伝導していき、しかも
反射面+5bで反射した放射光5も利用できるため、効
率よく加熱することができ、第一実施例と同様の作用効
果を奏する。
Therefore, the emitted light 5 from the heating element 4 is reflected inside the light introduction body 7 and conducted to the storage container 3, and the emitted light 5 reflected from the reflective surface +5b can also be used, so that efficient heating can be achieved. , and the same effects as in the first embodiment can be achieved.

本発明の第三実施例は、収納容器3を水平方向から放射
光5による加熱を行なう代わりに、第4図に示す如く、
収納容器3の下部から加熱するようにしたものである。
In the third embodiment of the present invention, instead of heating the storage container 3 horizontally using radiation 5, as shown in FIG.
The storage container 3 is heated from the bottom.

図示の如く、蒸着室1の内部で収納容器3の下方に放射
光5の方向を変換して、収納容器3の下部に集光する凹
面状の反射鏡6aを配している。なお、放射光5の方向
を変換する機能だけでよいのなら平面鏡でも可能である
As shown in the figure, a concave reflecting mirror 6a is disposed inside the deposition chamber 1 below the storage container 3 to convert the direction of the emitted light 5 and to focus the light on the lower part of the storage container 3. Incidentally, if only the function of changing the direction of the emitted light 5 is required, a plane mirror can also be used.

また、第5図に示す本発明の第四実施例は、光導入体7
と収納容器3が一体に形成された棒状の赤外線導入路を
用いて、収納容器3を下部から加熱するよう発熱体4を
蒸着室1の下部に配したものである。そして、上記実施
例と同様の作用効果を奏する。
Further, a fourth embodiment of the present invention shown in FIG.
A heating element 4 is disposed at the bottom of the vapor deposition chamber 1 so as to heat the storage container 3 from the bottom by using a rod-shaped infrared ray introducing path in which the storage container 3 and the storage container 3 are integrally formed. Further, the same effects as those of the above embodiment are achieved.

なお、本発明は、上記実施例に限定されるものではなく
、本発明の範囲内で上記実施例に多くの修正および変更
を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above embodiments, and it goes without saying that many modifications and changes can be made to the above embodiments within the scope of the present invention.

例えば、発熱体4からの直射光5aおよび反射光5bを
利用する代わりに、直射光5aまたは反射光5bの一方
だけを使用するようにしてもよい。
For example, instead of using the direct light 5a and the reflected light 5b from the heating element 4, only one of the direct light 5a and the reflected light 5b may be used.

また、蒸着材料2に有機化合物の金属フタロシアニンを
使用したが、加熱温度の上限は光導入体7に用いる材質
及び形状によって決まるが、石英ガラスを用いた場合は
摂氏1300度まで可能であり、有機化合物のすべてを
カバーすることができることは言うまでもない。
Although metal phthalocyanine, an organic compound, is used as the vapor deposition material 2, the upper limit of the heating temperature is determined by the material and shape used for the light introducing body 7, but if quartz glass is used, it can reach up to 1300 degrees Celsius; Needless to say, all compounds can be covered.

さらに、収納容器3の形状を蒸着材料2の種類、蒸着の
目的から来る必要性に応じて最適なものとすることは勿
論のことである。また、光導入体7は、集光レンズにし
て放射光を効率よく利用できる形状としてもよい。
Furthermore, it goes without saying that the shape of the storage container 3 should be optimal depending on the type of vapor deposition material 2 and the necessity arising from the purpose of vapor deposition. Further, the light introducing body 7 may be formed into a condensing lens so that the emitted light can be efficiently utilized.

〈発明の効果〉 以上の説明から明らかな通り、本発明によると、蒸着室
の内部に蒸着材料を収納する収納容器が設けられ、蒸着
室の外部に、前記蒸着材料の蒸発熱源としての発熱体が
設けられ、前記蒸着室の室壁に、発熱体からの直射光お
よび反射光のうち少なくとも一方を収納容器に導くため
の光導入体が設けられているため、赤外線の放射光によ
る熱放射加熱によって、蒸着材料の加熱を均一に行なう
ことができ、しかも、長時間にわたって安定な蒸発速度
を維持することができるといった優れた効果がある。
<Effects of the Invention> As is clear from the above description, according to the present invention, a storage container for storing a vapor deposition material is provided inside the vapor deposition chamber, and a heating element as an evaporation heat source for the vapor deposition material is provided outside the vapor deposition chamber. A light introducing member is provided on the wall of the vapor deposition chamber to guide at least one of direct light and reflected light from the heating element to the storage container. This has the excellent effect of uniformly heating the evaporation material and maintaining a stable evaporation rate over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例を示す蒸着装置の概略正面
図、第2図は同じく発熱体と蒸着材料との関係を示す断
面図、第3図(a)は本発明の第二実施例を示す発熱体
と蒸着材料との関係を示す断面図、第3図(b)は同じ
くその平面図、第4図は本発明の第三実施例で収納容器
を下部から加熱するときの蒸着装置の断面図、第5図は
本発明の第四実施例で棒状の光導入体を用いて、下部か
ら加熱するときの蒸着装置の断面図である。 1:蒸着室、2:蒸着材料、3:収納容器、4;発熱体
、5a;直射光、5b;反射光、6:反射鏡、7:光導
入体。 出 代 願 理 人 人 シャープ株式会社 中村恒久 第 図 (次) 1 蒸、1室 2、黒、!毛 3Il又豹ら 4≧〜ζ塵−し、イ・ 第3図(b) 第1 第2
FIG. 1 is a schematic front view of a vapor deposition apparatus showing a first embodiment of the present invention, FIG. 2 is a sectional view similarly showing the relationship between a heating element and a vapor deposition material, and FIG. FIG. 3(b) is a cross-sectional view showing the relationship between the heating element and the vapor deposition material in the embodiment, FIG. 3(b) is a plan view thereof, and FIG. FIG. 5 is a sectional view of the vapor deposition apparatus in a fourth embodiment of the present invention, in which a rod-shaped light guide is used to heat from the bottom. 1: Vapor deposition chamber, 2: Vapor deposition material, 3: Storage container, 4: Heating element, 5a: Direct light, 5b: Reflected light, 6: Reflector, 7: Light introduction body. Sharp Co., Ltd. Tsunehisa Nakamura Diagram (Next) 1 Steam, 1 room 2, black,! Hair 3 Il and leopard 4 ≧ ~ ζ dust, I. Figure 3 (b) 1st 2

Claims (1)

【特許請求の範囲】[Claims] 蒸着室の内部に蒸着材料を収納する収納容器が設けられ
、蒸着室の外部に前記蒸着材料の蒸発熱源としての発熱
体が設けられ、前記蒸着室の室壁に、発熱体からの直射
光および反射光のうち少なくとも一方を収納容器に導く
ための光導入体が設けられたことを特徴とする蒸着装置
A storage container for storing a vapor deposition material is provided inside the vapor deposition chamber, a heating element is provided outside the vapor deposition chamber as an evaporation heat source for the vapor deposition material, and direct light and light from the heating element are provided on the wall of the vapor deposition chamber. A vapor deposition apparatus comprising a light introducing body for guiding at least one of the reflected lights to a storage container.
JP63183074A 1988-07-21 1988-07-21 Vapor deposition device Pending JPH0234773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63183074A JPH0234773A (en) 1988-07-21 1988-07-21 Vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63183074A JPH0234773A (en) 1988-07-21 1988-07-21 Vapor deposition device

Publications (1)

Publication Number Publication Date
JPH0234773A true JPH0234773A (en) 1990-02-05

Family

ID=16129297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63183074A Pending JPH0234773A (en) 1988-07-21 1988-07-21 Vapor deposition device

Country Status (1)

Country Link
JP (1) JPH0234773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005525A (en) * 2012-06-27 2014-01-16 Toyobo Co Ltd Vapor deposition method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005525A (en) * 2012-06-27 2014-01-16 Toyobo Co Ltd Vapor deposition method and device

Similar Documents

Publication Publication Date Title
Zhuang et al. Tuning transpiration by interfacial solar absorber‐leaf engineering
Naito et al. Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system
EP0840359A3 (en) Thermal processor for semiconductor wafers
US5970213A (en) Apparatus for heating a transparent substrate utilizing an incandescent lamp and a heating disk emitting infrared wavelengths
WO2007023691A1 (en) Reflector and device having the reflector
GB2137334A (en) Light-absorbing bodies
JPH0234773A (en) Vapor deposition device
KR880014646A (en) Evaporator for Ion Source
Fedorets et al. Effect of infrared irradiation on the suppression of the condensation growth of water droplets in a levitating droplet cluster
JPH01225769A (en) Vapor deposition source for thin vapor-deposited organic compound film
JPS6297845A (en) Substance treater by ultraviolet ray
JP2014133907A (en) Film deposition device
Wu et al. Growth of zinc oxide films by a novel ultrasonic nebulization and pyrolysis method
JPH03174307A (en) Production of oxide superconductor
JPH0434400Y2 (en)
JPH0297670A (en) Thin film manufacturing equipment
JPS5622616A (en) Manufacture of diamondlike carbon film
JP2507905Y2 (en) Radiation introduction heating device
Awer et al. III-Vacuum Processing Techniques-III
JPS62222058A (en) Formation of transparent electrically-conductive film
JPH0545052B2 (en)
JPH03215304A (en) Production of high-temperature superconducting thin film
CA2020454A1 (en) Durable infrared target having fast response time
JPS6032126Y2 (en) Single crystal manufacturing equipment
JPH0483866A (en) Laser vapor deposition device