JP5246173B2 - Fuel property determination device - Google Patents

Fuel property determination device Download PDF

Info

Publication number
JP5246173B2
JP5246173B2 JP2010001340A JP2010001340A JP5246173B2 JP 5246173 B2 JP5246173 B2 JP 5246173B2 JP 2010001340 A JP2010001340 A JP 2010001340A JP 2010001340 A JP2010001340 A JP 2010001340A JP 5246173 B2 JP5246173 B2 JP 5246173B2
Authority
JP
Japan
Prior art keywords
fuel
temperature
light transmittance
light
property determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010001340A
Other languages
Japanese (ja)
Other versions
JP2011141164A (en
Inventor
典保 天野
悦朗 安田
康一 永谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2010001340A priority Critical patent/JP5246173B2/en
Publication of JP2011141164A publication Critical patent/JP2011141164A/en
Application granted granted Critical
Publication of JP5246173B2 publication Critical patent/JP5246173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、軽油に重油または灯油が混入されているか否かを判定する燃料性状判定装置に関するものである。   The present invention relates to a fuel property determination device that determines whether heavy oil or kerosene is mixed in light oil.

従来、光の全反射から光屈折率を検出し燃料の種類を判定するもの(以下、第1従来例という。例えば、特許文献1参照)、光検出装置で燃料の着色状態を検出し燃料性状を判定するもの(以下、第2従来例という。例えば、特許文献2参照)、重油中の蒸留残渣分により光が散乱することにより光透過率が低くなることを利用して重油を検出するもの(以下、第3従来例という。例えば、特許文献3参照)が提案されている。また、石油メーカ(石油協会)においては、軽油に重油または灯油が不正に混入された不正燃料の判定のため、軽油識別材(クマリン)を重油、灯油に添加するようにしている(以下、第4従来例という)。   Conventionally, the type of fuel is determined by detecting the light refractive index from the total reflection of light (hereinafter referred to as a first conventional example; see, for example, Patent Document 1). (Hereinafter, referred to as a second conventional example, for example, refer to Patent Document 2), which detects heavy oil using the fact that light transmittance is lowered by scattering of light due to distillation residue in heavy oil. (Hereinafter, it is referred to as a third conventional example. For example, see Patent Document 3). In addition, oil manufacturers (the Petroleum Institute) add light oil identification material (coumarin) to heavy oil and kerosene in order to determine unauthorized fuel in which heavy oil or kerosene is illegally mixed in light oil (hereinafter referred to as No. 1). 4 Conventional example).

特開2001−242079号公報JP 2001-242079 A 特開2008−122289号公報JP 2008-122289 A 特開平9−26391号公報Japanese Patent Laid-Open No. 9-26391

しかしながら、第1従来例では、光屈折率は燃料密度と相関があるため、重油と灯油を混入することにより軽油相当の密度とした不正燃料を検出することは困難である。第2従来例では、不正燃料に軽油相当の着色がされた場合、検出は困難である。第3従来例では、軽油と灯油の光透過率は略等しいため、軽油への灯油混入の検出は困難である。第4従来例では、不正燃料の中には軽油識別材を除去処理した例もあり、そのような不正燃料を検出することは困難である。   However, in the first conventional example, since the optical refractive index has a correlation with the fuel density, it is difficult to detect illegal fuel having a density equivalent to light oil by mixing heavy oil and kerosene. In the second conventional example, it is difficult to detect when illegal fuel is colored equivalent to light oil. In the third conventional example, since the light transmittances of light oil and kerosene are substantially equal, it is difficult to detect the mixing of kerosene into the light oil. In the fourth conventional example, there is an example in which the light oil identifying material is removed in the unauthorized fuel, and it is difficult to detect such unauthorized fuel.

本発明は上記点に鑑みて、軽油に重油または灯油が混入されているか否かを正確に判定可能にすることを目的とする。   In view of the above points, an object of the present invention is to make it possible to accurately determine whether heavy oil or kerosene is mixed in light oil.

上記目的を達成するため、請求項1に記載の発明では、検査対象燃料(2)の光透過率を検出する光透過率検出手段(3、4)と、検査対象燃料(2)を冷却する冷却器(5)と、検査対象燃料(2)の温度を検出する温度検出器(6)と、光透過率検出手段(3、4)で検出した光透過率、および温度検出器(6)で検出した燃料温度とに基づいて、軽油に重油または灯油が混入されているか否かを判定する燃料性状判定手段(S103、S108、S109、S110、S112)とを備える燃料性状判定装置であって、燃料性状判定手段は、高温側設定温度を超える燃料温度域での検査対象燃料(2)の光透過率である高温時光透過率と、高温側設定温度を超える燃料温度域から冷却される際に検査対象燃料(2)の光透過率が高温時光透過率よりも所定値以上低下したときの燃料温度である光透過率低下時燃料温度とに基づいて、燃料性状を判定することを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, the light transmittance detecting means (3, 4) for detecting the light transmittance of the inspection target fuel (2) and the inspection target fuel (2) are cooled. The cooler (5), the temperature detector (6) for detecting the temperature of the fuel to be inspected (2), the light transmittance detected by the light transmittance detection means (3, 4), and the temperature detector (6) A fuel property determination device comprising fuel property determination means (S103, S108, S109, S110, S112) for determining whether heavy oil or kerosene is mixed in light oil based on the fuel temperature detected in step When the fuel property determining means is cooled from the high temperature light transmittance which is the light transmittance of the fuel to be inspected (2) in the fuel temperature range exceeding the high temperature side set temperature and the fuel temperature range exceeding the high temperature side set temperature. When the light transmittance of the fuel to be inspected (2) is high On the basis of the light transmittance and reduced when the fuel temperature is a fuel temperature when decreased by more than a predetermined value than the transmittance, and judging the fuel property.

これによると、軽油に重油が混入された不正燃料は、重油中に含まれる蒸留残渣の粒子により光が散乱されるため、高温時光透過率が正規燃料や灯油に比べ低下する。従って、高温時光透過率に基づいて重油が混入されているか否かを判定することができる。   According to this, in the illegal fuel in which heavy oil is mixed with light oil, light is scattered by the distillation residue particles contained in the heavy oil, so that the light transmittance at high temperature is lower than that of regular fuel or kerosene. Therefore, it can be determined whether heavy oil is mixed based on the light transmittance at high temperature.

また、燃料を冷却すると、燃料中の成分がワックスとして析出し、析出したワックスにより光が散乱されるため、ある温度以下になると光透過率が急激に低下する。この光透過率が急激に低下するときの温度(=光透過率低下時燃料温度)は、正規燃料、重油混入軽油、および灯油混入軽油によって、それぞれ異なる。従って、光透過率低下時燃料温度に基づいて、検査対象燃料(2)が、正規燃料、重油混入軽油、灯油混入軽油のいずれであるかを判定することができる。   Further, when the fuel is cooled, the components in the fuel are precipitated as wax, and light is scattered by the deposited wax, so that the light transmittance is rapidly lowered when the temperature is lower than a certain temperature. The temperature at which the light transmittance sharply decreases (= the fuel temperature when the light transmittance decreases) differs depending on the regular fuel, the light oil-mixed light oil, and the kerosene-mixed light oil. Therefore, it can be determined whether the fuel to be inspected (2) is regular fuel, light oil-mixed light oil, or kerosene-mixed light oil based on the fuel temperature when the light transmittance decreases.

よって、高温時光透過率と光透過率低下時燃料温度とに基づいて、軽油に重油または灯油が混入されているか否かを正確に判定することができる。   Therefore, it is possible to accurately determine whether heavy oil or kerosene is mixed in the light oil based on the light transmittance at high temperature and the fuel temperature at the time of light transmittance decrease.

前述したように、軽油に重油が混入された不正燃料は、高温時光透過率が正規燃料や灯油に比べ低下するため、請求項2に記載の発明のように、高温時光透過率が閾値よりも低い場合に、重油の混入有りと判定することができる。   As described above, the unauthorized fuel in which heavy oil is mixed in light oil has a light transmittance at high temperature lower than that of regular fuel or kerosene. Therefore, the light transmittance at high temperature is lower than a threshold value as in the invention of claim 2. When it is low, it can be determined that heavy oil is mixed.

ここで、光透過率低下時燃料温度は、それぞれの燃料の曇り点などに代表される低温特性に従う。そして、光透過率低下時燃料温度は、灯油混入軽油、正規燃料、重油混入軽油の順に、高くなる。従って、請求項3に記載の発明のように、光透過率低下時燃料温度が高温側設定温度よりも高い場合に、重油の混入有りと判定することができる。また。請求項4に記載の発明のように、光透過率低下時燃料温度が低温側設定温度よりも低い場合に、規定量以上の灯油の混入有りと判定することができる。   Here, the fuel temperature when the light transmittance is reduced follows low temperature characteristics represented by the cloud point of each fuel. And the fuel temperature at the time of a light transmittance fall becomes high in order of kerosene mixed light oil, regular fuel, and heavy oil mixed light oil. Therefore, as in the third aspect of the present invention, it can be determined that heavy oil is mixed when the fuel temperature when the light transmittance is lowered is higher than the high temperature side set temperature. Also. As in the fourth aspect of the invention, when the fuel temperature at the time when the light transmittance is lowered is lower than the low temperature side set temperature, it can be determined that the kerosene of the specified amount or more is mixed.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の一実施形態に係る燃料性状判定装置の全体構成を示す模式的な図である。1 is a schematic diagram illustrating an overall configuration of a fuel property determination device according to an embodiment of the present invention. 燃料の温度と光透過率との関係を示す図である。It is a figure which shows the relationship between the temperature of a fuel, and the light transmittance. 図1の制御装置にて実行される制御処理のフローチャートである。It is a flowchart of the control processing performed with the control apparatus of FIG.

本発明の一実施形態について説明する。図1は一実施形態に係る燃料性状判定装置の全体構成を示す模式的な図である。   An embodiment of the present invention will be described. FIG. 1 is a schematic diagram illustrating an overall configuration of a fuel property determination apparatus according to an embodiment.

この燃料性状判定装置は、ディーゼルエンジンに使用される燃料(すなわち軽油)に重油または灯油が混入されているか否かを判定するものであり、例えば整備工場にて用いられる。   This fuel property determination device determines whether heavy oil or kerosene is mixed in fuel (ie, light oil) used in a diesel engine, and is used, for example, in a maintenance factory.

図1に示すように、燃料性状判定装置は、検査対象燃料2を入れるセル1を備え、このセル1は、光透過率を低下させ難い材料(例えば石英ガラス)よりなる。   As shown in FIG. 1, the fuel property determination apparatus includes a cell 1 into which an inspection target fuel 2 is placed, and the cell 1 is made of a material (for example, quartz glass) that does not easily reduce light transmittance.

このセル1の外部には、光透過率検出手段を構成する発光素子3および受光素子4が、セル1を挟んで対向して配置されている。発光素子3は、例えばLEDよりなり、制御装置7によって通電が制御される。そして、発光素子3は、通電時にセル1内の検査対象燃料2に向けて一定量の光(例えば近赤外の光)を発光する。受光素子4は、例えばPD(フォトダイオード)よりなり、発光素子3から発光されて検査対象燃料2を透過した光を受光し、透過量に応じた電気信号を制御装置7に出力する。   Outside the cell 1, a light emitting element 3 and a light receiving element 4 constituting a light transmittance detecting means are arranged to face each other with the cell 1 interposed therebetween. The light emitting element 3 is made of, for example, an LED, and energization is controlled by the control device 7. The light emitting element 3 emits a certain amount of light (for example, near infrared light) toward the inspection target fuel 2 in the cell 1 when energized. The light receiving element 4 is composed of, for example, a PD (photodiode), receives light emitted from the light emitting element 3 and transmitted through the fuel 2 to be inspected, and outputs an electrical signal corresponding to the transmission amount to the control device 7.

セル1の周囲には、制御装置7によって通電が制御される冷却器5が配置されている。この冷却器5は、例えばペルチェ素子で構成され、通電時に検査対象燃料2を冷却する。   Around the cell 1, a cooler 5 whose energization is controlled by the control device 7 is arranged. The cooler 5 is composed of, for example, a Peltier element, and cools the inspection target fuel 2 when energized.

セル1の内部には、検査対象燃料2の温度を計測する熱電対などの温度検出器6が配置されている。そして、温度検出器6は、検査対象燃料2の温度に応じた電気信号を制御装置7に出力する。   Inside the cell 1, a temperature detector 6 such as a thermocouple for measuring the temperature of the fuel 2 to be inspected is arranged. Then, the temperature detector 6 outputs an electrical signal corresponding to the temperature of the inspection target fuel 2 to the control device 7.

制御装置7は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って各種演算や処理を行う。この制御装置7は、受光素子4からの電気信号に基づいて検査対象燃料2の光透過量を演算する。さらに、制御装置7は、既知である発光素子3の発光量と、演算にて求めた光透過量とに基づいて、光透過率を演算する。なお、光透過率=光透過量/発光量、である。   The control device 7 is configured by a known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like, and performs various calculations and processes according to a program stored in the ROM. The control device 7 calculates the light transmission amount of the inspection target fuel 2 based on the electric signal from the light receiving element 4. Further, the control device 7 calculates the light transmittance based on the known light emission amount of the light emitting element 3 and the light transmission amount obtained by the calculation. Note that light transmittance = light transmission amount / light emission amount.

図2に、以下の7種類の燃料の温度と光透過率との関係を示している。7種類の燃料は、2号軽油、特3号軽油、灯油、A重油、2号軽油に規定量以上の灯油を混入した燃料、2号軽油にA重油を混入した燃料、A重油と灯油を混合した燃料である。因みに、特3号軽油は、規定量未満の灯油が混入された正規燃料である。   FIG. 2 shows the relationship between the temperature and light transmittance of the following seven types of fuel. Seven types of fuels are: No. 2 diesel oil, No. 3 diesel oil, kerosene, A heavy oil, No. 2 diesel oil mixed with more than the specified amount of kerosene, No. 2 diesel oil mixed with A heavy oil, A heavy oil and kerosene Mixed fuel. Incidentally, Special No. 3 diesel oil is a regular fuel mixed with less than the specified amount of kerosene.

燃料を冷却すると、燃料中の成分がワックスとして析出し、析出したワックスにより光が散乱されるため、図2に示すように、燃料がある温度以下になると光透過率が急激に低下する。この光透過率が急激に低下するときの温度(以下、光透過率低下時燃料温度という)は、それぞれの燃料の曇り点などに代表される低温特性に従う。具体的には、光透過率低下時燃料温度は、重油が最も高く、次に軽油が高く、灯油が最も低い。従って、光透過率低下時燃料温度に基づいて、正規燃料か、重油混入燃料か、或いは、灯油混入燃料であるかを、判定することができる。なお、図2に示す低温側設定温度Ta〜高温側設定温度Tb(但し、Ta<Tb)は、正規燃料の光透過率低下時燃料温度の範囲である。   When the fuel is cooled, the components in the fuel are deposited as wax, and light is scattered by the deposited wax. Therefore, as shown in FIG. 2, when the fuel falls below a certain temperature, the light transmittance rapidly decreases. The temperature at which the light transmittance rapidly decreases (hereinafter referred to as the fuel temperature when the light transmittance decreases) follows low temperature characteristics typified by the cloud point of each fuel. Specifically, the fuel temperature when the light transmittance is reduced is the highest for heavy oil, the next highest for light oil, and the lowest for kerosene. Therefore, it is possible to determine whether the fuel is regular fuel, heavy oil-mixed fuel, or kerosene-mixed fuel based on the fuel temperature when the light transmittance decreases. Note that the low temperature side set temperature Ta to the high temperature side set temperature Tb (where Ta <Tb) shown in FIG. 2 is the range of the fuel temperature when the light transmittance of the regular fuel decreases.

また、燃料に重油が混入されていると重油中に含まれる蒸留残渣の粒子により光が散乱されるため、高温側設定温度Tbよりもさらに高い温度域(本例では、例えば0℃以上)での光透過率(以下、高温時光透過率という)は、重油を混入した燃料の方が重油を混入していない燃料よりも低くなる。従って、高温時光透過率に基づいて、重油の混入有無を判定することができる。   In addition, when heavy oil is mixed in the fuel, light is scattered by the distillation residue particles contained in the heavy oil, and therefore in a temperature range higher than the high temperature side set temperature Tb (in this example, for example, 0 ° C. or higher). The light transmittance (hereinafter referred to as “high temperature light transmittance”) of the fuel mixed with heavy oil is lower than that of the fuel not mixed with heavy oil. Therefore, the presence or absence of heavy oil can be determined based on the light transmittance at high temperature.

次に、検査対象燃料2の性状判定について説明する。図3は制御装置7にて実行される性状判定処理のフローチャートである。   Next, the property determination of the inspection target fuel 2 will be described. FIG. 3 is a flowchart of the property determination process executed by the control device 7.

まず、高温側設定温度Tbよりもさらに高い温度に調整された検査対象燃料2をセル1に入れる。そして、図示しない電源スイッチを入れると、制御装置7に通電され、制御装置7は性状判定処理を開始する。   First, the inspection target fuel 2 adjusted to a temperature higher than the high temperature side set temperature Tb is put into the cell 1. When a power switch (not shown) is turned on, the control device 7 is energized, and the control device 7 starts a property determination process.

図3に示すように、制御装置7は、まず、S101(Sはステップを表す)にて発光素子3を駆動して発光させ、S102では、受光素子4からの電気信号に基づいて光透過量を測定して、検査対象燃料2の高温時光透過率V1を演算する。   As shown in FIG. 3, the control device 7 first drives the light emitting element 3 to emit light in S <b> 101 (S represents a step), and in S <b> 102, the light transmission amount based on the electrical signal from the light receiving element 4. And the light transmittance V1 at high temperature of the fuel 2 to be inspected is calculated.

続いて、S103では、S102で求めた高温時光透過率V1に基づいて検査対象燃料2への重油の混入の有無を判定する。具体的には、高温時光透過率V1が閾値V0(図2参照)よりも低いときに重油の混入有りと判定し(S103がYES)、S104で重油混入フラグをONする。なお、閾値V0は、制御装置7のROMに記憶されている。   Subsequently, in S103, it is determined whether or not heavy oil is mixed into the inspection target fuel 2 based on the high-temperature light transmittance V1 obtained in S102. Specifically, when the light transmittance V1 at high temperature is lower than the threshold value V0 (see FIG. 2), it is determined that heavy oil is mixed (S103 is YES), and the heavy oil mixed flag is turned on in S104. The threshold value V0 is stored in the ROM of the control device 7.

そして、S103がYESの場合はS104からS105に進み、S103がNOの場合はS105に進む。このS105では、冷却器5を駆動して検査対象燃料2を冷却する。   If S103 is YES, the process proceeds from S104 to S105, and if S103 is NO, the process proceeds to S105. In S105, the cooler 5 is driven to cool the fuel 2 to be inspected.

続いて、S106にて冷却過程での検査対象燃料2の冷却時光透過率V2を演算し、S107にて冷却過程での検査対象燃料2の温度T1を計測する。   Subsequently, in S106, the cooling light transmittance V2 of the inspection target fuel 2 in the cooling process is calculated, and in S107, the temperature T1 of the inspection target fuel 2 in the cooling process is measured.

続くS108では、S102で求めた高温時光透過率V1からS106で求めた冷却時光透過率V2を減算した値である光透過率低下量ΔV(=V1−V2)を求め、さらに、その光透過率低下量ΔVが所定値ΔVa以上か否かを判定する。なお、所定値ΔVaは、制御装置7のROMに記憶されている。   In subsequent S108, a light transmittance decrease amount ΔV (= V1−V2), which is a value obtained by subtracting the cooling light transmittance V2 obtained in S106 from the high temperature light transmittance V1 obtained in S102, is obtained, and the light transmittance is further obtained. It is determined whether or not the decrease amount ΔV is equal to or greater than a predetermined value ΔVa. The predetermined value ΔVa is stored in the ROM of the control device 7.

光透過率低下量ΔVが所定値ΔVa未満の場合は(S108がNO)、S109に進んで、S107で計測した燃料温度T1が低温側設定温度Taより高いか否かを判定し、燃料温度T1が低温側設定温度Taより高い場合は(S109がYES)、S106に戻る。   When the light transmittance decrease amount ΔV is less than the predetermined value ΔVa (NO in S108), the process proceeds to S109, where it is determined whether the fuel temperature T1 measured in S107 is higher than the low temperature side set temperature Ta, and the fuel temperature T1. Is higher than the low temperature side set temperature Ta (YES in S109), the process returns to S106.

すなわち、S108で肯定判定されるか、S109で否定判定されるまで、S106〜S109の処理が繰り返し実行される。なお、低温側設定温度Taは、制御装置7のROMに記憶されている。   That is, the processes of S106 to S109 are repeatedly executed until an affirmative determination is made in S108 or a negative determination is made in S109. The low temperature side set temperature Ta is stored in the ROM of the control device 7.

そして、光透過率低下量ΔVが所定値ΔVa以上になり、S108で肯定判定されると、S110に進む。このS110では、S107で最後に計測した燃料温度T1(すなわち、光透過率低下時燃料温度)が高温側設定温度Tbより高いか否かを判定し、光透過率低下時燃料温度T1が高温側設定温度Tbより高い場合は(S110がYES)、図2から明らかなように重油が混入されていると判断されるため、S111にて不正燃料であることを図示しない表示部に表示させる。なお、高温側設定温度Tbは、制御装置7のROMに記憶されている。   If the light transmittance decrease amount ΔV is equal to or greater than the predetermined value ΔVa and an affirmative determination is made in S108, the process proceeds to S110. In this S110, it is determined whether or not the fuel temperature T1 last measured in S107 (that is, the fuel temperature when the light transmittance decreases) is higher than the high temperature side set temperature Tb, and the fuel temperature T1 when the light transmittance decreases is the high temperature side. If it is higher than the set temperature Tb (YES in S110), it is determined that heavy oil is mixed as is apparent from FIG. 2, and therefore, in S111, it is displayed on a display unit (not shown) that the fuel is illegal fuel. The high temperature side set temperature Tb is stored in the ROM of the control device 7.

一方、S110で否定判定された場合、すなわち光透過率低下時燃料温度T1が高温側設定温度Tb以下である場合は、S112にて重油混入フラグがONしているか否かを判定する。そして、光透過率低下時燃料温度T1が高温側設定温度Tb以下で(S110がN0)、且つ重油混入フラグがONしている場合は(すなわち、高温時光透過率V1が閾値V0よりも低いとき。S112がYES)、図2から明らかなように重油と灯油の混入により調整されていると判断されるため、S111にて不正燃料であることを表示部に表示させる。   On the other hand, if a negative determination is made in S110, that is, if the fuel temperature T1 when the light transmittance is reduced is equal to or lower than the high temperature side set temperature Tb, it is determined in S112 whether the heavy oil mixture flag is ON. When the light transmittance lowering fuel temperature T1 is equal to or lower than the high temperature side set temperature Tb (S110 is N0) and the heavy oil mixture flag is ON (that is, when the high temperature light transmittance V1 is lower than the threshold value V0). 2), it is determined that the fuel has been adjusted by mixing heavy oil and kerosene as is apparent from FIG.

また、S108およびS109でともに否定判定された場合、すなわち光透過率低下量ΔVが所定値ΔVa未満のまま(S108がNO)、燃料温度T1が低温側設定温度Ta以下まで低下した場合は(S109がNO)、図2から明らかなように灯油が混入されていると判断されるため、S111にて不正燃料であることを表示部に表示させる。   Further, when both S108 and S109 are negatively determined, that is, when the light transmittance decrease amount ΔV is less than the predetermined value ΔVa (S108 is NO), the fuel temperature T1 is decreased to the low temperature side set temperature Ta or less (S109). 2), since it is determined that kerosene is mixed as is apparent from FIG. 2, in S111, it is displayed on the display section that the fuel is illegal.

さらに、燃料温度T1が低温側設定温度Taより高い状況下で(S109がYES)、光透過率低下量ΔVが所定値ΔVa以上になった場合に(S108がYES)、S110に進み、燃料温度T1が高温側設定温度Tb以下の場合に(S110がN0)、S112に進む。   Further, when the fuel temperature T1 is higher than the low temperature side set temperature Ta (S109 is YES), when the light transmittance decrease amount ΔV is equal to or greater than the predetermined value ΔVa (S108 is YES), the process proceeds to S110, where the fuel temperature When T1 is equal to or lower than the high temperature side set temperature Tb (S110 is NO), the process proceeds to S112.

従って、S112にて否定判定される(すなわち、重油混入フラグがONしていない)検査対象燃料2は、低温側設定温度Ta〜高温側設定温度Tbの温度域で光透過率低下量ΔVが所定値ΔVa以上となり、且つ高温時光透過率V1が閾値V0よりも高い特性のものである。そして、このような特性の検査対象燃料2は、図2から明らかなように正規燃料と判断されるため、S113にて正規燃料であることを表示部に表示させる。なお、S103、S108、S109、S110、およびS112は、燃料性状判定手段を構成する。   Accordingly, the fuel to be inspected 2 that is negatively determined in S112 (that is, the heavy oil mixture flag is not turned ON) has a predetermined light transmittance decrease ΔV in the temperature range from the low temperature side set temperature Ta to the high temperature side set temperature Tb. The light transmittance V1 at a high temperature is higher than the threshold value V0. Then, the inspection target fuel 2 having such characteristics is determined to be a normal fuel as is apparent from FIG. 2, so that the fact that it is a normal fuel is displayed on the display unit in S113. Note that S103, S108, S109, S110, and S112 constitute a fuel property determination unit.

S111、S113にて表示部に表示させた後、S114にて冷却器5を停止させ、S115にて発光素子3を停止させて、性状判定処理を終了する。   After being displayed on the display unit in S111 and S113, the cooler 5 is stopped in S114, the light emitting element 3 is stopped in S115, and the property determination process is ended.

本実施形態によると、高温時光透過率V1と光透過率低下時燃料温度T1とに基づいて、軽油に重油または灯油が混入されているか否かを正確に判定することができる。   According to the present embodiment, it is possible to accurately determine whether heavy oil or kerosene is mixed in light oil based on the light transmittance V1 at high temperature and the fuel temperature T1 at light transmittance decrease.

なお、上記実施形態のS111においては、単に不正燃料であることを表示させるようにしたが、S111の代わりに、S109で否定判定された場合に灯油が混入された不正燃料であることを表示させるステップと、S110で肯定判定された場合に重油が混入された不正燃料であることを表示させるステップと、S112で肯定判定された場合に重油と灯油が混入された不正燃料であることを表示させるステップとを設けてもよい。   In S111 of the above-described embodiment, it is simply displayed that the fuel is illegal fuel, but instead of S111, if negative determination is made in S109, it is displayed that the fuel is illegal fuel mixed with kerosene. A step of displaying an unauthorized fuel mixed with heavy oil when an affirmative determination is made at S110, and an unauthorized fuel mixed with heavy oil and kerosene when an affirmative determination is made at S112. Steps may be provided.

2 検査対象燃料
3 発光素子(光透過率検出手段)
4 受光素子(光透過率検出手段)
5 冷却器
6 温度検出器
2 Fuel to be inspected 3 Light emitting element (light transmittance detection means)
4 Light receiving element (light transmittance detection means)
5 Cooler 6 Temperature detector

Claims (4)

検査対象燃料(2)の光透過率を検出する光透過率検出手段(3、4)と、
検査対象燃料(2)を冷却する冷却器(5)と、
検査対象燃料(2)の温度を検出する温度検出器(6)と、
前記光透過率検出手段(3、4)で検出した光透過率、および前記温度検出器(6)で検出した燃料温度とに基づいて、軽油に重油または灯油が混入されているか否かを判定する燃料性状判定手段(S103、S108、S109、S110、S112)とを備える燃料性状判定装置であって、
前記燃料性状判定手段は、高温側設定温度を超える燃料温度域での検査対象燃料(2)の光透過率である高温時光透過率と、前記高温側設定温度より高い燃料温度域から冷却される際に検査対象燃料(2)の光透過率が前記高温時光透過率よりも所定値以上低下したときの燃料温度である光透過率低下時燃料温度とに基づいて、燃料性状を判定することを特徴とする燃料性状判定装置。
Light transmittance detecting means (3, 4) for detecting the light transmittance of the fuel to be inspected (2);
A cooler (5) for cooling the fuel to be inspected (2);
A temperature detector (6) for detecting the temperature of the fuel to be inspected (2);
Based on the light transmittance detected by the light transmittance detection means (3, 4) and the fuel temperature detected by the temperature detector (6), it is determined whether heavy oil or kerosene is mixed in the light oil. A fuel property determination device comprising fuel property determination means (S103, S108, S109, S110, S112),
The fuel property determining means is cooled from a high temperature light transmittance which is a light transmittance of the fuel to be inspected (2) in a fuel temperature range exceeding the high temperature side set temperature, and a fuel temperature range higher than the high temperature side set temperature. The fuel property is determined based on the fuel temperature when the light transmittance decreases, which is the fuel temperature when the light transmittance of the fuel to be inspected (2) is lower than the light transmittance at the high temperature by a predetermined value or more. A fuel property determination device.
前記燃料性状判定手段は、前記高温時光透過率が閾値よりも低い場合に、重油の混入有りと判定することを特徴とする請求項1に記載の燃料性状判定装置。   The fuel property determination device according to claim 1, wherein the fuel property determination unit determines that heavy oil is mixed when the high-temperature light transmittance is lower than a threshold value. 前記燃料性状判定手段は、前記光透過率低下時燃料温度が前記高温側設定温度よりも高い場合に、重油の混入有りと判定することを特徴とする請求項1に記載の燃料性状判定装置。   2. The fuel property determination device according to claim 1, wherein the fuel property determination unit determines that heavy oil is mixed when the fuel temperature at the time of the decrease in light transmittance is higher than the high temperature side set temperature. 前記燃料性状判定手段は、前記高温側設定温度よりも低い低温側設定温度が設定されており、前記光透過率低下時燃料温度が前記低温側設定温度よりも低い場合に、規定量以上の灯油の混入有りと判定することを特徴とする請求項1に記載の燃料性状判定装置。   The fuel property determination means has a low temperature side set temperature lower than the high temperature side set temperature, and when the light transmittance lowering fuel temperature is lower than the low temperature side set temperature, kerosene more than a specified amount The fuel property determination device according to claim 1, wherein it is determined that there is contamination.
JP2010001340A 2010-01-06 2010-01-06 Fuel property determination device Active JP5246173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010001340A JP5246173B2 (en) 2010-01-06 2010-01-06 Fuel property determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001340A JP5246173B2 (en) 2010-01-06 2010-01-06 Fuel property determination device

Publications (2)

Publication Number Publication Date
JP2011141164A JP2011141164A (en) 2011-07-21
JP5246173B2 true JP5246173B2 (en) 2013-07-24

Family

ID=44457121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010001340A Active JP5246173B2 (en) 2010-01-06 2010-01-06 Fuel property determination device

Country Status (1)

Country Link
JP (1) JP5246173B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179342A (en) * 1982-04-15 1983-10-20 Asia Sekiyu Kk Method and apparatus for measuring chromaticity of fluid in chemical plant or the like
JPS6114546A (en) * 1984-06-30 1986-01-22 Shin Meiwa Ind Co Ltd Discriminating device for kind of oil
JPH0249141A (en) * 1988-05-09 1990-02-19 Cosmo Oil Co Ltd Method and instrument for determining quickly concentration of sludge
JPH07120387A (en) * 1993-10-27 1995-05-12 Nippon Oil Co Ltd Detection of clouding point by automatic tester
JP3990226B2 (en) * 2002-08-09 2007-10-10 新日本石油株式会社 Light oil composition
FR2846748B1 (en) * 2002-10-30 2005-04-22 I S L METHOD FOR DETERMINING THE DISAPPEARANCE POINT OF CRYSTALS OF PETROLEUM PRODUCTS, AND DEVICE FOR CARRYING OUT SAID METHOD
JP5169190B2 (en) * 2007-12-13 2013-03-27 東亜ディーケーケー株式会社 Light oil identification method and light oil monitor

Also Published As

Publication number Publication date
JP2011141164A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
US20200342605A1 (en) Methods and systems for hotspot detection
KR101574709B1 (en) System for detecting fire and electric appliance box using multi-sensor
US20060043077A1 (en) CO2 laser machining head with integrated monitoring device
TW201224488A (en) Inspection machine, inspecting method and inspecting system
EP2950105B1 (en) Device for detecting particles in a liquid and method for detecting particles in a liquid
KR101702841B1 (en) Method for monitoring defect in polaroid films
JP2016114959A (en) Photoelectric smoke detector
WO2012052752A3 (en) Fluid discrimination apparatus and method
JP6405828B2 (en) Crucible measurement method
TWI596295B (en) Reducer damage state notification device and the gearbox damage status notification function of the mechanical system
JP5246173B2 (en) Fuel property determination device
US20120313749A1 (en) Authentication of a security marker
CN105300563A (en) Correction method of up-conversion fluorescence strength ratio temperature measurement technology
CN104296902A (en) Novel full-automatic glass surface stress meter
JP5223825B2 (en) Fuel discrimination device
JP2016064932A (en) Silica glass crucible
JP6405827B2 (en) Method for producing silica glass crucible
CN106297205A (en) A kind of machine frame detecting clogging of dust screen and detection device
JP6336867B2 (en) Crucible measuring device
KR101418308B1 (en) LED Wavelength Comparator and Method thereof
JP2008157753A (en) Inspection device, annealing device, and inspection method
US10317286B2 (en) Luminaire and method for temperature control
JP2013072574A (en) Combustion diagnostic device and method of diagnosing combustion
US20230314320A1 (en) Control apparatus, measuring instrument, and method of preventing condensation
CN117078684B (en) LED lamp visual detection method, system and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5246173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250