JPH0233973B2 - - Google Patents

Info

Publication number
JPH0233973B2
JPH0233973B2 JP57061676A JP6167682A JPH0233973B2 JP H0233973 B2 JPH0233973 B2 JP H0233973B2 JP 57061676 A JP57061676 A JP 57061676A JP 6167682 A JP6167682 A JP 6167682A JP H0233973 B2 JPH0233973 B2 JP H0233973B2
Authority
JP
Japan
Prior art keywords
measurement
light
sight glass
hydrocarbon stream
filters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57061676A
Other languages
Japanese (ja)
Other versions
JPS58179342A (en
Inventor
Kozo Mikata
Masatada Watanabe
Shoji Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP6167682A priority Critical patent/JPS58179342A/en
Publication of JPS58179342A publication Critical patent/JPS58179342A/en
Publication of JPH0233973B2 publication Critical patent/JPH0233973B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、石油精製プラントにおける炭化水素
製品の性状を制御するための自動運転制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic operation control device for controlling the properties of hydrocarbon products in a petroleum refinery plant.

化学製品の色相は製品の純度、性状及び価格に
大きな影響を及ぼす。このため、例えば灯油、軽
油、潤滑油等を生産する石油精製装置において
は、作業者が一定時間毎にバルブ操作等によりサ
ンプリングを行い、その比重、沸点等の物性と共
に色度を測定し、その結果に基いて温度、圧力、
留出量等の操作条件の変更や製品の等級の判別を
行つている。特に色度計は現場型のものがなく、
試験室で測定されるのが普通であつた。しかし、
試料採取は例えば高温のまゝサンプリングする必
要がある場合があり、また蒸溜塔の塔頂等の高所
といつた危険な箇所にあるのが多く、サンプリン
グに多大の労力を要するうえに流体が人々に有害
な薬品や高温である場合には夫々屡々人身災害を
招くといつた危険があつた。
The color of chemical products has a great impact on the purity, properties, and price of the product. For this reason, for example, in oil refining equipment that produces kerosene, light oil, lubricating oil, etc., workers take samples by operating valves at regular intervals, measure their physical properties such as specific gravity and boiling point, and measure their chromaticity. Based on the results, temperature, pressure,
We are changing operating conditions such as distillate volume and determining product grades. In particular, there is no on-site type colorimeter,
It was commonly measured in a laboratory. but,
For example, samples may need to be sampled while still at high temperatures, and are often located in dangerous locations such as the top of a distillation tower, which requires a great deal of labor and the fluid is Chemicals that are harmful to people and high temperatures often pose risks that can lead to personal injury.

本発明は上記の事情に鑑みてなされたもので、
配管中を流れる液体を外部に抜出すことなく自動
的に色度を測定し、これによつて化学プラント等
とくに名油精製プラントの操作条件に必要な指示
を与えると共に、従来サンプリングに要した多大
の労力を省き、安全災害上の問題を解決し得る石
油精製プラントの自動運転制御装置を提供すこと
を目的とする。
The present invention was made in view of the above circumstances, and
By automatically measuring the chromaticity of the liquid flowing through the pipes without drawing it out to the outside, this method provides the necessary instructions for the operating conditions of chemical plants, etc., especially famous oil refining plants, and eliminates the large amount of time required for conventional sampling. The purpose of the present invention is to provide an automatic operation control device for an oil refinery plant that can save labor and solve safety and disaster problems.

すなわち、本発明は、温度調整した炭化水素流
に平行光線を入射し、透過光を複数の測定用フイ
ルタおよび基準用フイルタを介してそれぞれ受光
素子により検知し、その検知信号を比率計算して
得た値と予め設定した比率計算値とを対比してそ
の差に対応する制御信号を得、該制御信号を装置
の運転条件制御手段に入力することによつて該炭
化水素流の性状を自動制御することを特徴とする
石油精製プラントの自動運転制御方法を実施する
に通した装置であり、石油精製プラントより抽出
した炭化水素流の性状を自動検知し、その検知信
号に基づいて前記装置の運転条件を自動制御する
運転制御装置において、前記炭化水素流の温度調
整器と、温度調整された炭化水素流の流入口およ
び流出口を有し側面に石英製サイトガラスを対向
して設けた流体測定槽と、該サイトガラスの一方
に面して平行光線を入射できる光源ように調整可
能な複数のレンズと光源とを備えかつ冷却装置を
套装した側本体と、該サイドガラスの他方に面し
て設けられて冷却装置を套装した測定検出側本体
と、該測定検出側本体の端部に設けられて該流体
測定槽からの透過光を受ける複数の測定用フイル
タと基準用フイルタと該それぞれのフイルタに対
応する受光素子とを備えた検出部と、該検出部の
発生信を比率演算して予め設定した比率計算値と
の差に対応する運転条件制御信号を出力する制御
器と、を具備したことを特徴とするものである。
That is, in the present invention, parallel light is incident on a hydrocarbon stream whose temperature has been adjusted, the transmitted light is detected by a light receiving element through a plurality of measurement filters and reference filters, and the detection signals are obtained by calculating the ratio. The property of the hydrocarbon stream is automatically controlled by comparing the calculated value with a preset ratio calculation value to obtain a control signal corresponding to the difference, and inputting the control signal to the operating condition control means of the device. This is a device for implementing an automatic operation control method for an oil refining plant, which is characterized by automatically detecting the properties of a hydrocarbon stream extracted from the oil refining plant, and controlling the operation of the device based on the detection signal. An operation control device that automatically controls conditions, which includes a temperature regulator for the hydrocarbon flow, an inlet and an outlet for the temperature-adjusted hydrocarbon flow, and a quartz sight glass on the side facing the fluid measurement device. a side body comprising a tank, a light source and a plurality of adjustable lenses capable of inputting parallel light beams facing one side of the sight glass, and housing a cooling device; a measurement detection side body which is equipped with a cooling device; a plurality of measurement filters and reference filters which are provided at the end of the measurement detection side body and receive transmitted light from the fluid measurement tank; The present invention includes: a detection unit having a corresponding light receiving element; and a controller that calculates a ratio of signals generated by the detection unit and outputs an operating condition control signal corresponding to a difference between a preset ratio calculation value. It is characterized by:

以下、本発明を図面に基いて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明の原理を示すブロツク図であ
る。
FIG. 1 is a block diagram showing the principle of the present invention.

図において、1は測定対象である流体が通る透
明な測定槽であり、光源2からの光は図示しない
スリツトを介して二枚の凸レンズ3,4により巾
広い平行光線となり測定槽1に照射され、該槽1
からの透過光は二つの測定側検出装置5及び基準
側検出装置5′で受光される。装置5及び5′はそ
れぞれ予め調整した光学フイルタ6,6′とフオ
トセル7,7′を備えており、フイルタ6は測定
成分の変化に対して敏感に反応するもの、即ち測
定成分の色、濃度に対し透光率変化が顕著に現わ
れるスペクトル範囲に合致するものが、他方のフ
イルタ6′は測定成分の変化に対し反応しないも
の、即ち測定成分の濃度変化に対し透光率変化が
最小となるスペクトル範囲をカバーするものが選
定されている。このフイルタ6,6′を透過した
光は、フオトセル7,7′に受信される。この発
生信号は増幅器8,8′で増幅され、その増幅信
号は比率変換器9において比率計算され、表示メ
ータ10及び記録計11に表示されると共に、比
率計算値が設定値を外れた場合には、警報及び制
御出力器12を介して、例えば装置の温度、圧
力、バルブの開閉といつた自動制御機器に伝達さ
れる。
In the figure, 1 is a transparent measurement tank through which the fluid to be measured passes, and light from a light source 2 is converted into a wide parallel beam by two convex lenses 3 and 4 through a slit (not shown) and irradiated onto the measurement tank 1. , the tank 1
The transmitted light is received by two measurement side detection devices 5 and a reference side detection device 5'. The devices 5 and 5' are each equipped with pre-adjusted optical filters 6, 6' and photocells 7, 7'. The other filter 6' is one that matches the spectral range in which the change in transmittance is noticeable, but the other filter 6' is one that does not respond to changes in the measured component, that is, the change in transmittance is minimal with respect to changes in the concentration of the measured component. The ones that cover the spectral range are selected. The light transmitted through the filters 6, 6' is received by photocells 7, 7'. This generated signal is amplified by amplifiers 8 and 8', and the amplified signal is ratio-calculated by a ratio converter 9 and displayed on a display meter 10 and a recorder 11. are transmitted via the alarm and control output device 12 to automatic control equipment, such as equipment temperature, pressure, opening and closing of valves, etc.

このように、二種のフイルタ6,6′を透過し
た光は、上記比率方式により等分に作用し合い、
共に可変を発生したものは比率相乗過程で消去さ
れるので、測定時における流体の温度や気泡、ウ
インド散乱光等の影響を最少限に止める作用をす
ると共に、光源の変化、電圧変動等の影響を少な
くし、常に正確な測定及び出力表示をすることが
できる。
In this way, the light that has passed through the two types of filters 6 and 6' interacts equally with each other according to the ratio method described above,
Variations caused by both are eliminated by the ratio synergistic process, so it works to minimize the effects of fluid temperature, bubbles, wind scattered light, etc. during measurement, and also minimizes the effects of changes in the light source, voltage fluctuations, etc. This allows for accurate measurement and output display at all times.

第2図は上記原理に基づく色度測定装置の縦断
面図を示す。
FIG. 2 shows a longitudinal sectional view of a chromaticity measuring device based on the above principle.

図において、13は化学プラント等の配管途中
に介装される色度測定装置Aの測定槽であり、該
測定槽13の上、下の流体流入口及び流出口には
バイパス接続管14を有する蓋15が着脱自在に
取付けられ、左右に拡大径の管接続部16,1
6′が形成されると共に、内部に石英ガラス等よ
りなる耐熱、耐薬品性のサイトガラス17が封入
してある。
In the figure, reference numeral 13 is a measuring tank of a color measuring device A installed in the middle of piping in a chemical plant, etc., and bypass connecting pipes 14 are provided at the upper and lower fluid inlets and outlets of the measuring tank 13. A lid 15 is removably attached, and pipe connections 16, 1 with enlarged diameters are provided on the left and right sides.
6' is formed, and a heat-resistant and chemical-resistant sight glass 17 made of quartz glass or the like is sealed inside.

18は一方の管接続部16に接続された光源側
本体で、内部の基端側に光源ランプ19が取付板
20を介して固定され、先端側にスリツト21及
び凸レンズ22を有する第1レンズ管23と凸レ
ンズ24を有する第2レンズ管25とが伸縮自在
に装着されている。26は本体18のキヤツプ
で、内部に孔源ランプ19及び外部ケーブル28
を接続する端子板27が装着されている。
Reference numeral 18 denotes a light source side main body connected to one of the tube connecting parts 16, a light source lamp 19 is fixed to the inner base end side via a mounting plate 20, and a first lens tube having a slit 21 and a convex lens 22 at the distal end side. 23 and a second lens tube 25 having a convex lens 24 are telescopically attached. 26 is a cap of the main body 18, inside which is a hole source lamp 19 and an external cable 28.
A terminal board 27 is attached to connect the terminals.

29は測定槽13における他方の管接続部1
6′に接続された測定検出側本体で、内部の基端
側に仕切板31を有するホルダ30が着脱自在に
装着され、該仕切板31の上、下にそれぞれ前記
した基準側フイルタ32,33と測定側フイルタ
33′,34が取付けられ、該ホルダ30には対
応する二個のフオトセル35,36を有するセン
サ37が覆着されている。26′はキヤツプ、2
7′は端子板、28′は外部ケーブルである。
29 is the other pipe connection part 1 in the measurement tank 13
A holder 30 having a partition plate 31 on the inner base end side is detachably attached to the measurement detection side main body connected to 6', and the above-mentioned reference side filters 32 and 33 are placed above and below the partition plate 31, respectively. and measurement side filters 33', 34 are attached, and the holder 30 is covered with a sensor 37 having two corresponding photocells 35, 36. 26' is the cap, 2
7' is a terminal board, and 28' is an external cable.

38及び38′はそれぞれ光源側及び測定側本
体18,29に套装された冷却装置であり、測定
槽13が高温の流体に取付けられる場合等におけ
る装置の昇温や測定値に与える温度の影響を防止
すものであり、39はその連結管、40は冷却水
入口管、41は冷却水出口である。なお、冷却装
置38及び38′は常温付近の流体の色度を測定
する場合には省略することができ、また上記本体
18,29は耐熱(〜400℃)及び耐圧(〜10
Kg/cm2)の耐熱防爆型とするのが好ましい。
38 and 38' are cooling devices enclosed in the light source side and measurement side main bodies 18 and 29, respectively, and are used to prevent the temperature increase of the device and the influence of temperature on the measured values when the measuring tank 13 is installed in a high-temperature fluid, etc. 39 is a connecting pipe thereof, 40 is a cooling water inlet pipe, and 41 is a cooling water outlet. The cooling devices 38 and 38' can be omitted when measuring the chromaticity of a fluid near normal temperature, and the main bodies 18 and 29 have heat resistance (~400℃) and pressure resistance (~10℃).
Kg/cm 2 ) heat-resistant and explosion-proof type.

第3図は色度測定装置Aを原油の精留塔におけ
る軽油の製造ラインに適用した例を示す。すなわ
ち、軽油は一般に軽質軽油と重質軽油を性状規格
に合格するようにバルブ操作等により混合し、熱
交、クーラー及び脱水塔を経て取り出し、製品の
色度、比重等の分析は従来主ラインP1の位置Q
より作業者がコツクを開けてサンプリングし行つ
ていた。位置Qは貯槽に近接しているため、そこ
で不合格品が発見されてから運転条件の修正を行
つても遅いという欠点があるほかに、脱水塔に入
る前の重質軽油は水分とワツクス分が多いため、
冷却してから試験室の色度計で測定したのでは実
際に配管を流れている重質軽油と異なる性状を示
し、どうしても高温個所での色度測定が望まれて
いた(高温時は水分、ワツクス分の測定妨害がな
い。)しかし、冷却装置38,38′を備える本発
明装置AをバイパスラインP2に介装することに
より、250℃〜350℃のフロー状態における軽油の
色度を自動的に測定すると共に、その比率測定値
に基づいて制御器Bを介して接続された電磁弁
V1,V2の開度を自動的に調節し、常に一定の品
質の軽油を得ることができる。
FIG. 3 shows an example in which the color measuring device A is applied to a light oil production line in a crude oil rectification column. In other words, light diesel oil and heavy diesel oil are generally mixed by operating valves to meet property standards, and taken out through a heat exchanger, cooler, and dehydration tower. Analyzes of product color, specific gravity, etc. are conventionally carried out in the main line. P 1 position Q
Workers were opening the pot and taking samples. Position Q is close to the storage tank, so it has the disadvantage that it is too late to correct the operating conditions after a reject is discovered there.In addition, the heavy gas oil is separated by moisture and wax before entering the dehydration tower. Because there are many
When measured with a color meter in a test room after cooling, the properties of the heavy diesel oil differed from those actually flowing through the pipes, and it was therefore desirable to measure the color at a high temperature location (at high temperatures, water and (There is no interference with measurement due to wax content.) However, by installing the device A of the present invention equipped with cooling devices 38 and 38' in the bypass line P2 , it is possible to automatically measure the chromaticity of light oil in a flow state of 250°C to 350°C. and a solenoid valve connected via controller B based on the ratio measurement value.
By automatically adjusting the opening degrees of V 1 and V 2 , it is possible to always obtain diesel oil of constant quality.

次に上記装置Aの試作例とその試験結果につい
て説明する。
Next, a prototype example of the device A and its test results will be explained.

第2図の装置Aにおいて、光源ランプとして
DC4.5V、13.5Wの白熱タングステン電球(4000
〜10000Å)、凸レンズとして口径38mm〓のもの二
枚、フオトセルとして出力4〜20mAのホトトラ
ンジスタを使用し、基準側のフイルタとして赤フ
イルタ(650〜2600Nm)、測定値としてブルー
(400〜5400Nm)、バイオレツト(380〜460N
m)、紫外フイルタ(260〜400Nm)をそれぞれ
使用して装置を製作した。
In device A in Figure 2, as a light source lamp
DC4.5V, 13.5W incandescent tungsten bulb (4000
~10000Å), two convex lenses with a diameter of 38mm, a phototransistor with an output of 4~20mA as the photocell, a red filter (650~2600Nm) as the reference filter, and a blue (400~5400Nm) as the measured value. Violet (380~460N
The apparatus was manufactured using a UV filter (260-400 Nm) and an ultraviolet filter (260-400 Nm).

第4図乃至第7図は上記装置による測定結果を
示す。すなわち、第4図は軽油の比重と色度測定
装置のバイオレツト−フイルターによる指示値
(%)との関係を示し、第5図は重質軽油の抜出
量と色度測定装置のブルーフイルターによる指示
値との関係を、第6図は50%留出温度と同じくバ
イオレツトフイルタを使用して測定した指示値と
の関係を示す。第7図は従来の試験室型色度計と
本発明装置による測定結果を対比して示すもの
で、横軸の〜はHGO(重質軽油)を4サン
プリングし、ロ紙にて水分を除去した後、その1
毎にCC重油を1滴ずつ添加したもので、色度
測定装置にはブルーフイルタを使用したものであ
る。
FIGS. 4 to 7 show measurement results using the above device. That is, Figure 4 shows the relationship between the specific gravity of light oil and the indicated value (%) by the violet filter of the color measuring device, and Figure 5 shows the relationship between the amount of heavy gas oil extracted and the value determined by the blue filter of the color measuring device. Figure 6 shows the relationship between the 50% distillation temperature and the indicated value measured using a violet filter. Figure 7 shows a comparison of measurement results using a conventional laboratory-type colorimeter and the device of the present invention. After that, part 1
One drop of CC heavy oil is added to each sample, and a blue filter is used for the color measurement device.

このように、本発明装置によれば例えば軽油の
諸性状と色度測定値(%)との間に種々の相関関
係が得られ、従来の試験室型色度計との間にも一
定の相関関係が成立する。
As described above, with the device of the present invention, various correlations can be obtained between various properties of light oil and chromaticity measurement values (%), and certain correlations can be obtained with conventional laboratory-type chromaticity meters. A correlation is established.

従つて、本発明によれば、石油精製装置におけ
る重油、軽油、灯油等の製品の色度や紫外線吸光
度等々測定比較することによつて製品の諸性状、
即ち色度と相関関係にある比重、50%乃至90%留
出温度、粘度、残留炭素、着色成分の混入等が判
明すると共に、運転条件の乱れなどを速やかに発
見することができるので、その留出量、配合割合
等の運転条件を自動的に制御するのは勿論、原油
の色度の測定値から下流関連装置の運転条件を決
定することもでき、その他の各種化学プラントに
おける流体の色度測定による工程管理から産業排
水の処理に至る迄広く応用することができる。
Therefore, according to the present invention, by measuring and comparing the chromaticity, ultraviolet absorbance, etc. of products such as heavy oil, light oil, and kerosene in oil refining equipment, various properties of the products can be determined.
In other words, specific gravity, 50% to 90% distillation temperature, viscosity, residual carbon, contamination of coloring components, etc., which are correlated with chromaticity, can be determined, and disturbances in operating conditions can be quickly discovered. In addition to automatically controlling operating conditions such as distillation amount and blending ratio, it is also possible to determine the operating conditions of downstream related equipment from the measured value of crude oil color, and also to determine the color of fluids in various other chemical plants. It can be widely applied to everything from process control through temperature measurement to industrial wastewater treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の原理を示すブロツク図、
第2図は本発明装置の色度測定装置部の例を示す
縦断面図、第3図は本発明装置の適用例を示すフ
ローシート、第4図乃至第7図は本発明装置によ
る測定結果を示すグラフである。 13……流体測定槽、17……サイトガラス、
18……光源側本体、19……光源ランプ、21
……スリツト、22……凸レンズ、29……測定
検出側本体、32,33……基準側フイルタ、3
3′,34……測定側フイルタ、35,36……
フオトセル。
FIG. 1 is a block diagram showing the principle of the method of the present invention;
Fig. 2 is a vertical cross-sectional view showing an example of the chromaticity measuring device section of the device of the present invention, Fig. 3 is a flow sheet showing an example of application of the device of the present invention, and Figs. 4 to 7 are measurement results by the device of the present invention. This is a graph showing. 13...Fluid measurement tank, 17...Sight glass,
18...Light source side body, 19...Light source lamp, 21
... Slit, 22 ... Convex lens, 29 ... Measurement detection side main body, 32, 33 ... Reference side filter, 3
3', 34...Measurement side filter, 35, 36...
Photo cell.

Claims (1)

【特許請求の範囲】 1 石油精製プラントより抽出した炭化水素流の
性状を自動検知し、その検知信号に基づいて前記
装置の運転条件を自動制御する運転制御装置にお
いて、前記炭化水素流の温度調整器と、温度調整
された炭化水素流の流入口および流出口を有し側
面に石英製サイトガラスを対向して設けた流体測
定槽と、該サイトガラスの一方に面して平行光線
を入射できるように調整可能な複数のレンズと光
源とを備えかつ冷却装置を套装した光源側本体
と、該サイトガラスの他方に面して設けられて冷
却装置を套装した測定検出側本体と、該測定検出
側本体の端部に設けられて該流体測定槽からの透
過光を受ける複数の測定用フイルタと基準用フイ
ルタと該それぞれのフイルタに対応する受光素子
とを備えた検出部と、該検出部の発生信号を比率
演算して予め設定した比率計算値との差に対応す
る運転条件制御信号を出力する制御器と、を具備
したことを特徴とする、石油精製プラントの自動
運転制御装置。 2 基準用フイルタとして透過波長範囲が長波長
側に限定されたものを用い、測定用フイルタとし
て透過波長範囲が前記基準用フイルタの透過波長
範囲と重複しない短波長側にあつて相互にずれて
いるものを複数個所用いてなる、特許請求の範囲
第1項記載の装置。
[Scope of Claims] 1. In an operation control device that automatically detects the properties of a hydrocarbon stream extracted from a petroleum refinery plant and automatically controls operating conditions of the device based on the detection signal, temperature adjustment of the hydrocarbon stream is provided. a fluid measurement tank having an inlet and an outlet for a temperature-controlled hydrocarbon stream and having a quartz sight glass facing on the side, and a parallel light beam facing one side of the sight glass; a light source side main body equipped with a plurality of adjustable lenses and a light source and encased in a cooling device; a measurement detection side main body provided facing the other side of the sight glass and encased in a cooling device; A detection section provided at an end of the side body and including a plurality of measurement filters, a reference filter, and a light receiving element corresponding to each of the filters, which receives transmitted light from the fluid measurement tank; An automatic operation control device for an oil refining plant, comprising: a controller that calculates a ratio of a generated signal and outputs an operating condition control signal corresponding to a difference from a preset ratio calculation value. 2. Use a reference filter whose transmission wavelength range is limited to the long wavelength side, and use a measurement filter whose transmission wavelength range is on the short wavelength side that does not overlap with the transmission wavelength range of the reference filter and are mutually shifted. 2. The apparatus according to claim 1, which uses a plurality of parts.
JP6167682A 1982-04-15 1982-04-15 Method and apparatus for measuring chromaticity of fluid in chemical plant or the like Granted JPS58179342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6167682A JPS58179342A (en) 1982-04-15 1982-04-15 Method and apparatus for measuring chromaticity of fluid in chemical plant or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6167682A JPS58179342A (en) 1982-04-15 1982-04-15 Method and apparatus for measuring chromaticity of fluid in chemical plant or the like

Publications (2)

Publication Number Publication Date
JPS58179342A JPS58179342A (en) 1983-10-20
JPH0233973B2 true JPH0233973B2 (en) 1990-07-31

Family

ID=13178087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6167682A Granted JPS58179342A (en) 1982-04-15 1982-04-15 Method and apparatus for measuring chromaticity of fluid in chemical plant or the like

Country Status (1)

Country Link
JP (1) JPS58179342A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281941A (en) * 1985-06-07 1986-12-12 Idemitsu Kosan Co Ltd Method and apparatus for measuring characteristic of petroleum product by absorptiometric analysis
US4649711A (en) * 1985-09-03 1987-03-17 Carrier Corporation Apparatus and method for infrared optical electronic qualitative analysis of a fluid independent of the temperature thereof
JP5246173B2 (en) * 2010-01-06 2013-07-24 株式会社日本自動車部品総合研究所 Fuel property determination device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3062963A (en) * 1960-09-29 1962-11-06 Amchem Prod Method of monitoring colored fluids

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3062963A (en) * 1960-09-29 1962-11-06 Amchem Prod Method of monitoring colored fluids

Also Published As

Publication number Publication date
JPS58179342A (en) 1983-10-20

Similar Documents

Publication Publication Date Title
US1919858A (en) Method of determining and recording oxygen content of liquid or gases
US6395228B1 (en) Sampling and analysis system
US3300282A (en) Method and apparatus for hydrogen sulfide determination
CN108254338A (en) Gas content in transformer oil on-Line Monitor Device based on spectral absorption method
IE920884A1 (en) Organic pollutant monitor
US10639627B2 (en) Fluid analyzer manifold and techniques
CN207992053U (en) Gas content in transformer oil on-Line Monitor Device based on spectral absorption method
US4055986A (en) Basic sediment and water measurement
US3471393A (en) Apparatus for testing liquids utilizing plurality of probes or electrodes with sensitive ends converging in liquid flow path
JPH0233973B2 (en)
CN104089910A (en) Apparatus for simultaneously detecting color value and turbidity of finished sugar, and rapid detection method
KR20110037469A (en) Apparatus for measuring ph by using absorptiometric analysis and measuring method using the same
US3529896A (en) Flow cell immersed in a fluid having the same refractive index as the flow cell
US4386518A (en) Apparatus and method for measuring low concentrations of high molecular weight polymers in solution
CN209055455U (en) A kind of Ultraviolet Photometric Method COD online analyzer
US3284164A (en) Apparatus for automatic analyzing
RU2749256C1 (en) Mobile standard of the 2nd discharge for verification of well measurement units
KR20090004827A (en) Intelligent double beam sample cell for remote in-line spectroscopic analysis
CN109142260A (en) A kind of Ultraviolet Photometric Method COD online analyzer and its working method
US2976761A (en) Apparatus for use in analyzing fluids
CN217878902U (en) System for detecting fermentation liquor metabolite
WO1994027135A1 (en) Sampling and analysis system and method
JPS62502777A (en) Method for continuous measurement of viscosity of liquid and apparatus for carrying out this method
JPS6365915A (en) Fractionation of solution and device therefor
US20050069455A1 (en) Chemical analyzer for sulfur