JPS6365915A - Fractionation of solution and device therefor - Google Patents

Fractionation of solution and device therefor

Info

Publication number
JPS6365915A
JPS6365915A JP20781786A JP20781786A JPS6365915A JP S6365915 A JPS6365915 A JP S6365915A JP 20781786 A JP20781786 A JP 20781786A JP 20781786 A JP20781786 A JP 20781786A JP S6365915 A JPS6365915 A JP S6365915A
Authority
JP
Japan
Prior art keywords
solution
photocell
light
permeability
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20781786A
Other languages
Japanese (ja)
Other versions
JP2503436B2 (en
Inventor
Isao Furuya
古谷 勲
Katsue Chikamatsu
勝栄 親松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP61207817A priority Critical patent/JP2503436B2/en
Publication of JPS6365915A publication Critical patent/JPS6365915A/en
Application granted granted Critical
Publication of JP2503436B2 publication Critical patent/JP2503436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To carry out automatic fractionation by sensing light passing through a cell in which solution flows by means of a photocell, monitoring permeability of solution and separating the solution with large permeability and solution of small permeability. CONSTITUTION:Light issued by an illuminant lamp 1 is a camera black box is turned into a luminous flux of a fixed wave length through a reflector 2, a lens 3 and a filter 4, condensed by a diaphragm 5 and a lens 6 and transmitted into a cell 7. In the cell, deaerated solution flows, and a luminous flux is absorbed, the remaining light being sensed by a photocell 8. Electric current from the photocell 8 is measured by a meter 9, transferred in to a setting device through an amplifier 10, controlling a changeover valve 12 to fractionate a solution 1 and a solution 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光電池を利用し、溶液の透過度を監視すること
により溶液を分画する方法および溶液の透過度を監視す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for fractionating a solution by monitoring the permeability of a solution using a photovoltaic cell and an apparatus for monitoring the permeability of a solution.

本発明は微生物工業を始め、各種の化学工業での分離操
作に利用される。
The present invention is utilized for separation operations in various chemical industries including the microbial industry.

(従来の技術) 溶液の透過度を監視し溶液を分画する方法は。(Conventional technology) How to monitor solution permeability and fractionate solutions.

例えば樹脂カラム中に溶液を通過させることにより溶液
中の有効成分を樹脂カラムに吸着させた後、この溶媒を
通過させることにより溶媒に有効成分を溶離させ、この
溶液中の有効成分の多い部分を透過度により判定し、こ
の部分を別個に取り出す方法があり化学工業で使用され
る。
For example, by passing a solution through a resin column, the active ingredients in the solution are adsorbed onto the resin column, and then by passing this solvent, the active ingredients are eluted into the solvent, and the part with a large amount of active ingredients in this solution is There is a method that is used in the chemical industry to determine the transmittance and extract this portion separately.

この透過度の監視は目測による場合もあるが。This transparency may be monitored by visual measurement.

機器による場合は通常分光光度計が用いられる。When using an instrument, a spectrophotometer is usually used.

分光光度計は一般に光源ランプより反射鏡、プリズム、
スロットを通して得られた一定波長の光を試料室(セル
)に通し、試料により吸収された残りの透過光を光電管
により読み取る方法がとられ、透過率計、カラーセンサ
ー、分光式色差計等その用途により種々の名称で市販さ
れている。
Spectrophotometers generally use a reflector, prism, or light source rather than a lamp as a light source.
A method is used in which light of a certain wavelength obtained through a slot is passed through a sample chamber (cell), and the remaining transmitted light absorbed by the sample is read by a phototube, and its uses include transmittance meters, color sensors, spectroscopic color difference meters, etc. It is commercially available under various names.

(発明が解決しようとする問題点) 分光光度計では透過光の読み取りには一般に光電管が使
用される。従来目視によって行っていた分画操作を自動
化するに際し、この光電管は感度が良いが読み取り幅が
小さいため9分光光度計で行うことが困難であった。
(Problems to be Solved by the Invention) In a spectrophotometer, a phototube is generally used to read transmitted light. When automating the fractionation operation that was conventionally performed visually, it was difficult to automate the fractionation operation using a 9-spectrophotometer because although this phototube has good sensitivity, the reading width is small.

また分光光度計では、光源エネルギーが小さいため、セ
ルDさ10mm以上での色度からの測定が難かしくオン
ラインでの測定が不可能であり、更に市販の分光光度計
は相当高価であることから、これを実装置に設置し分画
操作を行うことは不適であった。
In addition, with a spectrophotometer, because the light source energy is small, it is difficult to measure chromaticity with a cell D of 10 mm or more, making online measurement impossible, and commercially available spectrophotometers are quite expensive. However, it was inappropriate to install this in an actual device and perform fractionation operations.

(問題点を解決するための手段) 発明者は実装置において分画操作を自動化するに際し、
従来の分光光度計での以上の如き問題点に対して、溶液
が流れる複流器に光を通し、光電池を用いてその透過度
を監視すれば容易に分画操作の自動化が可能であること
を見出し9本発明に至った。
(Means for solving the problem) When automating the fractionation operation in an actual device, the inventor
In order to solve the above-mentioned problems with conventional spectrophotometers, we found that it is possible to easily automate the fractionation operation by passing light through a double-flow device through which the solution flows and monitoring the transmittance using a photovoltaic cell. Heading 9 The present invention has been achieved.

即ち本発明は、溶液が流れる複流器を通過した光を光電
池で検出することにより溶液の透過度を監視し、透過度
の大きい溶液と透過度の小さい溶液を分離することを特
徴とする溶液の分画方法。
That is, the present invention monitors the transmittance of the solution by detecting the light passing through a double flow device through which the solution flows, using a photocell, and separates the solution with high transmittance from the solution with low transmittance. Fractionation method.

および溶液が流れる複流器に、暗箱中で光源ランプより
のレンズ、フィルターおよび絞りを経た光を通し、溶液
により吸収された残りの光を光電池で検知することによ
り溶液の透過度を監視する装置である。
A device that monitors the transmittance of a solution by passing light from a light source lamp through a lens, filter, and aperture in a dark box through a double current device through which the solution flows, and detecting the remaining light absorbed by the solution using a photocell. be.

第1図は本発明による溶液の透過度を監視する装置の構
成図である。暗箱中で光源ランプ1より発せられた光は
9反射鏡2およびレンズ3.フィルター4を通して一定
波長の光束とされ絞り5およびレンズ6で集光され複流
器(セル)7に入る。視流器中には脱気された溶液が流
れており透明なガラスを通して光束が入り溶液に吸収さ
れた光の残りを光電池8で検知する。光電池よりの電流
はメーター9で測定され、また増幅器10で増幅されて
設定器11に入る。設定器においては透過度の設定値と
測定値の比較により電磁弁が作動し切換弁12を制御す
ることにより、溶液1と溶液2への分画操作が行われる
FIG. 1 is a block diagram of an apparatus for monitoring the permeability of a solution according to the present invention. The light emitted from the light source lamp 1 in the dark box passes through 9 reflecting mirrors 2 and lenses 3. The light passes through a filter 4 to become a beam of constant wavelength, is focused by an aperture 5 and a lens 6, and enters a double flow device (cell) 7. A degassed solution flows in the optic flow device, and a beam of light enters through a transparent glass, and the remainder of the light absorbed by the solution is detected by a photovoltaic cell 8. The current from the photocell is measured by a meter 9 and amplified by an amplifier 10 before entering a setting device 11 . In the setting device, a solenoid valve is actuated by comparing the set value and the measured value of the transmittance, and by controlling the switching valve 12, a fractionation operation into solution 1 and solution 2 is performed.

本発明に使用される光源ランプは液体の特性により選定
されるが、可視光線の場合は白熱灯、即ちタングステン
灯が良く1反射鏡および熱線遮断フィルターを取り付け
る。フィルターは溶液の特性により選定されるが、可視
光線では波長540mmのものが良く使われる。絞りは
可変性とし光電池の感度により調整する。光電池はセレ
ン光電池。
The light source lamp used in the present invention is selected depending on the characteristics of the liquid, but in the case of visible light, an incandescent lamp, that is, a tungsten lamp is preferable, and is equipped with a reflector and a heat ray blocking filter. Filters are selected depending on the characteristics of the solution, and filters with a wavelength of 540 mm are often used for visible light. The aperture is variable and adjusted according to the sensitivity of the photocell. The photocell is a selenium photocell.

亜酸化銅光電池あるいはGe、Si等の単結晶を用いた
光電池が用いられるが、セレン光電池が一般的である。
A cuprous oxide photovoltaic cell or a photovoltaic cell using a single crystal such as Ge or Si is used, but a selenium photovoltaic cell is common.

光電池の出力は小さく、最大50μ八程度であるため、
増幅器を設けて信号を増幅し電磁弁の開閉などの操作を
行う。
Since the output of photovoltaic cells is small, about 50μ8 at maximum,
An amplifier is installed to amplify the signal and perform operations such as opening and closing the solenoid valve.

複流器は溶液の通過速度および透過度により適したもの
を選定されるが1通常ガラス板の間隔を20〜100m
mとし、ガラスの厚さ1〜5mmのものを使用する。視
流器中に気泡が入らないように複流器の前に脱気器を設
ける。
The double flow vessel is selected depending on the solution passing speed and permeability, but usually the distance between the glass plates is 20 to 100 m.
m, and glass with a thickness of 1 to 5 mm is used. A deaerator is installed in front of the double flow device to prevent air bubbles from entering the optic flow device.

脱気器のは簡単な構造のもので良く、複流器に入る前の
液を2例えば口径の大きい配管に導いて液の滞留部を設
け、上部より分離されるガスを放出する構造のものとす
る。
The deaerator may have a simple structure, such as one in which the liquid before entering the double-flow device is guided into two pipes with a large diameter, a liquid retention area is provided, and the separated gas is released from the upper part. do.

(効果) 本発明による溶液の透過度を監視する装置を用い溶液の
分画操作を行うことにより次の利点がある。
(Effects) Performing a fractionation operation on a solution using the device for monitoring the permeability of a solution according to the present invention has the following advantages.

(1)透過度の読み取り幅が大きく、有効成分の広範囲
な変動の溶液に対して分画操作ができる。
(1) The permeability reading range is wide, and fractionation operations can be performed on solutions with a wide variation in active ingredients.

(2)複流器(セル)の光路幅の大きいもの(最大10
0mm)に使用できるので流量の多い実装置に直接取り
付けられる。
(2) A double flow device (cell) with a large optical path width (up to 10
0mm), so it can be directly attached to actual equipment with a high flow rate.

(3)透過度を監視する装置の構造が簡単で故障が少な
いために実装置での自動化が容易である。
(3) The structure of the device for monitoring transparency is simple and there are few failures, so automation with actual devices is easy.

(4)分画操作の自動化により省力化されると共に。(4) Automation of fractionation operation saves labor.

溶媒の使用量の節減もできるので工業的意味が大きい。This is of great industrial significance because it can also reduce the amount of solvent used.

(実施例) ユビデカノン(Q、、と称する)を含有する菌体よりメ
タノールを用いてQ 1Gを抽出させた後、シリカカラ
ムに抽出液(メタノール液)を通過させてQIOを吸着
させ9次にヘキサン溶媒をこのカラムに通し、ヘキサン
溶媒中にQl。を溶離させる分画操作に本発明による方
法を用いた。第2図は本発明による分画操作のフロー図
を示す。
(Example) After extracting Q1G from bacterial cells containing ubidecanone (referred to as Q) using methanol, the extract (methanol solution) was passed through a silica column to adsorb QIO. Pass hexane solvent through this column and Ql in hexane solvent. The method according to the present invention was used for the fractionation operation to elute . FIG. 2 shows a flow diagram of the fractionation operation according to the present invention.

QIOを含む乾慢菌体が1より供給され、抽出槽3にお
いて、2より供給される抽出液(メタノール)によりQ
 10が抽出される。Q、。を含むメタノール液はポン
プ4によりシリカカラム5に送られ、充填物(シリカ)
中にQl。が吸着される。Q、。
Xerotrophic bacterial cells containing QIO are supplied from 1, and in extraction tank 3, QIO is extracted by the extract (methanol) supplied from 2.
10 are extracted. Q. The methanol solution containing
Ql inside. is adsorbed. Q.

がシリカカラムに吸着された後のメタノール液はライン
8により抽出槽3に循環される。
The methanol solution after being adsorbed on the silica column is circulated to the extraction tank 3 via line 8.

次にQ、。を吸着したシリカカラム5にポンプ11より
のヘキサン溶媒を通過させQ、。を溶離し、この溶液を
脱気器6にて脱気した後1本発明による透過度を監視す
る装置7によって分離されて、黄色に若色したQIOの
濃縮液が濃縮液槽9に送られる。QIOの希薄液はヘキ
サン溶媒槽10に送られ。
Next is Q. The hexane solvent from the pump 11 is passed through the silica column 5 that has adsorbed Q. After degassing this solution in a deaerator 6, it is separated by a device 7 for monitoring permeability according to the present invention, and a young yellow QIO concentrate is sent to a concentrate tank 9. . The dilute solution of QIO is sent to a hexane solvent tank 10.

溶媒として再使用される。Reused as a solvent.

本発明により分画操作の自動化が可能となり。The present invention enables automation of fractionation operations.

また目測による手動傑作と比較して、ヘキサン溶媒mが
約40%削減された。
Also, compared to the manual masterpiece measured by eye, the amount of hexane solvent m was reduced by about 40%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による溶液の透過度を監視する装置の構
成図、第2図は本発明による分画1朶作のフロー図の一
例である。
FIG. 1 is a block diagram of an apparatus for monitoring the permeability of a solution according to the present invention, and FIG. 2 is an example of a flow diagram of fraction 1 production according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)溶液が流れる視流器を通過した光を光電池で検出
することにより溶液の透過度を監視し、透過度の大きい
溶液と透過度の小さい溶液を分離することを特徴とする
溶液の分画方法
(1) Solution separation characterized by monitoring the transmittance of the solution by using a photocell to detect the light that has passed through the optic device through which the solution flows, and separating the solution with high transmittance from the solution with low transmittance. drawing method
(2)溶液が流れる視流器に、暗箱中で光源ランプより
のレンズ、フィルターおよび絞りを経た光を通し、溶液
により吸収された残りの光を光電池で検知することによ
る溶液の透過度を監視する装置
(2) The transparency of the solution is monitored by passing the light from the light source lamp through the lens, filter, and aperture in a dark box through the optic tube through which the solution flows, and detecting the remaining light absorbed by the solution with a photocell. equipment to
JP61207817A 1986-09-05 1986-09-05 Solution fractionation method and device Expired - Fee Related JP2503436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61207817A JP2503436B2 (en) 1986-09-05 1986-09-05 Solution fractionation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61207817A JP2503436B2 (en) 1986-09-05 1986-09-05 Solution fractionation method and device

Publications (2)

Publication Number Publication Date
JPS6365915A true JPS6365915A (en) 1988-03-24
JP2503436B2 JP2503436B2 (en) 1996-06-05

Family

ID=16545997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61207817A Expired - Fee Related JP2503436B2 (en) 1986-09-05 1986-09-05 Solution fractionation method and device

Country Status (1)

Country Link
JP (1) JP2503436B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0768361A1 (en) 1995-10-16 1997-04-16 Shin-Etsu Chemical Co., Ltd. Liquid crystal composition and liquid crystal display element comprising the same
TWI378139B (en) 2005-01-27 2012-12-01 Dainippon Ink & Chemicals A difluorobenzene derivative and a nematic liquid crystal composition using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131584A (en) * 1974-03-22 1975-10-17
JPS5410784A (en) * 1977-06-22 1979-01-26 Hooker Chemicals Plastics Corp Photometric instrument for liquid and gaseous chlorine dioxide
JPS56164943A (en) * 1980-05-24 1981-12-18 Toei Denshi Kogyo Kk Device for measuring optical characteristic of liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131584A (en) * 1974-03-22 1975-10-17
JPS5410784A (en) * 1977-06-22 1979-01-26 Hooker Chemicals Plastics Corp Photometric instrument for liquid and gaseous chlorine dioxide
JPS56164943A (en) * 1980-05-24 1981-12-18 Toei Denshi Kogyo Kk Device for measuring optical characteristic of liquid

Also Published As

Publication number Publication date
JP2503436B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
CN100462700C (en) Ultrasensitive spectrophotometer
US5230863A (en) Method of calibrating an automatic chemical analyzer
GB1305923A (en)
WO2012075958A1 (en) Real-time online absorption detection system
US3680962A (en) Contaminant detector comprising means for selectively applying pressure to liquify bubbles
AU2020104424A4 (en) A method and equipment for measuring absorption coefficient of liquid
US4228192A (en) Method and apparatus for the quantitative determination of beer ingredients
JPH01116438A (en) Apparatus for measuring foreign matter content in fluid liquid
CN104089933A (en) Liquid physical and chemical parameter measuring device based on fluorescence analysis
JPS6365915A (en) Fractionation of solution and device therefor
US3969626A (en) Method and apparatus for detecting total reduced sulfur
CN116148200B (en) Water quality analyzer
US3354772A (en) Instrument and process for testing contamination in liquid materials
US2807416A (en) Device for automatically counting blood cells
CN2525509Y (en) Near infrared polarimeters
GB1189081A (en) Fluid Opacity Change Sensing System
GB1423460A (en) Self-equalising industrial photometer
GB1293208A (en) Apparatus for the detection and removal of selected foreign matter from a material
US4420257A (en) Laser light scattering photometer
Caldin et al. A stopped-flow apparatus with temperature control, fibre optics, and chemically inert flow system
JPS58179342A (en) Method and apparatus for measuring chromaticity of fluid in chemical plant or the like
CN203337551U (en) Novel fluorescent optical fiber sensor
JPS63193039A (en) Method for analyzing medicinal components of ginseng
CN209624371U (en) A kind of equipment can be used for uv-visible absorption spectra in on-line determination water
GB696675A (en) Improvements in and relating to methods of, and apparatus for, determining the concentration of particulate matter contained in liquid suspensions or colloidal solutionsor of solutes in true solutions

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees